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Abstract We report on laboratory experiments designed to explore the fundamental processes that
impact fluid permeability during drilling and fluid injection. Coupled ultrasonic and permeability
measurements are presented for Westerly granite samples fractured in situ and used to illuminate the
relationship between nonlinear dynamic stiffness and fracture permeability indexed via fracture aperture.
We perturb the effective stress field using normal stress and pore pressure oscillations. The velocity of
ultrasonic waves transmitted across the fracture is used to infer the evolution of elastic properties and the
fracture nonlinearity. Changes in permeability are measured concurrently. We observe that relative
changes in wave velocity and permeability, due to both normal stress and pore pressure oscillations, are
correlated, such that larger drops in wave velocity (higher nonlinearity) correspond to larger increases in
permeability. Our observations suggest that dynamic stressing is more likely to enhance the
permeability of fractures that exhibit greater nonlinearity.

1. Introduction

The injection and recovery of fluids in the subsurface involve significant changes in the local stress field and
may cause major changes in the hydromechanical properties of the target reservoir rocks. Of particular con-
cern are dynamic stresses associated with injection, pumping, and transport of fluids. These stresses may
pose significant risk associated with accelerated deformation, fault reactivation, and possible damage to
reservoir seals. Regional increases in seismic activity induced by such dynamic stresses have been reported
in numerous studies (e.g., Brodsky & Lajoie, 2013; Davis & Pennington, 1989; Deichmann & Giardini, 2009;
Ellsworth, 2013; Frohlich, 2012; Healy et al., 1968; Holland, 2013; Horton, 2012; McGarr et al., 2015;
McNamara et al., 2015; Raleigh et al., 1976; Simpson et al., 1988; Sminchak & Gupta, 2003; van der Elst
et al., 2013; Walsh & Zoback, 2015; Weingarten et al., 2015; Zoback, 2012; Zoback & Gorelick, 2012).
However, in the context of energy recovery, these dynamic stresses may be beneficial in enhancing perme-
ability and have received relatively little attention.

Transient permeability enhancement caused by dynamic stresses associated with passing seismic waves
has been reported at the field scale and also demonstrated in laboratory experiments. These works
demonstrate that fluid injection and dynamic stresses combine to produce significant changes in perme-
ability and poromechanical properties of rock (e.g., Elkhoury et al., 2006; Faoro et al., 2009; Elkhoury
et al., 2011; Faoro et al., 2012; Candela et al., 2014, 2015; Carey et al., 2015; Frash et al., 2016; Im
et al., 2018; Ishibashi et al., 2018; Ye & Ghassemi, 2018; Zhang et al., 2018; Shi et al., 2018; Shi et al.,
2019). In addition, other studies have shown that earthquakes and the ensuing seismic waves cause tran-
sient changes in rock stiffness in the vicinity of faults (Brenguier et al., 2008; Brenguier et al., 2014; Li
et al., 1998, 2006; Niu et al., 2008; Wu et al., 2009). Such observations include coseismic softening of rock
as measured by a sudden decrease in seismic wave velocity, followed by a postseismic relaxation in the
form of (full or partial) logarithmic recovery with time. Similar behavior has been recorded at laboratory
scale, for example, using dynamic acousto‐elastic testing (Shokouhi et al., 2017), where wave velocity is
measured during dynamic stressing. It is well‐established that dynamic perturbations (strain ~10−6) result
in a temporary loss of stiffness in so‐called nonlinear mesoscopic elastic materials such as rocks (Guyer &
Johnson, 2009).
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The parallels between the observed transient changes in permeability and stiffness due to dynamic stress
perturbations suggest a physical link between the nonlinear stiffness and hydraulic characteristics of frac-
tures (e.g., Batzle et al., 2006; Berkowitz, 2002; Berryman et al., 2002; Brown, 1987; Durham & Bonner,
1995; Gale, 1982; Guéguen & Schubnel, 2003; Hofmann et al., 2005; Pyrak‐Nolte et al., 1987; Witherspoon
et al., 1980; Xu et al., 2006; Zimmerman & Bodvarsson, 1996). In other words, the nonlinear seismic response
of fractured rocks is expected to exhibit great sensitivity to features such as fracture roughness and aperture,
flow pathways, asperity compliance, and frictional rheology. However, our ability to exploit the nonlinearity
in the elastodynamic properties of rock to predict fracture flow and its evolution with time and deformation
is limited. Existing studies on coupling between stiffness and poromechanical behavior of fractured samples
used quasi‐static stress protocols (e.g., Mavko, 2013; Nara et al., 2011; Petrovitch et al., 2013; Pyrak‐Nolte &
Nolte, 2016). In this paper, we present the results of well‐controlled laboratory experiments combining the
analysis of nonlinear elastodynamic and hydraulic data.

2. Experimental Setup and Procedure

We conducted experiments with simultaneous measurement of permeability and elastic properties on sam-
ples that were fractured in situ under a true triaxial stress state. Samples of Westerly granite were first cut
into L‐shaped blocks (68 × 45 × 50 × 26 mm, Figure 1) and then presaturated with deionized, de‐aired water
and loaded using steel platens with embedded ultrasonic piezoelectric transducers. The assembly was
jacketed in a thin, flexible latex membrane to separate the confining and pore fluids. We independently con-
trolled the confining pressure and the horizontal and vertical applied loads (for details of the sample geome-
try and apparatus, see Elkhoury et al., 2011; Candela et al., 2014, 2015). The samples were initially intact and
were fractured by applying a shear load in servo displacement control (Figure 1). The fracture plane was
guided by starter notches at the top and bottom of the sample, which helped in making reproducible,
quasi‐planar fractures. Shear and normal stresses were applied to the (eventual) fracture plane (Figure 1).
Vertical and horizontal displacements of the loading pistons were measured continuously to derive shear
and normal components of strain using direct current displacement transducers. An additional linear vari-
able differential transformer (LVDT) was placed inside the pressure vessel to provide precise measurement
of displacement normal to the fracture plane. The displacement sensors have an accuracy of ±0.1 μm.

Two pore pressure intensifiers equipped with LVDTs were used to control fluid pressure (or flow rate) at the
top and bottom of the fracture plane (Figure 1). Fluid was introduced along a line source consisting of a nar-
row channel (45 × 1 mm) covered by a sintered metal frit and fed by five 1.6‐mm diameter holes in order to
uniformly distribute the flow along the width of the sample (see Candela et al., 2015).

Each experiment commenced with the application of a small horizontal force followed by confining pres-
sure. Normal stress and confining pressure were then raised to 20 and 15 MPa, respectively, and

Figure 1. Experimental setup: (a) True triaxial stresses applied to the sample within the pressure vessel; (b) L‐shaped sam-
ple sandwiched between steel loading blocks with embedded ultrasonic transducers; and (c) schematic representation of
the fracture aperture, flow path, and the ultrasonic wave path for a single transmitter‐receiver pair together with an
example of raw waveform.

10.1029/2019GL083557Geophysical Research Letters

SHOKOUHI ET AL. 2 of 10



maintained constant via servocontrol. The next step was to apply the inlet (Ppi = 4 MPa) and outlet
(Ppo = 2 MPa) pore pressures. Given the low permeability of the intact granite (<10−20 m2) and the small
applied pressure difference, no measurable flow was observed at this initial stage. Once all fluid pressures
and solid stresses were applied, ultrasonic data acquisition was initiated using the VantageTM Research
Ultrasound system (Verasonics®). The sample was then fractured in situ by increasing the shear stress at
constant normal stress while making continuous measurements of fluid flow and ultrasonic properties.
After locking the vertical piston (no displacement allowed), we executed the dynamic stressing protocol
illustrated in Figure 2a.

All forces, displacements, and fluid pressures were measured continuously throughout the experiment with
a 24‐bit analog to digital converter at 10 kHz—and later averaged to recording rates of 100 or 1,000 Hz
depending on the experimental protocol. Active ultrasonic data were recorded simultaneously at a rate of
25 MHz. The continually monitored mechanical, pore pressure, and ultrasonic data were time stamped

Figure 2. Overview of imposed normal stress σn and pore pressure Pp oscillations on the fractured sample for (a) WG1 (experiment p4966) and (b) WG2 (experi-
ment p4975). Small horizontal arrows indicate hold times in unit of seconds. Examples of observed relative velocity and permeability change due to (c) normal stress
(σn) oscillation and (d) pore pressure (Pp) oscillation. The velocity/permeability changes are calculated using the measured values before and after each oscillation
averaged over the time windows shown in this figure. The missing data points in the permeability measurements are a result of discarding data corresponding to
inlet/outlet flow rates different from each other by more than 5% (violating the assumption of steady flow and the use of Darcy's law).
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and fully synchronized. We determined the evolution of permeability and elastic properties in response to
dynamic stressing using the techniques described below.

2.1. Dynamic (Effective) Stress Stimulation

The fractured samples were dynamically perturbed via pore pressure (Pp) and normal stress (σn) oscillations.
Following the procedure described by Candela et al. (2015), pore pressure oscillations were achieved by
oscillating Ppi while holding Ppo constant. Conversely, normal stress oscillations were applied by oscillating
the horizontal piston of the load frame at prescribed amplitude and frequency. As depicted in Figure 2a, mul-
tiple sets of Pp and σn oscillations of varying amplitude (up to about ±1 MPa) and frequency (0.1, 1, 10, and
40 Hz) were applied to investigate the repeatability as well as amplitude and frequency dependencies of the
measured response. Similar parameters were used for Pp and σn oscillation sets in order to apply similar
effective stress perturbations and allow making comparisons between Pp and σn stimulations.

2.2. Permeability Measurements

We measured flow rates independently at the inlet (Qi) and outlet (Qo) using the outputs of LVDTs on the
pressure intensifiers. After verifying the steady state flow condition (Qi − Qo ≤ 5%), Darcy's law was used
to calculate permeability k:

k ¼ μL
S

Q
ΔPp

whereQ= 1/2(Qi+Qo) is the average flow rate (m3/s), μ is the fluid viscosity (10−3 Pa s) at 20 °C, L is the flow
path given by the length of the sample (50 mm), and S is the cross section perpendicular to the flow path
(45 × 26 mm2). Here k is the bulk permeability of the sample including the permeability of fracture and
its surrounding impermeable matrix (Faoro et al., 2009; Im et al., 2018). Alternatively, we could have calcu-
lated the permeability of the fracture itself (Ishibashi et al., 2018; Zhang et al., 2017). Both definitions would
produce the same trends here, since we are not concerned with the absolute permeability of the fracture, but
the relative change due to dynamic stressing.

2.3. Active Ultrasonic Measurements

Ultrasonic waves transmitted through the fracture were recorded continuously in each experiment. Half‐
cycle sinusoidal pulses with an amplitude of 40 V and frequency of 500 kHz were emitted consecutively from
each transmitting transducer (nine piezoelectric disks arranged in a 3 × 3matrix embedded within the right‐
hand loading block in Figure 1b) with a pulse repetition frequency of 100 or 1,000 Hz during the low and
high frequency (≥10 Hz) stress oscillations, respectively. The waveforms were amplified (~40 dB) and
recorded for all the receiving transducers (12 piezoelectric disks arranged in a 4 × 3 matrix embedded within
the left‐hand loading block in Figure 1b). We activated up to the full array of 9 transmitter and 12 receivers;
however, in this paper, we focus on the results from a single transmitter‐receiver pair obtained in two experi-
ments. The ultrasonic waveforms are reduced to obtain the evolution of wave velocity before, during and
after the imposed effective stress oscillations. As shown in Figure S1, we calculate the time shift by cross cor-
relating each waveform with a reference waveform recorded at the unperturbed stress state. The peak of the
cross‐correlation function is fitted by a parabola to obtain subsampling frequency resolution. The reported
wave velocity c is calculated from the time shift after accounting for changes in thickness (Figures 2c and 2d).

3. Results

The experimental data are analyzed to independently obtain the nonlinear elastodynamic response of the
fractured rock as well as permeability changes due to imposed perturbations in effective stress. We used
the ultrasonic records together with the strain measurements to calculate the former, whereas flow rate data
were reduced to obtain the latter.

3.1. Nonlinear Elastodynamic Response

We use two parameters to quantify the nonlinearity of the fractured samples. The first is the relative velocity
change (Δc/c0) defined as the percent change in velocity due to the imposed oscillation. We calculate
Δc/c0 from the velocity before (c0) and after (c) each oscillation averaged over 1‐s time windows
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(Figures 2c and 2d). At a given oscillation amplitude, the more negative the Δc/c0 (greater absolute value),
the more nonlinear is the material. A second nonlinearity measure is the amplitude of velocity oscillations,
averaged over the oscillation duration and normalized by preoscillation velocity c0. Similar to Δc/c0, a larger
magnitude of dc/c0 at a given oscillation amplitude is an indication of higher nonlinearity.

We quantify the nonlinear elastodynamic response of fractured rock using the dependence of Δc/c0 and
dc/c0 on dynamic stress amplitude and frequency (Figure 3). Here we focus on twoWesterly granite samples
WG1 (experiment p4966) andWG2 (experiment p4975) and a single transmitter‐receiver pair (Figure 3). The
relative velocity change Δc/c0 scales with the amplitude of both 1‐Hz normal stress and 1‐Hz pore pressure
oscillations except at the highest amplitudes, where it plateaus (Figures 3a and 3b). This is because we use
the same oscillation duration for all amplitudes, and therefore, at high amplitudes, the velocity oscillations
may not reach a steady state. Thus, the measured Δc/c0 may underestimate the true velocity offset for large
oscillation amplitudes. The relative velocity changes Δc/c0 for the two samples and for the first and second
set of oscillations in each experiment are comparable, indicating reproducibility of the measurements. The
larger difference between Δc/c0 values for the two normal stress oscillation sets may be due to the oscillation
sequence; the normal stress oscillations are separated by two consecutive pore pressure oscillations. Finally,
the frequency dependence of Δc/c0 for 1.2‐MPa normal stress and 1‐MPa pore pressure oscillation sets
shown in Figure 3c suggests a general increase in nonlinearity with frequency; the increase is first subtle
but becomes pronounced at higher frequencies. This trend is in accord with our previous observations in
intact Berea sandstone (Rivière et al., 2016). The measured frequency dependencies for the two samples
are more similar for normal stress than for pore pressure oscillations. This discrepancy could be due to
the fact that the diffusion of pore pressure oscillations from inlet to outlet (only the inlet pressure is being
oscillated) is slow relative to the period of oscillation for frequencies higher than 1Hz—changing the loading
distribution. Note that no data are available for WG1 at 40 Hz.

The parameter dc/c0 scales linearly with the oscillation amplitude for both WG1 and WG2. Similar to Δc/c0,
dc/c0 values fall in the same range for both samples and exhibit good repeatability especially for the two con-
secutive sets of pore pressure oscillations. However, the dependency of dc/c0 on frequency is different from

Figure 3. Dependencies of relative velocity change Δc/c0 (a–c) and average velocity change amplitude dc/c0 (d–f) on the
amplitude and frequency of normal stress and pore water pressure oscillations. Each figure combines the results obtained
in two different experiments on twoWesterly granite samples,WG1 (p4966) andWG2 (p4975). The amplitude dependency
is measured for two sets of 1‐Hz normal stress oscillations (NS1 and NS2 shown in Figures 1a and 1b) as well as two sets of
1‐Hz pore water pressure oscillations (PP1 and PP2 shown in Figures 1a and 1b). The frequency dependency is measured
for the largest amplitudes, that is, 1.2‐MPa normal stress and 1.0‐MPa pore water pressure oscillations.

10.1029/2019GL083557Geophysical Research Letters

SHOKOUHI ET AL. 5 of 10



that observed for Δc/c0. For normal stress oscillations, dc/c0 for both samples decreases as the frequency
increases from 0.1 to 10 Hz. The observed trend for pore pressure oscillations is different for the two
samples; dc/c0 decreases with the frequency of pore pressure oscillations for WG1 but increases for WG2.
It should be noted that the anomalous trend for WG2 is only observed for this particular transmitter‐
receiver pair; for the other pairs, dc/c0 decreases with the pore pressure oscillation frequency as well.

3.2. Changes in Permeability Due to Normal Stress and Pore Pressure Oscillations

The relative change in permeability Δk/k0 is defined as the perfect change in permeability due to the
imposed normal stress or pore pressure oscillation, normalized by the preoscillation permeability
(Candela et al., 2014). As shown in Figures 1c and 1d, the preoscillation permeability k0 and the postoscilla-
tion permeability k= k0+Δk are calculated by averaging themeasured values over 10‐ and 1‐s time windows,
respectively. The discontinuities in permeability measurements shown in Figures 1c and 1d correspond to
the data points for which inlet/outlet flow rate difference exceeds the 5% threshold.

The dependency of Δk/k0 on the amplitude and frequency of normal stress and pore pressure oscillations are
shown in Figure 4. The red dashed lines in these figures atΔk/k0 = 0mark the boundary between permeabil-
ity increase and decrease due to the imposed oscillation. Despite the scatter in the data (Figures 4a and 4b),
the relative permeability change Δk/k0 generally scales with the amplitude of 1‐Hz normal stress and pore
pressure oscillations. Small‐amplitude oscillations may even result in a decrease in permeability, whereas
large‐amplitude oscillations generally increase the permeability. Comparing Figures 4a and 4b, the pore
pressure oscillations appear to be more effective in permeability enhancement (Δk/k0 > 0) than the normal
stress oscillations by a factor of ~2.5, particularly for WG1. The frequency dependence of permeability
changes for normal stress and pore pressure oscillations are presented in Figure 4c. Note that the permeabil-
ity changes are larger for the 10‐Hz fluid pressure oscillations as well as the 40‐Hz normal stress oscillations.
The permeability change increases, albeit slightly, with frequency. The only exception is the decrease in
Δk/k0 for WG2, when we increase the fluid pressure oscillations from 1 to 10 Hz (blue squares).

4. Discussion

Many rock types exhibit strongly nonlinear mesoscopic elastic (NME) behavior, such that the stiffness is
highly strain dependent for strains greater than ~10−6 (Guyer & Johnson, 2009). The presence of fractures
increases the local compliance and thus enhances elastic nonlinearity. The nonlinearity of a fractured
interface is dictated by the surface roughness and fracture stress (e.g., Jin et al., 2018). One of the elastody-
namic signatures of NMEmaterials is the strain dependency of elastic wave velocity (see Figures 2c and 2d).
The strain‐induced changes in wave velocity (Δc/c0 and dc/c0) would be null for a perfectly linear elastic
material because the elastic moduli in a linear elastic medium are constant and thus, the wave velocity is
strain invariant. However, in an NME material, the wave velocity drops instantaneously upon dynamic
stressing. Our data support these statements. Our measurements of the relative changes in wave velocity
Δc/c0 show an initial sudden drop, which is known to be related to the hysteretic nonlinearity parameter

Figure 4. Dependency of relative permeability changeΔk/k0 on the amplitude (a and b) and frequency (c) of normal stress
and pore water pressure oscillations in two different experiments on twoWesterly granite samples,WG1 (p4966) andWG2
(p4975). The amplitude‐dependency is measured for two sets of 1‐Hz normal stress oscillations (NS1 and NS2 shown in
Figures 1a and 1b) as well as two sets of 1‐Hz pore water pressure oscillations (PP1 and PP2 shown in Figures 1a and 1b).
The frequency dependency is measured for 1.2‐MPa normal stress and 1.0‐MPa pore water pressure oscillations.
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α (Guyer & Johnson, 2009). This drop is followed by oscillatory fluctuations of wave velocity, which reach a
nonequilibrium steady state for sufficiently long perturbations (Rivière et al., 2015). The wave velocity oscil-
lations occur primarily at the perturbation frequency (f) but may also include higher order harmonics, nf for
n= 2,3,…,etc. The amplitude of velocity oscillations dc/c0 (Figures 2c and 2d) is related to the nonlinear para-
meter β that is typically estimated via the second harmonic (e.g., Rivière et al., 2013, 2015). Once the pertur-
bation ceases, the wave velocity slowly relaxes to the preoscillation value c0—a phenomenon known as slow
dynamics (Shokouhi et al., 2017; TenCate et al., 2000).

We document the correspondence between transient changes in elastic wave properties and permeability
during dynamic stressing (Figure 5). Changes in wave speed are calculated for a single pair of transducers
(Figure 5c). With the exception of a few points corresponding to pore pressure oscillations at 10 Hz, relative
velocity and permeability change appear to be well correlated. In other words, the increased nonlinearity
(more negative Δc/c0) is associated with larger permeability enhancement (more positive Δk/k0) and vice
versa. The observed correlation is remarkable considering that we measure wave velocity between only
one pair of transducers, thus sampling a small area of the fractured interface, whereas permeability depends
on the entire fracture length (Figure 1c). Interestingly, the correlation exists for both normal stress and pore
pressure oscillations, although pore pressure oscillations are generally more effective in enhancing perme-
ability. As noted previously (Figure 4), small‐amplitude oscillations of both normal stress and pore pressure
may result in a decrease in permeability.

The results presented in Figure 5 support the initial hypothesis of a link between the nonlinear elastody-
namic behavior and hydraulic properties of fractured rock. One explanation for this linkage is the strong
dependence of both properties on fracture aperture and roughness; specifically, on the changes in asperity
contact areas that correlate with transient closure of the fracture as a result of the imposed stress oscillations.
The measured nonlinearity parameter, the transient drop in wave velocity Δc/c0,is a result of instantaneous
loss of contact between asperities over the rough fracture interface. Once the oscillation is removed, the con-
tacts begin to heal, resulting in a slow logarithmic‐in‐time recovery of wave velocity toward preperturbation
values. Permeability changes could also result from changes in fracture aperture during the oscillations
(Candela et al., 2015; Im et al., 2018). To further examine this hypothesis, it is useful to investigate whether
Δc/c0 or Δk/k0 correlate with measured sample thickness changes due to imposed oscillations. As shown in
Figure S4, while a subset of (Δc/c0)NS and thickness data seem to be correlated, the overall correlation is
rather weak. The correlation between (Δk/k0)NS and thickness change is even weaker. In addition, no corre-
lation is observed for either (Δc/c0)PP or (Δk/k0)PP. These observations suggest that changes in fracture aper-
ture are not the sole driving mechanism, especially for pore pressure oscillations.

Previous work shows that unclogging of fracture flow conduits is the primary mechanism of transient
changes in permeability during fluid pressure oscillations (Candela et al., 2014, 2015). For example, the

Figure 5. Correspondence between nonlinearity and permeability change due to (a) normal stress and (b) pore water pres-
sure oscillations. The inset in (b) excludes the data corresponding to 10‐Hz oscillations. The nonlinearity is expressed in
terms of Δc/c0, relative change in velocity due to imposed effective stress oscillations. (c) The position of the two ultrasonic
transducers used in the study relative to the fracture plane. The wavelength for a 500‐kHz pulse in Westerly Granite
(~5,000 m/s) is about 1 cm. The area probed (~1 cm2) therefore corresponds to roughly 8% of the total fracture plane.
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unclogging of temporary blockages in the fluid path is used to explain the modulation of transient perme-
ability changes with pore pressure oscillation amplitude. Also, the first oscillations in a multioscillation
set are the most effective, with subsequent oscillations yielding smaller changes in permeability. Yet this
mechanism does not adequately explain observations of reduced permeability due to normal stress oscilla-
tions (Candela et al., 2015). Unclogging of the fracture aperture may indeed be one of the underlying
mechanisms behind our observations as well. However, unlike in Candela et al. (2015), we observe an
increase in permeability for both pore pressure and normal stress oscillations of large enough amplitude.
It can be argued that sufficiently strong oscillations are capable of clearing the fracture aperture from fines.
On the one hand, this will increase the fluid flow, which in turn translates into permeability enhancement
(Δk/k0 > 0). On the other hand, unclogging may reduce the contact area at the fracture interface, which may
decrease the transmitted wave velocity (Δc/c0 < 0), depending on whether the clogging agents are simply
covering pore throats or in intimate contact with one or both fracture surfaces. Nevertheless, this mechan-
ism does not explain the permeability loss (Δk/k0 < 0) after imposing low‐amplitude oscillations, especially
when it is coupled with a decrease in wave velocity (Δc/c0 < 0). Also, unlike in Candela et al. (2015), we find
that the first oscillation is not always the most effective, an observation that does not support the unclogging
hypothesis (Figure S5). A study of permeability change versus flow rate amplitude during effective stress
oscillations does not yield a clear correlation (see Figure S6). This is contrary to the results by Candela et al.,
2014, who found a strong dependence of permeability change on flow rate during fluid pressure oscillations
with Berea Sandstone. It is notable that in our study, the correlation is stronger for pore pressure oscillations
and that the fluid flow amplitudes during normal stress oscillations are 2 orders of magnitude smaller than
those during fluid pressure oscillations. Considering all the above observations, one may conclude that
unclogging is not the only potential mechanism but merely one of many potential active mechanisms that
explain permeability evolution due to pore pressure oscillations. To investigate the extent to which unclog-
ging is responsible for the observed phenomena, additional work is needed to examine the downstream
water chemistry and the presence of fines during dynamic stressing.

5. Conclusions

We present observations on the coupling between elastic stiffness and permeability transients due to
dynamic stressing. Understanding this relationship can help illuminate key processes governing flow in frac-
tured reservoirs, energy production, and subsurface waste disposal. Our experiments reveal a correlation
between changes in permeability and wave velocity due to dynamic stressing via both normal stress and pore
pressure oscillations. Within the range of our experimental parameters, oscillations of larger‐amplitude and
higher frequency tend to be more effective in increasing permeability. Also, pore pressure oscillations are
more effective in permeability enhancement than normal stress oscillations of the same amplitude and fre-
quency. Our observations suggest that dynamic stressing is more likely to enhance the permeability of frac-
tured rocks that exhibit greater elastic nonlinearity.

Aperture change and unclogging are candidate mechanisms to explain our observations. The former is likely
to be dominant during normal stress oscillations while the latter appears to dominate during pore pressure
oscillations. Future experiments on prefractured and saw‐cut samples of known roughness will quantify the
role of aperture change for changes in dynamic stiffness and permeability. We will also look for fines in the
downstream effluent before and after dynamic stressing in order to better understand the role of unclogging
in promoting permeability enhancement.
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