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ABSTRACT: The significant effect of gas sorption induced swelling on shale
permeability has been observed through laboratory measurements and
explained through permeability models over the past decades. However, there
are lab observations that cannot be explained by these models. This
knowledge gap prompts this review. Our goal is to form perspectives on how
to resolve this gap through assessing the role of swelling on shale
permeability. This goal is achieved through the following three steps: (1)
collection of experimental shale permeability data measured under both
constant effective stress and constant confining pressure conditions; (2)
collection and classification of shale permeability models under the influence
of gas sorption induced swelling strains; (3) assessments of co-relations
between shale permeability data and permeability models. On the basis of all
assessments, we conclude that the discrepancies between model predictions
and laboratory measurements depend on the relation between bulk and pore
swelling strains, pore size scales, and consistencies of strain treatments in the experiments and models. Models assuming that bulk
swelling strain is different from pore swelling strain can better explain lab observations than those assuming that they are the same.
When the pore size transitions from the micron-scale to the nano-scale, the effect of swelling on shale permeability gradually
diminishes. The inconsistencies between how swelling strains are measured in the lab and treated in the models are common in the
literatures and affect the discrepancies between model predictions and lab observations. On the basis of these assessments, we form
our perspectives: (1) transformation between bulk and pore swelling strains should be characterized and incorporated both for
experiments and in permeability models; (2) shale multiscale pore structural characteristics should be characterized when assessing
the swelling effect on shale permeability; (3) the time-dependent nature of swelling strain and permeability evolution should be
incorporated into future experiments and permeability models.

1. INTRODUCTION
As a typical type of multiporosity medium, shale consists of
porous matrixes and natural fractures. Porous matrixes can be
further divided into organic matter and inorganic matter. As
nanopores inside the organic matter have extremely large
internal surface area with strong affinity to methane, up to 20−
85% of total shale gas initially in place could be adsorbed
gas.1−5 The production of this gas in place is strongly
influenced by shale permeability. During the gas extraction
process, reservoir pressure gradually declines, leading to an
effective stress increase, rock compaction, and intrinsic
permeability change. When reservoir pressure declines below
the desorption point,6 adsorbed gas starts to release, causing
matrix shrinkage and further intrinsic permeability change.7−9

Meanwhile, under the low pore pressure condition, gas
slippage phenomenon occurs in the tiny nanopores. The
occurrence of gas slippage will lead to apparent permeability
change.10−13 Therefore, shale permeability evolution is very
complex and still has not been well understood.

Great efforts have been made in the laboratory to assess
shale permeability evolution behaviors. These experiments are

completed commonly under three different boundary con-
ditions including the constant effective stress (CES) condition,
constant pore pressure (CPP) condition, and constant
confining pressure (CCP) condition. In CES tests, effective
stress is kept constant. Shale permeability is believed to be
influenced by gas sorption and gas slippage. In CPP tests, pore
pressure is kept constant. Shale permeability is believed to be
influenced by effective stress and gas slippage. In CCP tests,
confining pressure is kept constant. Shale permeability is
believed to be influenced by effective stress, gas sorption, and
gas slippage. The basic assumption behind these tests is that
the effects of effective stress, gas sorption, and gas slippage on
shale permeability can be separated and studied individually.14
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From the literatures, various CES tests have been done to
investigate gas sorption on shale permeability,15−20 to
characterize the influence of gas slippage on shale perme-
ability,17−28 and to study the magnitude of effective stress on
shale permeability.21−24 Various CPP tests have been
conducted to investigate the variation of effective stress and
the role of gas slippage on shale permeability.29−40 Various
CCP tests have been completed to determine the individual
effects of effective stress,30,31,41,42 gas sorption,30,31,41,42 and gas
slippage14,30,32,43−47 on shale permeability.

Although laboratory experiments are the most direct way to
assess shale permeability behaviors, it is sometimes expensive,
time-consuming, and even requiring massive manpower. To
this end, numerous theoretical models have been developed. In
this work, we divide the development of these theoretical shale
permeability models into three stages. In the first stage, only
gas slippage effect is considered. The effect of gas slippage can
be incorporated into permeability models through two
different methods. In the first method, the slip boundary
condition of the continuity model is modified through
multiplying a slippage factor to the continuity equation.25,48−51

In the second method, various flow regimes are captured by
permeability models through superposition of each flow regime
using the contribution weight coefficients.10,52−62 However, all
permeability models in this stage assume intrinsic permeability
as a constant, which is unrealistic during gas injection/
extraction processes. In the second stage, the combined effects
of effective stress and gas slippage are considered. These
permeability models14,63,64 are able to capture the deformation
of shale and alteration of pore size as a result of effective stress
change under variable boundary conditions spanning from
displacement-controlled to stress-controlled ones. In the third
stage, the combined effects of effective stress, gas sorption, and
gas slippage are considered. In these permeability models, gas
sorption affects shale permeability from two different aspects.
On the one hand, the gas adsorption layer on nanopore wall
reduces the effective radius of nanopores65−69 and thus
influences shale permeability. On the other hand, gas
adsorption on rock grains causes matrix swelling, compresses
the nanopore radius, and thus changes the shale perme-
ability.14,30,70−81 In addition to the above-mentioned three
factors, shale permeability could also be influenced by other
factors. For instance, Cai et al.82 proposed an easy-to-
implement model and disclosed that shale permeability could
be influenced by heterogeneous pore size distribution. Sun et
al.83 pointed out that shale permeability could be influenced by
shear deformation. The impacts of these factors are beyond the
scope of this review and will not be further discussed.

In summary, both experimental and theoretical studies have
been conducted to assess shale permeability evolution
behaviors. The primary goal of this work is to assess how
well the effect of gas sorption induced swelling on shale
permeability has been considered in those permeability
models. To achieve this goal, we first collect experimental
shale permeability data that were measured under the CES and
CCP conditions. Then, those shale permeability models that
consider the effect of gas sorption induced swelling are
collected and classified. Afterward, the co-relations between
experimental shale permeability data and permeability models
are assessed. In the end, the challenges on how to treat swelling
strains in theoretical models and how to measure swelling
strains in the laboratory are discussed and also future research
directions are identified.

2. REVIEW OF EXPERIMENTAL SHALE PERMEABILITY
DATA

A broad variety of experiments have been conducted in the
laboratory to assess shale permeability evolution behaviors.
Three typical boundary conditions are commonly used
including the CES condition, CPP condition, and CCP
condition. Under the CPP condition, swelling strain remains
unchanged and does not influence shale permeability.
Therefore, the focus of this section is on the review of
experimental shale permeability data that were measured under
the CES and CCP conditions.
2.1. Shale Permeability Data from CES Tests. In CES

tests, effective stress is kept constant, which means that the
difference between confining pressure and pore pressure is
maintained unchanged throughout. Under this condition, gas
sorption and gas slippage jointly control the evolution of shale
permeability.

Figure 1 shows a variety of shale permeability data that were
measured under the CES condition. In these tests, shale

permeability was measured by either a steady state method or a
pressure transient method. The detailed experimental
procedures of these two methods will not be introduced in
this paper. Readers who are interested in it are referred to our
previous work.84 In order to clearly show and compare how
shale permeability evolves under the CES condition, the
collected permeability data were normalized by using the
permeability ratio (k/k0), which is defined as the ratio of
current permeability to initial permeability. As the gas pressure
may either be increased or decreased during the permeability
tests, in this review we use the change of permeability ratio
from a lower pressure condition to that at a larger pressure
condition to study shale permeability evolution behaviors.

As can be seen, shale permeability ratios distribute over a
wide range with all values less than 1 and greater than 0.09.
These permeability ratios are measured by using different
adsorptive gas sources including N2, CH4, and CO2. Among
these gases, CO2 has the strongest adsorption capacity,
followed by CH4 and then N2.

85 In these CES tests, the
magnitude of effective stress varies from 3.4 to 20.7 MPa and
the magnitude of injection pressure varies from 0.5 to 20.7
MPa. It can be found that under the CES condition all shale
permeability ratios decrease with the increase of gas pressure.

Figure 1. Distribution of shale permeability ratios that were measured
under the CES condition.15−20,22,23,45
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When CO2 or CH4 (strongly adsorptive gases) is used as the
injection gas, the shale permeability ratio sharply decreases
with the gas pressure increase. When N2 (weakly adsorptive
gas) is used as the injection gas, the shale permeability ratio
changes within a wider range with the gas pressure increase.
This finding suggests that shale permeability evolution is
closely related to gas sorption. For further observation, shale
permeability declines at different rates in those experiments
that were conducted using the same gas source, which implies
that shale permeability evolution also depends on other factors
such as effective stress magnitude and pore structure inside the
tested samples.
2.2. Shale Permeability Data from CCP Tests. In CCP

tests, confining pressure remains constant while the effective
stress gradually changes with gas pressure increase/decrease.
Under this condition, gas sorption, effective stress, and gas
slippage jointly control shale permeability evolution.

In this subsection, we use the permeability ratio (k/k0) to
analyze those data collected under the CCP condition as well.
As can be seen from Figure 2, shale permeability ratios

distribute over a wide range from 0.35 to 1.8 under the CCP
condition. Similar to the CES tests, these permeability ratios
represent the measurements by the use of different adsorptive
gas sources including N2, CH4, and CO2. In these CCP tests,
the magnitude of confining pressure varies from 7 to 31.8 MPa
and the magnitude of injection pressure varies from 0.15 to 12
MPa. It can be found that shale permeability evolution
behaviors can be classified into three categories: permeability
continuously increases with gas pressure increase; permeability
initially decreases and then rebounds with gas pressure
increase; permeability continuously decreases with gas pressure
increase. If we use k/k0 = 1 as the baseline, these permeability
ratios can be divided into the upper part and the lower part,
respectively representing the permeability net-increasing zone
and net-decreasing zone. When CO2 or CH4 (strongly
adsorptive gases) is used as the injection gas, shale
permeability ratios are mainly confined within the net-
decreasing zone. When N2 (weakly adsorptive gas) is used as
the injection gas, shale permeability ratios distribute widely
throughout the net-increasing and net-decreasing zones. This
observation suggests that shale permeability change is closely
related to gas sorption. For further observation, shale

permeability evolution behaviors can be distinctively different
from each other in those experiments where the same gas
source is used. This implies that the magnitude of confining
pressure and the internal pore structure characteristics of the
tested samples could also be important influencing factors.

3. REVIEW OF SHALE PERMEABILITY MODELS
In this section, the individual effects of gas sorption, effective
stress, and gas slippage on shale permeability evolution are first
analyzed. Then, shale permeability models that consider the
combined effects of the three competing mechanisms are
collected and classified. The model classification is based on
how swelling strains are handled in the derivation process of
these shale permeability models.
3.1. Competing Mechanisms in Shale Permeability

Evolution. During adsorptive gas injection/extraction, shale
permeability will be altered under the combined effects of
effective stress, gas sorption, and gas slippage. The effective
stress change and gas sorption induced swelling jointly alter the
intrinsic permeability, while gas slippage alters the apparent
permeability. In this subsection, how shale deforms and
permeability evolves during adsorptive gas injection under the
CES and CCP conditions are analyzed.

Figure 3a shows the initial state of a representative
elementary volume (REV) that has an idealized pore locating

at the center of the shale matrix. When gas pressure in this
REV increases under the CES condition, only gas sorption
induced swelling contributes to shale deformation. As shown in
Figure 3b, the matrix externally swells when gas adsorbs on
shale grains but the pore inside the matrix is internally
compressed. When the gas pressure in the REV increases
under the CCP condition, both the effective stress change and
gas sorption induced swelling contribute to shale deformation.
As shown in Figure 4b,c, both the matrix and pore expand due
to effective stress decline while the matrix expands and the
pore closes due to swelling. Thus, under the CCP condition,
increasing the pore pressure in shale with an adsorptive gas
causes the pore size to increase due to poromechanical
expansion and meanwhile to decrease due to gas sorption
induced swelling. When the gas pressure is greater than the
equilibrium pressure, effective stress decline induced pore
expansion outcompetes swelling induced pore closure.7 In
addition, gas slippage plays a critical role in altering the shale
permeability especially under the low pore pressure condition
and in tiny nanopores.86−88 The individual contributions of the

Figure 2. Distribution of shale permeability ratios that were measured
under the CCP condition.14,20,31,32,41−46

Figure 3. Shale deformation during adsorptive gas injection under the
CES condition.
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three competing mechanisms to shale permeability evolution
are depicted in Figure 5. Note that the magnitude and variation
trend of these curves could be changed when different pore
sizes, pore compressibilities, and Langmuir parameters are
used.
3.2. Collection and Classification of Shale Perme-

ability Models. Numerous theoretical models have been
developed to characterize the evolution behaviors of shale
permeability. A vast majority of these models focus on
investigating the effect of gas slippage on shale permeability.
However, there is a common assumption behind these models
that no stress change and solid deformation occur in the rock,
which is unrealistic under both field and laboratory conditions.
In order to better explain shale permeability evolution,
permeability models are improved to incorporate the effects
of effective stress and gas sorption. The inclusion of effective
stress, gas sorption, and gas slippage in theoretical models
makes shale permeability prediction results more reliable. In
this subsection, these improved shale permeability models are
collected and then classified.

Table 1 summarizes shale permeability models that consider
the combined effects of the three competing mechanisms.
These models can be classified into two major categories
according to how the swelling term is handled in the derivation
process of these models. In the first category, gas sorption
induced bulk swelling strain is assumed to be identical to pore
swelling strain. With this assumption, under variable stress
conditions, bulk swelling strain and pore swelling strain cancel
each other out and shale intrinsic permeability is defined as a
function of the effective stress or effective strain. Based on the
models in this category, gas sorption induced matrix swelling
or shrinkage will not contribute to shale intrinsic permeability

change under the CES condition. However, this conclusion
contradicts with the collected shale permeability data from the
CES tests. From Figure 1, it can be known that the shale
intrinsic permeability still continues to decline rather than
remaining unchanged when the gas slippage effect disappears
(normally when the pore pressure is greater than 5 MPa),
which implies that gas sorption induced swelling indeed will
influence shale intrinsic permeability under the CES condition.
The contradiction between laboratory observations and model
prediction requires the removal of the assumption that bulk
and pore swelling strains are identical when studying the
impact of swelling on shale permeability change.

In the second category, a more general form of shale
intrinsic permeability model is developed by assuming that
bulk swelling strain and pore swelling strain have different
magnitudes. With this assumption, under variable stress
conditions, shale intrinsic permeability is defined as a function
of effective stress, bulk/pore swelling strain, and the strain
splitting factor. The strain splitting factor defines the relation
between pore and bulk swelling strains.

As permeability models in these two categories are expressed
in various forms, it is inconvenient to make a direct
comparison between these models. To this end, a generic
shale permeability model is developed which can be
degenerated into the permeability models in both category
one and category two. The detailed derivation process of this
generic shale permeability model is given in the Supporting
Information. When bulk and pore swelling strains are assumed
to be the same, the generic shale permeability model is
degenerated into the model that can represent shale
permeability models in category one:

Figure 4. Shale deformation during adsorptive gas injection under the CCP condition.

Figure 5. Shale permeability evolution under different boundary conditions: (a) CES condition; (b) CCP condition.
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where kap is the shale apparent permeability, kin0 is the shale
intrinsic permeability, cp is the pore compressibility, σ̅ is the
mean compressive stress, p is the pore pressure, c is a
proportionality factor, kB is the Boltzmann constant, T is
temperature, δ is the gas molecule diameter, and re is the pore
radius.

When the bulk and pore swelling strains are assumed to have
different magnitudes, the generic shale permeability model is
degenerated into the model that can represent shale
permeability models in category two:
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where =f s
p

s
b is the strain splitting factor which defines the

relation between bulk and pore swelling strains, and εs
b and εs

p

represent bulk and pore swelling strains, respectively.

4. ANALYSIS OF SHALE PERMEABILITY DATA
In this section, the classified shale permeability models are
used to explain the laboratory observations that shale
permeability ratios distribute over a wide range under the
CES and CCP conditions. This attempt provides significant
insights into how shale permeability evolves under the
combined effects of gas sorption, effective stress, and gas
slippage and how the swelling term should be handled in shale
permeability models.
4.1. Analysis of Shale Permeability Data under CES

Condition. The distribution of experimental data and
solutions of permeability models under the CES condition is
shown in Figure 6. In Figure 6, the solid lines denote the
solutions of eq 1, which represents the permeability models
with identical swelling strains, while the dashed lines denote
the solutions of eq 2, which represents the permeability models
with nonidentical swelling strains. The input parameters for
permeability calculation are summarized in Table 2.

As can be seen from Figure 6, the widely distributed shale
permeability ratios are confined within the upper and lower
boundaries. The upper boundary represents the permeability
evolution behavior of fractured shale. In this case, shale
permeability evolution is dominated by gas sorption while the
effect of gas slippage can be ignored. The lower boundary
represents the permeability evolution behavior of unfractured
shale or shale matrix. In this case, the effect of gas slippage on
shale permeability evolution is significant under the low pore
pressure condition. Thus, the transition from the upper
boundary to the lower boundary represents the evolution of
shale pore size from the micron-scale to the nano-scale. It
should be noted here that in this work we assume that
fractured shale permeability is only contributed by fractures
while the contribution from shale matrix is ignored. This is
mainly because fracture permeability is commonly several
orders of magnitude larger than matrix permeability.

Comparison between solid lines and dashed lines in Figure 6
indicates that the magnitude of shale permeability calculated

by eq 2 is lower than that calculated by eq 1 and that the
solutions of eq 2 can better serve as the limiting boundaries of
the experimental shale permeability data. This is because pore
swelling strain and bulk swelling strain cancel each other out in
the derivation process of eq 1 and thus, under the CES

Figure 6. (a) Comparison between laboratory observation and
theoretical solutions under the CES condition. (b) Theoretical
solutions derived under different shale pore sizes.

Table 2. Input Parameters for Permeability Calculationa

value

parameter

permeability curve color red black blue
pore radius (m) 1 × 10−4 5 × 10−7 5 × 10−8

compressibility (1/MPa) 0.03 0.02 0.01
Langmuir strain of shale
bulk

0.005 0.005 0.005

Langmuir pressure of
shale bulk (MPa)

7 7 7

Langmuir strain of shale
matrix

0.009 0.009 0.009

Langmuir pressure of
shale matrix (MPa)

4 4 4

temperature (K) 320 320 320
Boltzmann constant
(J/K)

1.38 × 10−23 1.38 × 10−23 1.38 × 10−23

gas molecule diameter
(nm)

0.38 0.38 0.38

aNote that Langmuir parameters will not be used when calculating
shale permeability using eq 1.
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condition, eq 1 is only able to disclose the effect of gas slippage
on shale permeability and fails to include the effect of gas
sorption. By contrast, eq 2 captures the effects of both gas
slippage and gas sorption on shale permeability evolution as it
is derived under the assumption that pore and bulk swelling
strains have different magnitudes. It should be noted that there
are still some permeability data lying outside the zone confined
by the upper (red dashed line) and lower (blue dashed line)
boundaries (Figure 6). This is mainly because the initial
pressure applied in these tests is much larger than that used in
our calculation. If a larger initial pressure is used in our
calculation, these permeability data would be included in the
limiting boundaries. In addition, it can be found that the
difference between solid and dashed lines gradually diminishes
when the shale pore size transitions from the micron-scale to
the nano-scale, which implies that fracture permeability is more
sensitive to gas sorption induced swelling than matrix
permeability. This is mainly because the gas slippage effect is
negligible in a fracture system and thus gas sorption plays the
dominant role in controlling fracture permeability. However, in
shale matrix, the gas slippage effect is much more pronounced
and thus the effect of gas sorption induced swelling on matrix
permeability is not that significant.
4.2. Analysis of Shale Permeability Data under CCP

Condition. The distribution of experimental data and
solutions of permeability models under the CCP condition is
shown in Figure 7. In Figure 7, the solid lines denote the
solutions of eq 1, which represents the permeability models
with identical swelling strains, while the dashed lines denote
the solutions of eq 2, which represents the permeability models
with nonidentical swelling strains. The input parameters for
permeability calculation are given in Table 2.

It can be observed that the distribution of shale permeability
ratios is also confined within the upper and lower boundaries,
which represent the permeability evolution behavior of
fractured shale and unfractured shale (or shale matrix),
respectively. Unlike the data from the CES tests, permeability
data from the CCP tests are controlled by three competing
mechanisms including effective stress, gas sorption, and gas
slippage. For fractured shale, the effect of gas slippage on shale
permeability can be neglected. Shale permeability evolves
under the competing effects of effective stress and gas sorption.
For unfractured shale or shale matrix, the gas slippage effect is
pronounced under the low pore pressure condition. With pore
pressure increasing, the effects of gas slippage and gas sorption
on shale permeability are weakened and effective stress
gradually plays the dominant role. In addition, it can be
found that when shale permeability is dominated by effective
stress, the increasing trend of fractured shale permeability is
more obvious than that of unfractured shale permeability as the
compressibility of fracture is larger than that of a nanopore.

Comparison between solid lines and dashed lines in Figure 7
also indicates that shale permeability values calculated by eq 2
are lower than those calculated by eq 1 and that the solutions
of eq 2 can better serve as the limiting boundaries of the widely
distributed shale permeability data. For further observation, the
difference between solid and dashed lines is narrowed when
shale pore size transitions from the micron-scale to the nano-
scale, which implies that fracture permeability is more sensitive
to gas sorption induced swelling than matrix permeability.

5. CHALLENGES AND PERSPECTIVES
Although the effect of swelling on shale permeability evolution
has been assessed through both theoretical and experimental
studies, some critical issues are still not resolved. The focus of
this section is on the discussion of these issues and then
identifying the potential areas for future research.

From the perspective of theoretical study, modeling shale
permeability evolution at either the core scale or reservoir scale
requires the establishment of a set of partial differential
equations to define the involved coupled hydromechanical
processes: (1) geomechanical deformation of shale and (2)
fluid flow in shale. The commonly used equations to define
these two processes are given as eqs 3 and 4:70,89−92

+ + =Gu
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where G is the shear modulus, v is Poisson’s ratio, α is the Biot
coefficient, K is the bulk modulus, ui is the component of
displacement, f i is the component of body force, ρg is the gas
density, ρga is the gas density at standard conditions, ρs is the
shale density, μg is the gas viscosity, VL

b is the Langmuir volume

Figure 7. (a) Comparison between laboratory observation and
theoretical solutions under the CCP condition. (b) Theoretical
solutions derived under different shale pore sizes.
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of shale bulk, and PL
b is the Langmuir pressure of shale bulk. In

eq 3, a comma followed by a subscript represents the
differentiation with respect to spatial coordinates and repeated
indices in the same equation denote summation over the range
of the indices.

Shale geomechanical deformation and fluid flow processes
have been defined by eqs 3 and 4, respectively. The
interactions of these two processes can be linked through
shale porosity and permeability models:93−96,105
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From eqs 3−6, it can be known that gas sorption plays
important roles in the gas injection (or extraction) process in
shale. Specifically, gas adsorption on shale grains will induce
shale swelling. The swelling effect on shale mechanical
deformation is defined in the fourth term of eq 3, i.e., Kεs,i

b .
When shale swells, the pore size will be altered and the
permeability will be changed. The second term in eqs 5 and 6,
i.e., ( f − 1)Δεs

b, defines the effect of gas sorption induced
swelling on shale porosity and permeability change. The
change of porosity and permeability will further influence the
gas flow and pore pressure distribution in shale. Subsequently,
the change in pore pressure will influence the effective stress
and shale mechanical deformation. Thus, it can be concluded
that shale deformation, gas flow, and porosity and permeability
changes will all be influenced by gas sorption. It is widely
accepted that the swelling term εs

b in eqs 3, 5, and 6 can be
defined in the form of97,98

=
+

p
p Ps

b L
b

L
b (7)

where εL
b is the Langmuir strain of shale bulk and PL

b is the
Langmuir pressure of shale bulk. Both Langmuir strain and
Langmuir pressure can be obtained through fitting the
laboratory measured swelling strain into the Langmuir-type
curve.7,97−99 On the fitted curve, the strain at infinite pressure
represents Langmuir strain and the pressure at which the
measured strain is half of its maximum value represents
Langmuir pressure.

In the current stage, there still remains inconsistency among
the stress equilibrium equation, i.e., eq 3, porosity/permeability
models, i.e., eqs 5 and 6, and laboratory measurements with
respect to how swelling strains are handled. In the stress
equilibrium equation and porosity/permeability models, the
bulk swelling strain represents the volumetric strain of shale
that is purely induced by gas adsorption. However, in the
laboratory, the bulk swelling strain is commonly measured
under the hydrostatic stress condition, as shown in Figure 8.
During the experiment, adsorptive gas is injected into the high-
pressure chamber until the anticipated pressure is reached.
Then, the bulk swelling strain of shale sample is directly
measured by the attached strain gauges when gas pressure
inside the chamber is stabilized.15,100,101 The measured bulk
swelling strain actually consists of two components. One

component is the swelling strain purely induced by gas
adsorption. The other component is the compressive strain
induced by hydrostatic pressure. Therefore, directly inputting
the laboratory measured strain and fitted Langmuir parameters
into the stress equilibrium equation and porosity/permeability
models will theoretically underestimate the impact of gas
sorption induced swelling on shale deformation and porosity/
permeability change. In order to keep the consistency between
laboratory measured strains and the model-used ones,
compressive strain caused by hydrostatic pressure should be
subtracted from the measured bulk strain.

According to eqs 5 and 6, shale porosity and permeability
are defined as a function of pore and bulk swelling strains. The
popular viewpoint now is that bulk and pore swelling strains
are either the same8,30,70−73 or have different magni-
tudes.74−79,102−104 Our analysis in section 3.2 indicates that
bulk and pore swelling strains should have different
magnitudes rather than being the same. When bulk and pore
swelling strains are assumed to have different magnitudes, a
constant ratio, namely the strain splitting factor, has been
widely used to define the relation between these two strains. In
this way, shale porosity/permeability models can only
represent the role of either bulk or pore swelling strain and
fail to characterize the real relation between them. Thus, these
efforts to distinguish bulk and pore swelling strains still remain
questionable. In fact, bulk and pore swelling strains are
interdependent and can be transformed from each other. This
strain transformation is very complex and could be influenced
by various factors such as shale microstructure, total organic
carbon (TOC) content, mechanical boundary conditions, etc.
In the future, new theoretical approaches should be developed
to characterize the real relation between them under different
conditions. Then, this characterization should be incorporated
into shale permeability models to explain the lab/field
observations. Furthermore, to the best of the authors’
knowledge, almost all experimental studies in the current
stage focus on measuring the bulk swelling strain and pore
swelling strain measurement is still rarely reported. Therefore,
novel experimental methods should be designed to simulta-
neously measure bulk and pore swelling strains, which can then
be used to validate the theoretical relations between them.

Comparison between theoretical solutions and permeability
data in Figures 6 and 7 indicates that permeability evolution
behaviors of fractured shale and unfractured shale define the
upper and lower boundaries, respectively. For actual shales
with self-contained multiscale pore structures, permeability
evolution should be confined in-between. As gas sorption

Figure 8. Schematic diagram of how swelling strain is measured in
laboratory. [Reproduced with permission from ref 101. Copyright
2020 Elsevier.]

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c04005
Energy Fuels 2023, 37, 3488−3500

3496

https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04005?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04005?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04005?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c04005?fig=fig8&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c04005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


induced swelling impacts shale permeability in varying degrees
at different pore scales, the swelling effect on shale
permeability cannot be fully understood without the knowl-
edge of multiscale pore structural characteristics. In the future,
shale multiscale pore structural characteristics should be first
characterized using the experimental methods and then
incorporated into shale permeability models when assessing
the swelling effect on permeability evolution.

It should be noted that all the above analysis and discussion
are based on a common assumption that the ultimate
equilibrium state has been reached in shale; i.e., gas pressures
in fracture and solid matrix systems are equilibrated. This
assumption maybe applicable for unfractured shale or shale
matrix, but it does not work for fractured shale. In fractured
shale, there exists a huge contrast between fracture and matrix
permeabilities. Due to this naturally huge permeability
contrast, it may take several months or even a few years for
shale to reach the ultimate equilibrium state as gas diffusion
from the fracture wall into the shale matrix is a very slow
process. This transient process will induce a nonuniform pore
pressure distribution in the shale matrix, and thus the induced
swelling strain is time-dependent and nonuniform as well.89,100

Under this condition, shale permeability evolution behaviors
become much more complex and cannot be explained by the
models as summarized in Table 2. Thus, current experimental
and theoretical approaches should be redesigned to capture the
time-dependent behaviors of swelling strain and permeability
evolution in fractured shale.

6. CONCLUSIONS
Various experimental and theoretical studies of gas sorption
induced swelling effect on shale permeability evolution
behaviors have been reviewed. Based on the results of the
review, the following conclusions can be drawn:

1. Permeability models with nonidentical swelling strains can
define the swelling effect better than those with identical
swelling strains. When swelling strains are assumed to be
identical, shale intrinsic permeability is defined as a function of
effective stress. When swelling strains are assumed to be
nonidentical, shale intrinsic permeability can be defined as a
function of both effective stress and swelling strain.
Comparison between experimental data and solutions of
these permeability models indicates that permeability models
with nonidentical swelling strains can better explain the
laboratory observations.

2. The effect of gas sorption induced swelling on shale
permeability is pore size dependent. When shale pore size
transitions from the micron-scale to the nano-scale, the
difference between the solutions of the permeability models
with identical swelling strains and those with nonidentical
swelling strains gradually diminishes. This means that fractured
shale permeability is more sensitive to gas sorption induced
swelling than unfractured shale or shale matrix permeability.

3. The inconsistency between how swelling strains measured
in the laboratory and treated in the models affects the
characterization of swelling effect. In the laboratory, the
measured bulk swelling strain typically consists of two
components including gas adsorption induced swelling strain
and hydrostatic pressure induced compression strain. In
theoretical models, the bulk swelling strain represents the
volumetric strain purely induced by gas adsorption. Thus,
directly inputting the measured swelling strain into theoretical
models will underestimate the swelling effect.
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