Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model

Chunguang Wanga,⇑, Xingkai Shi a, Wei Zhang a,b, Derek Elsworth c, Guanglei Cuid, Shuqing Liu a, Hongxu Wanga, Weiqiang Songa, Songtao Hufe, Peng Zhengf

a College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China
b New-energy Development Center of Sinopec Shengli Oilfield, Dongying 257001, China
c Energy and Mineral Engineering and G3 Center, Penn State University, University Park, PA 16802, USA
d Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110004, China
e Shandong Provincial Geo-Mineral Engineering Co., Ltd, Jinan 250013, China
f Qingdao Wofu New Energy Science and Technology Co., Ltd, Qingdao 266010, China

Article info

Article history:
Received 9 October 2021
Received in revised form 2 November 2021
Accepted 15 December 2021
Available online 24 December 2021

Keywords:
Supercritical CO2
Heat extraction
Hot rock
Geothermal energy
Fracture-matrix interaction

Abstract

Heat production from geothermal reservoirs is a typical heat transfer process involving a cold working fluid contacting a hot rock formation. Compared to the thermal-physical characteristics of water, supercritical CO2 (scCO2) has a higher heat storage capacity over a wide temperature-pressure range and may be favored as a heat transfer fluid. Singularly characteristic of scCO2-based heat extraction is that the hydraulic-thermal properties of the scCO2 vary dramatically and dynamically with the spatial pressure gradient during unsteady-state flow along fracture. This highly nonlinear behavior presents a challenge in the accurate estimation of heat extraction efficiency in scCO2-based EGS. In this paper, a thermal-hydraulic-mechanical (THM) coupled model is developed by considering deformation of the fractured reservoir, non-Darcy flow and the varying thermal-physical properties of scCO2. The proposed model is validated by matching the modeling temperature distribution with published data. The results show that during continuous injection of scCO2, the fracture first widens and then narrows, ultimately reopening over the long term. The sequential fracture deformation behaviors are in response to the combined impacts of mechanical compression and thermally-induced deformation. By controlling the injection parameters of the scCO2, it is found that the heat extraction rate is positively correlated to its pore pressure or mass flow rate. The heat extraction rate can be significantly enhanced, when the inlet temperature of scCO2 is below its critical temperature. As a result, the heat increment recovered per unit mass of scCO2 decreases as the hot rock is gradually cooled. Meanwhile, the heat increment recovered per unit mass of scCO2 decreases by increasing the inlet temperature of scCO2 or its mass flow rate, but increases as the outlet pressure rises. Furthermore, multi-linear regression indicates that controlling the inlet temperature of the scCO2 can significantly improve the thermodynamic efficiency of heat extraction.

© 2022 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accessing geothermal resources remains one of the most promising alternatives to provide plentiful and clean energy [1-3]. As a type of geothermal reservoir, hot dry rock (HDR) has received extensive attention due to its vast reserves [4,5]. An HDR reservoir is typically a low-permeability but high-temperature rock formation, whose commercial geothermal exploitation requires permeability enhancement by stimulation to be viable [6,7]. Heat extraction from enhanced geothermal systems (EGS), represents a re-branding of HDR and is completed by injecting a low-temperature working fluid into natural or artificial hydraulic fractures, and then relying on heat exchange from the fractured rock matrix to further increase fluid transmission [8,9]. Compared to H2O-based working fluids, supercritical CO2 (scCO2) has a higher density to viscosity ratio, exerts a larger buoyant force that can reduce parasitic losses and zero/low salinity [10]. Some characterizations of scCO2-based EGS projects demonstrate that the heat extraction rate can be as high as 160% that of...
H$_2$O-based EGS [11]. A comprehensive understanding of heat transfer process between the working fluid and the HDR reservoir is crucial in predicting long-term heat production and operational life of the EGS.

Flow-through experiments using CO$_2$ or water show that the heat extraction rate can increase with flow rate [12-14], but decrease with fracture tortuosity. As a key parameter in the prediction of heat extraction rate (HE rate) [15,16], the heat transfer coefficient (HTC) is an empirical index representing the interaction between the hydrodynamics of fluid motion and solid surface geometry [15,17]. The HTC is positively correlated with flow rate, but negatively with fracture aperture [18-23]. Compared to smooth parallel-plate fractures, the impacts of fracture roughness on the variation of HTC remain equivocal [12,20,23-24]. In addition, an ill-defined temperature distribution along the rough fracture surface results in inadequate constraint of the heat extraction rate. This is because fracture roughness may disturb uniform laminar flow, in which the redistribution of fluid flow velocity will alter the spatial distribution of temperature. In this case, the thermal conductivity of scCO$_2$ is dependent of the active combined temperature-pressure conditions, whereby for water, it is primarily controlled by temperature alone. The modeling of heat extraction is challenged by the effects of thermal–hydraulic-mechanical (THM) [26-34]. In addition, a fully developed temperature distribution within individual fractures can proceed independently-and the multiple-fracture model then degenerates into a single fracture model. It is notable that thermophysical properties of CO$_2$ are sensitive to the thermal–hydraulic state of the EGS, especially close to the critical point or pseudo-critical point of CO$_2$. When hot rock is gradually cooled, increasing CO$_2$ density can significantly retard the flow velocity, consequently impacting its specific heat capacity and thermal conductivity [51]. Although heat transfer to and within scCO$_2$ has been extensively described by prior models [52-54], less consideration has been given to the optimum heat extraction rate considering the dynamic and nonlinear evolution of the thermophysical properties of the scCO$_2$ coupled with the THM response of the reservoir.

In this study, we explore heat extraction sensitivity of HDR reservoirs to the thermophysical properties of scCO$_2$ by developing a thermal–hydraulic-mechanical (THM) coupled model, which can couple three-dimensional rock deformation with the non-Darcy flow of scCO$_2$. In particular, the thermophysical evolution of the CO$_2$ is governed by the Span and Wagner model [55]. The fractured region within the hot rock is defined as an equivalent porous medium, where the assumption of local thermal equilibrium between fracture surface and matrix is applied. The proposed numerical model is validated by comparing with published experimental results. A series of sensitivity analysis under various injection conditions are evaluated by comparing heat increments with the outlet temperatures of the scCO$_2$. This work provides insights in determining maximum efficiency of such novel systems.

2. Mathematical model

In the following, the proposed fully coupled thermal-hydraulic-mechanical model is governed by the elastic deformation and stress equilibrium of the solid, together with conservation of fluid mass and energy for the non-isothermal fluid-solid system. A tortuous, fluid-transmitting fracture is defined as an equivalent porous medium, as shown in Fig. 1. The ultra-low-permeability rock matrix is isotropic and homogeneous, accommodating negligible flux of the working fluid. In the absence of water, chemical reactions between the anhydrous scCO$_2$ and minerals are also neglected.

2.1. Governing equation of fluid flow within a fracture

The governing equation for fluid flow within the fracture is defined by mass conservation as:

\[\rho \frac{\partial \rho}{\partial t} + \rho \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = Q \]

where ρ is the fluid density; Q the mass source per unit volume per unit time; p the fluid pressure; ϕ the porosity; and \mathbf{v} the velocity vector for the fluid.

The Reynolds number is defined as:

\[Re = \frac{\rho v l}{\mu} \geq \frac{2M}{W} \]

In the following, the proposed fully coupled thermal-hydraulic-mechanical model is governed by the strain–stress relation, heat balance and mass balance of the solid and fluid phases, as well as the conservation of fluid mass and energy. The proposed numerical model is validated by comparing with published experimental results. A series of sensitivity analysis under various injection conditions are evaluated by comparing heat increments with the outlet temperatures of the scCO$_2$. This work provides insights in determining maximum efficiency of such novel systems.
where l is the characteristic length of the fluid pathway; μ the fluid viscosity; M the mass flow rate; and W the fracture aperture. According to initial values of the parameters above listed in Table 1, the Reynolds number for CO$_2$ typically exceeds that for laminar flow and the application of the standard from of Darcy’s law (1–10). Thus the flow equation for scCO$_2$ is governed by the Forchheimer model.

$$\nabla p = -\frac{\mu}{k} \nabla^2 v - \frac{c_l}{\sqrt{k}} \rho v^2$$

(3)

where ∇p is the pressure gradient; μ the fluid viscosity; k the permeability; and c_l the Forchheimer parameter.

The dilation/compaction of the fracture zone embedded in the equivalent fractured medium is represented as:

$$\Delta a_e = u_z l_{z-q} / 2 - u_z l_{z-q} / 2$$

(4)

where $u_z l_{z-q} / 2$ and $u_z l_{z-q} / 2$ are displacements across the equivalent fracture zone.

According to the definition of porosity (ratio of void volume V_p to bulk volume V_l), the porosity of the equivalent fracture is defined as:

$$\phi = \frac{V_p}{V_l} = \frac{a_e}{a_t}$$

(5)

where a_e is the hydraulic aperture of the equivalent fracture; and a_t the void volume between the two fracture surfaces.

Permeability of the equivalent fracture is defined as [57]:

$$k = \frac{a^2}{12}$$

(6)

2.2. Constitutive equation for fractured rock

The Navier-type constitutive equations for the fracture and the matrix are expressed as [58,59]

$$G_m u_{kk} + \frac{G_m}{1 - 2\mu} u_{kk} - 3K_m \frac{\partial T}{\partial x} + f_i = 0$$

(7)

for the rock matrix

$$G_i u_{kk} + \frac{G_i}{1 - 2\mu} u_{kk} - p - 3K_i \frac{\partial T}{\partial x} + f_i = 0$$

(8)

for the rock fracture

where G and μ are the shear modulus and Poisson ratio respectively; K the bulk modulus; α_T the linear thermal expansion coefficient; p the fluid pressure; and u_i the displacement component. The subscripts m and f represent matrix and fracture, respectively.

2.3. Heat transfer equation

Heat transfer only occurs within the rock matrix, where energy conservation is governed by Fourier’s Law as:

$$\rho C_{pr} \frac{\partial T}{\partial t} - \nabla \cdot (\lambda \nabla T) = Q_h$$

(9)

where λ is the thermal conductivity; ρ the density of the rock; C_{pr} the specific heat capacity of the rock; and Q_h the heat source.

Local thermal equilibrium between the equivalent fracture and the matrix is assumed. Cooling by the working fluid within the hot fracture recovers heat by conduction and removes it by convection.

2.4. Thermal-physical properties of scCO$_2$

Thermal-physical properties of scCO$_2$ include specific heat capacity, density, dynamic viscosity and thermal conductivity. The thermal-physical equation defining the temperature and pressure dependence for scCO$_2$ is adopted from the Span and Wagner model [55]. Since the accuracy of the Span and Wagner over a broad range of temperatures and pressures is widely accepted, this model is also used by the National Institute of Standards and Technology, USA [61]. The state equation for CO$_2$ is defined as a function of the dimensionless Helmholtz energy:

$$\Phi(\delta, \tau) = \Phi_0(\delta, \tau) + \Phi^\prime(\delta, \tau)$$

(11)

where Φ and Φ^\prime are the behavior of an ideal gas and the residual gas, respectively; $\delta = \rho / \rho_0$ the reduced density representing the ratio of fluid density to critical density; and $\tau = T / T_c$ the inverse reduced temperature, representing the ratio of the critical temperature of the fluid to the actual temperature. CO$_2$ density can then be rewritten as:

$$\rho = \frac{\rho_0(\delta, \tau)}{R T_c (1 + \delta \Phi^\prime_0)}$$

(12)

where $\rho_0(\delta, \tau)$ is the fluid pressure; Φ_0^\prime the partial derivative of Φ^\prime to δ; and R the specific gas constant as 0.1889 kJ/(kg·K).

The specific heat capacity of CO$_2$ at constant pressure is then expressed as:

$$c_p = \frac{\rho_0}{R} \left(1 + \frac{\delta \Phi^\prime_0}{\rho_0} + \frac{\phi^\prime}{\rho_0} \right)$$

(13)

where $\phi^\prime = \frac{\phi \phi^\prime_0}{\rho_0}$, $\phi^\prime_0 = \frac{\phi \phi^\prime_0}{\rho_0}$, and $\phi^\prime = \frac{\phi \phi^\prime_0}{\rho_0}$.

Both the viscosity and thermal conductivity of CO$_2$ transport are represented by the Vessovic-Fenghour model [62,63] as:

$$X(\rho, T) = X_0(T) + \Delta X(\rho, T) + \Delta X_c(\rho, T)$$

(14)

where $X(\rho, T)$ represents a specific property of the CO$_2$; $X_0(T)$ the transport property under the zero-density state; $\Delta X(\rho, T)$ the excess transport property of the fluid; and $\Delta X_c(\rho, T)$ the critical enhancement due to changes in temperature and pressure near the critical point. The phase transition of CO$_2$ is recovered from Newton-
Raphson iteration. Modeling temperature-dependent physical parameters of CO₂ (including density, specific heat capacity, viscosity and thermal conductivity) are shown in Fig. 2, respectively.

2.5. Cross-couplings

Fig. 3 is a schematic of the cross-couplings among the various multi-physical processes. Injection of cold scCO₂ not only changes the hydraulic conditions within the fracture, but also extracts heat from the surrounding hot rock by conduction. As a consequence, heat transfer within the rock can drive out-of-step thermal deformations between the fracture and matrix, while varying hydraulic condition will affect CO₂ mas flow and the heat extraction rate from the fracture-matrix interface.

3. Model analysis

We validate the proposed THM model against a set of published experimental data [64]. This particular experimental observation investigated the effects of convective heat transfer of scCO₂ by measuring the temperature variation within a fractured granite core with 25 mm-radius and 50 mm-length. Fig. 4 shows the 3D geometry of the granite core, where a throughgoing fracture has an aperture of 0.2 mm and a width of 40 mm.

(1) Mechanical boundary conditions

A confining pressure is applied on the circumferential surface of the rock sample,

\[p = p_c \]

Displacements at the two ends of the model are fixed as:

\[u_{x|_{x=0}} = u_{x|_{x=l}} = 0 \]

(2) Thermal boundary conditions

Given that the periphery of the holder was heated by an electric heating jacket, heat conduction within the oil bath, gasket and metal end-caps must be considered. The inflow condition into the fracture is given as:

\[-\mathbf{n} \cdot \mathbf{q} = \rho \Delta H \mathbf{u} \cdot \mathbf{n} \Delta H = \int_{T_{in}}^{T} c_p dT \]

where \(T_{in} \) is the inlet temperature of the CO₂; \(q \) the net rate of heat loss; \(\mathbf{u} \) the flow velocity with \(\mathbf{n} \) defining the unit normal vector.

The outer surface of the calculation model, excepting the fracture inlet, is thermally insulated and defined as a null heat flow boundary condition as:

\[-\mathbf{n} \cdot \mathbf{q} = 0 \]

Fig. 2. Modeling temperature-dependent CO₂ parameters using the Span and Wagner model [55].
The flow boundary conditions

A mass flow condition for the inlet of the rock is given as:

\[\int S \cdot \nu \, d\sigma = M_0 \]

where \(S \) is the cross-sectional area of the fracture; and \(M_0 \) the mass flow rate of the injected CO2. Finally, the pressure is defined at the outlet of the fracture as:

\[p = p_{\text{out}} \]

3.1. Model validation

Numerical solutions to these field equations are recovered from COMSOL multiphysics. Relevant material parameters are listed in Table 1. The temperature distribution at the fracture wall is recovered along the axis of the cylindrical sample. Fig. 5a plots locations of temperature measurement points. It should be noted that the injected fluid is preheated in the holder, prior to flowing into the rock. The temperature of the injected fluid is a function of time, \(T_{\text{in}} = T_{\text{inj}}(t) \), according to linear interpolation from the experimental data. Fig. 5b compares the measured temperature data against the modeling results. It is clear that the modeling temperature-time distribution along the rock is in good agreement with the measured temperature data (with \(R \)-Squared values > 95%).

3.2. Fracture aperture change induced by CO2 cooling

In this section, we evaluate the spatial and temporal variation of heat transfer in the scCO2-rock system at sub-prototype scale by expanding the size of the numerical model. The diameter of the modified model is expanded from 50 to 1000 mm, and its length increases from 50 to 500 mm, as shown in Fig. 6. The overall width of the fracture region increases to 300 mm, but its hydraulic aperture remains unchanged (retained at 0.2 mm). The boundary conditions for fluid flow and solid deformation are identical to those for Section 3. A constant temperature of 150 °C is applied on the outer boundary. Material parameters are as listed in Table 2.

Considering that the fracture aperture change is related to the hydraulic-thermal gradients, Fig. 7a shows the time-dependent fracture aperture variation with respect to THM-induced strains at the central point of the fracture domain. In the first 20 s (Stage I), the fracture aperture initially widens as a result of the scCO2 injection. During this stage, the pore pressure-dependent strain rapidly increases, while both the thermally-induced fracture strain and matrix-induced strain remain unchanged. This indicates that the influent CO2 is rapidly heated to the initial temperature of the hot rock, during which time both the thermal strains across the fracture and within the rock matrix are negligible. From 20 to 5000 s approximately (Stage II), the fracture aperture begins to slightly reduce as a result of the continuing CO2 inflow. This is attributable to the cooling shrinkage of the matrix adjacent to the inlet. Beyond 5000 s (Stage III), the fracture aperture increases gradually. During this process, although the effect of cooling shrinkage can reduce the fracture strain to some extent, the volume shrinkage of the rock matrix dominates over the increase in fracture aperture.

Fig. 7b compares spatial variations of thermal properties of CO2 resulting from only considering the doublet of TH-coupling relative to the full triplet of THM-coupling. It is clear from this that both the specific heat and density of the CO2 are insensitive to changes in the fracture aperture. However, the CO2 flow velocity for the full triplet of THM-coupling is higher than that for the TH-only case, contrary to the equivalent thermal conductivity, as shown in Fig. 7c. This indicates that the mechanical compression effects have little impact on the thermal-physical properties of CO2, but can significantly change volume flow rate of CO2 and resultant heat conduction capacity.

4. Multi-factor evaluations of heat extraction by CO2

Since the thermodynamic properties of CO2 are sensitive to both pressure and temperature, the outlet temperature of CO2 alone cannot define the heat extracted over the entire pathway of circulation. Rather, the heat extraction rate of scCO2 must be recovered from the enthalpy differential between outlet and inlet [67]:

\[P = M_{\text{out}}(H_{\text{out}} - H_{\text{in}}) \]

where \(P \) is the heat extraction rate; \(M_{\text{out}} \) the CO2 mass flow rate at the outlet (steady flow); \(H_{\text{in}} \) and \(H_{\text{out}} \) the specific enthalpies at the inlet and outlet, respectively defined in terms of internal energy per unit mass, \(\tilde{u} \), and pressure, \(p \), as \(H = \tilde{u} + p/\rho \). Both production tem-
perature and the heat extraction rate are explored in light of three contrasting scenarios where controls are placed sequentially on inlet temperature and outlet pressure, both represented in the enthalpy differential, and the mass flow rate. When the controls on CO2 injection are defined, a complex chain of interactions among the thermodynamic properties of CO2 plays an important role in controlling scCO2 flow and its heat storage capacity. This implies that one injection process/constraint affects two or more thermodynamic properties of the resulting CO2 flow and therefore defines the change in specific enthalpy of the recovered fluid.

4.1. Scenario I: Effect of initial inlet temperature on heat extraction rate

The inlet temperature of the CO2 is varied across the range 25–50 °C in increments of 5 °C. All injection mass flow rates are 0.25 g/s, in which case effluent CO2 pressure is held at 9 MPa under the various temperature conditions. Fig. 9 shows the heat extraction profiles with increasing initial temperatures of the influent CO2. The parametric analysis indicates that the outlet temperature of the CO2 is positively correlated with the initial temperature of the CO2. However, injecting cooler CO2 elevates the heat extraction rate as the temperature differential is larger. From Fig. 2a, the specific heat capacity of CO2 under a specific pressure peaks at a critical temperature. It is apparent from Fig. 9b that the area enveloped by the specific heat to temperature relation reduces as the initial temperature increases. This indicates that the heat extraction capacity of CO2 can be significantly increased if the initial temperature of the CO2 is lower than the temperature corresponding to the peak in specific heat.

4.2. Scenario II: Effect of CO2 pressure on heat extraction rate

Since fluid flow rate is controlled by pressure gradient, the CO2 pressure along the entire fracture can be held constant by retaining the injection mass flow rate of CO2 constant together with the outlet pressure. The pressure-dependent outlet temperature and heat extraction rates of scCO2 are shown in Fig. 10a. The profiles of the effluent CO2 temperature vs time in Fig. 10a indicate that the injected CO2 is rapidly heated to 150 °C and then maintains this for 1200 s followed by a slow decline to an equilibrium profile. The higher the outlet pressure is the lower the temperature of the effluent CO2 is. This result indicates that although the first outflow of CO2 under a set pressure can be fully heated by the hot rock, the following outflow of CO2 cools

Table 2
Parameters for modeling of the up-scaled prototype model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th>Value</th>
<th>Variable</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_m</td>
<td>Young’s modulus of matrix</td>
<td>40 (GPa)</td>
<td>μ</td>
<td>Poisson’s ratio of granite</td>
<td>0.25</td>
</tr>
<tr>
<td>E_f</td>
<td>Young’s modulus of fracture</td>
<td>0.5 (GPa)</td>
<td>λ_m</td>
<td>thermal conductivity of granite</td>
<td>2.45 (W/(m K))</td>
</tr>
<tr>
<td>c_p,m</td>
<td>The specific heat capacity of granite</td>
<td>1100 (J/(kg/K))</td>
<td>(\rho_r)</td>
<td>Density of granite</td>
<td>2584 (kg/m³)</td>
</tr>
<tr>
<td>(x_t)</td>
<td>Thermal expansion coefficient</td>
<td>(6 \times 10^{-6}) (1/K)</td>
<td>(a_e)</td>
<td>Hydraulic aperture</td>
<td>0.2 (mm)</td>
</tr>
<tr>
<td>(p_{out})</td>
<td>Outlet pressure</td>
<td>9 (MPa)</td>
<td>(M_{in})</td>
<td>Injected mass flow rate</td>
<td>0.25 (g/s)</td>
</tr>
<tr>
<td>(P_c)</td>
<td>Confining pressure</td>
<td>20 (MPa)</td>
<td>(T_i)</td>
<td>The inlet temperature</td>
<td>50 °C</td>
</tr>
<tr>
<td>T_0</td>
<td>The initial temperature</td>
<td>150 (°C)</td>
<td>(p_0)</td>
<td>Initial fluid pressure</td>
<td>0.101 (MPa)</td>
</tr>
</tbody>
</table>
as the heat supply from the rock diminishes. Relevant heat extraction rates of CO₂ under different outlet pressures are shown in Fig. 10a. During the scCO₂ flooding, the heat extraction rate at the outlet is initially maintained but then falls to a steady state. Different from the changes in temperature of the effluent CO₂, the heat extraction rate increases with a rise in outlet pressure when the mass flow rate is fixed. In order to interpret the mechanism controlling the heat extraction rate for the scCO₂, Fig. 10b shows the distribution profiles of the outlet flow rate and specific heat of scCO₂ along the fracture when the effluent scCO₂ reaches an equilibrium state. Increasing outlet pressure of the CO₂ reduces the fluid flow rate but enhances the specific heat of the CO₂. These changes can explain the reduction in the outlet temperature of CO₂ with an increase in fluid pressure. Given that the mass flow rate is set at 0.25 g/s, increasing fluid pressure can raise both the density and viscosity of the CO₂, resulting in a reduction in the rate of CO₂ transport. In this case, both the higher heat storage capacity (specific heat) and lower
flow velocity can be beneficial in the recovery of heat from the hot rock. It should be noted that outlet temperature is reduced by the rise in the specific heat of CO₂ and increased by the reduction in CO₂ flow rate. It can be demonstrated from the drop in outlet temperature that the specific heat of the CO₂ can dominate the process of heat extraction.

4.3. Scenario III: Effect of mass flow rate on heat extraction

Heat recovery by scCO₂ is examined by increasing mass rates of injection from 0.15 to 0.3 g/s, in increments of 0.05 g/s. As shown in Fig. 11a, increasing the mass flow rates reduces the outlet temperature in the long-term but increases the net heat extraction rate. Considering that the evolution of the heat extraction rate with time is closely related to the temperature reduction in the effluent CO₂, we calculate the specific enthalpy increment and average density of injection over different durations of the heat transfer \(t = 10^2 \) s, \(t = 3 \times 10^4 \) s and \(t = 10^6 \) s. As shown in Fig. 11b, at the beginning of the CO₂ injection (corresponding to a time of \(10^2 \) s), the specific enthalpy increments of scCO₂ are maintained at 163 J/kg and are insensitive to changes in the mass flow rate. This is because the influent CO₂ can be heated to the initial temperature of the granite. As a result, the heat extraction rate is positively related to the mass flow rate of CO₂. As a result of the continuing heat transfer between the granite and CO₂, the matrix temperature around the fracture begins to gradually drop. The specific enthalpy increments of scCO₂ reduce with an increase in the mass flow rate. When the effluent CO₂ reaches an equilibrium temperature, the specific enthalpy increment reduces linearly from 157 to 138 J/kg as the mass flow rate increases from 0.1 to 0.3 g/s.
4.4. Evaluation of heat extraction characteristics

It is apparent from Fig. 7 that both the fracture deformation and thermodynamic properties of the effluent CO\textsubscript{2} vary with heat transfer between the hot rock and injected cool fluid. Fig. 12 presents a conceptualization of the entire evolution processes of fracture deformation and heat production. At the initiation of CO\textsubscript{2} injection, the influent CO\textsubscript{2} is rapidly heated to the initial rock temperature. Decreasing effective stress-induced fracture-dilatancy dominates over the thermal-deformation. Under this condition, the CO\textsubscript{2}-rock system is under an initial thermal equilibrium. The following influent CO\textsubscript{2} then first cools the asperities in the fracture, which reduces the fracture aperture and reduces heat production. Following this, due to CO\textsubscript{2} continuously absorbing heat from the rock matrix, the spatial temperature gradient in the matrix begins to gradually propagate from the fracture surface to the interior matrix, and concurrently progresses from the inlet to the outlet. The cooled matrix adjacent to the fracture accordingly shrinks, causing the fracture to reopen. Meanwhile, the heat production continues to fall as a result of the reduction in fracture-matrix temperature. During this stage, the rock permeability is controlled by the interaction between the fracture narrowing/opening and the matrix shrinkage [63]. Both mass flows of the CO\textsubscript{2} and heat extraction are dynamic. When the temperature difference between the rock and CO\textsubscript{2} is negligible, both the rock deformation and heat production of CO\textsubscript{2} are in a state of global thermal equilibrium. To evaluate the heat extraction through the CO\textsubscript{2} flux between the initial and global thermal equilibrium states, heat increments per unit mass of CO\textsubscript{2} are evaluated by independently varying the outlet pressure (Fig. 13a), mass flow rate (Fig. 13b) and inlet temperature of the CO\textsubscript{2} (Fig. 13c). In all instances, the heat increment recovered by the CO\textsubscript{2} in the state of initial thermal equilibrium is higher than that under the global thermal equilibrium. Indeed, both the initial temperature and mass flow rate of CO\textsubscript{2} are negatively correlated to the CO\textsubscript{2} outlet pressure, in contrast to its initial temperature. In addition, the mass flow rate of CO\textsubscript{2} has less impact on its heat increment. These results are in good agreement with the profiles in Fig. 13. In this case, when different controlling conditions are considered, varying initial temperature can significantly impact heat production.

Under the state of initial thermal equilibrium, it can be speculated, from the value of \(\beta \) in (Table 3), that the heat increment is positively correlated to the CO\textsubscript{2} outlet pressure, in contrast to its initial temperature. In addition, the mass flow rate of CO\textsubscript{2} has less impact on its heat increment. These results are in good agreement with the profiles in Fig. 13. In this case, when different controlling conditions are considered, varying initial temperature can significantly impact heat production.

According to the value of \(\beta \) in Table 4, the outlet pressure has a positive effect on the heat increment per unit mass of CO\textsubscript{2}, while both the initial temperature and mass flow rate are negatively correlated. Conversely, the mass flow rate and outlet pressure are negatively correlated with outlet temperature, different from the inlet temperature being positively correlated. By comparing values of \(\beta \) in the two dependent variables, it can be concluded that the initial temperature of CO\textsubscript{2} has the greatest influence on heat production.

5. Conclusions

We complete an analysis of flow of supercritical CO\textsubscript{2} (scCO\textsubscript{2}) within fractured hot rock as a prototypical geometry of an enhanced geothermal system (EGS) in hot and nominally dry rock (HDR).

(1) A rough-walled fracture in hot rock is simplified as an equivalent porous medium, where scCO\textsubscript{2} flow is governed by the Forchheimer equation and its thermal-physical properties are represented by the Span-Wagner model.

(2) During the continuous injection of scCO\textsubscript{2} into the hot rock, the rock permeability responds to, and is related to, interaction between the fracture narrowing/opening and matrix shrinkage. The fracture aperture decreases after initially increasing, then increases again towards a stable value. The fracture aperture increase at early time is attributed to

![Fig. 12. Schematic describing the evolution of fracture aperture and heat extraction with the duration of scCO\textsubscript{2} injection.](image-url)
the increase in CO2 pressure. The following fracture closure results from the cooling and shrinkage of the rough surfaces of the fracture asperities in contact. The subsequent fracture reopening over the long term also results from cooling and contraction of the rock matrix near the fracture.

(3) Controls on heat extraction effected by the scCO2 flux in the hot rock are evaluated by constructing a prototypical fracture-scCO2 circulation model representative of a mid-sized portion of a reservoir containing a component single fracture. This model is exercised by separately and independently controlling injection fluid pressure, mass flow rate and initial temperature of CO2, respectively. The heat extraction rate of the scCO2 is shown to be positively correlated to its pore pressure. This is because both specific heat and density of scCO2 are significantly increased with fluid pressure. Increasing the mass flow rate of scCO2 also increases the heat extraction rate. When the initial temperature of the scCO2 is below its pseudo-critical temperature, the heat extraction rate of scCO2 is significantly improved.

(4) According to the outlet temperature profile of CO2 with time, the heat transfer process between rock and CO2 reflects both a short-term initial equilibrium state and a longer-term global equilibrium. Both heat increments per unit mass of CO2 transmitted and outlet temperatures under the two equilibrium states are evaluated by separately and independently varying injection conditions of outlet pressure, then mass flow rate, then initial temperature. Under conditions of initial thermal equilibrium, the heat increment is higher than when a global thermal equilibrium is reached. Both the initial temperature and the mass flow rate of scCO2 are negatively correlated to the heat increments, different from the effects of the outlet pressure. Only increasing the initial temperature of the scCO2 can raise its outlet temperature, while increasing mass flow rate and the outlet pressure can reduce the outlet temperature of the scCO2. A multi-linear regression analysis for the three scCO2 injection scenarios, above, reveals that the thermal efficiency of scCO2 is improved by varying the initial temperature of CO2.

Acknowledgements

The financial support from the National Natural Science Foundation of China (Nos. 41772154 and 42102338), Natural Science Foundation of Shandong Province (Nos. ZR2019MA009 and ZR2020QE115), and SDUST Research Fund of China (No. 2018TDJH102) are all gratefully acknowledged.

References

[68] Sun FR, Yao YD, Li GZ, Li XF. Geothermal energy extraction in CO₂ rich basin using abandoned horizontal wells. Energy 2018;158:760–73.

[69] Sun FR, Yao YD, Li GZ, Li XF. Performance of geothermal energy extraction in a horizontal well by using CO₂ as the working fluid. Energy Convers Manage 2018;171:1529–39.