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Abstract Complex natural fracture networks typically consist of multiple clusters, whose connectivity is
rarely quantified. Therefore, for each identified fracture network, we propose a connectivity metric that
accounts for individual fracture clusters and their interactions. This metric evaluates contributions from all
fracture clusters, considering their relative sizes and interactions among the isolated clusters, which in turn
depend on the hydraulic conductance of the interconnecting rock matrix. Furthermore, we investigate how the
system connectivity depends on fracture sealing, alterations of central clusters, and cluster linkage. Fracture
sealing strongly impacts overall fracture connectivity, with 5 percent of sealed fractures reducing connectivity
by 20 percent. The connectivity reduction is small when transitioning the central cluster from the largest to the
smallest one. However, the largest cluster significantly contributes to overall connectivity, while the smallest
one contributes minimally. Natural fracture networks increase connectivity by linking more clusters, with
heterogeneity and anisotropy playing pivotal roles.

Plain Language Summary Natural fractures are typical multi‐cluster systems found in many places,
not just in crustal rocks but also in construction materials, human bones, and other areas. Multi‐cluster systems
are even more widespread, including in biological systems and materials science. In crustal rocks, natural
fractures are crucial for assessing rock stability and flow processes because they control the mechanical and
hydrological properties of the rocks. Thus, fractures are important in many engineering fields, such as oil and
gas production and underground hydrogen or CO2 storage. The connectivity of these multi‐cluster systems is
essential as it directly impacts their mechanical and hydrological properties. Here, we propose a new metric to
measure the connectivity of complex fracture networks. This method explains how individual fracture clusters
contribute and interact based on their sizes and hydraulic conductance. Applying this to outcrop fracture maps
shows significant changes in network connectivity due to factors like fracture sealing, changes in central
clusters, and cluster linkage. This method can also be applied to 3D fracture systems and other multi‐cluster
systems. These findings improve our understanding of how fractured formations evolve and how fluids flow
through them, offering practical insights for better engineering practices.

1. Introduction
Fractures are ubiquitous in crustal rocks owing to the harsh environment in the deep subsurface and rock brit-
tleness. Fractures are the planes of rock failure, significantly influence rock stability, and are pivotal factors in
predicting geohazards (Blum et al., 2010; Qi et al., 2004; F. Renard et al., 2019). In addition, fractures usually
provide a highly permeable pathways for fluid flow in the subsurface; therefore, they are crucial in oil and gas
exploration and production, subsurface hydrogen storage, geological CO2 sequestration, and nuclear waste
disposal (Bond et al., 2013; Galloway et al., 2018; Orellana et al., 2019; Zoback & Smit, 2023).

Connectivity is the key characteristic of fracture networks, intricately tied to their effective hydraulic diffusivity.
Extensive research has been undertaken in this realm (Alghalandis et al., 2015; Bour & Davy, 1997, 1998;
Berkowitz et al., 2000; N. E. Odling, 1997; P. Renard & Allard, 2013; Xu et al., 2006; Ye et al., 2021; Zhu
et al., 2021). However, key studies focus predominantly on connected fractures, especially on the largest cluster of
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fractures. Percolation theory (Allard & Group, 1993; Bour & Davy, 1997, 1998; Renshaw et al., 2017; Rob-
inson, 1983), for instance, delves into the formation of the spanning cluster and the scaling behavior at the
percolation threshold. The contributions of local clusters are rarely considered. While this simplification holds in
cases of zero permeability of rock matrix, real rock formations invariably have matrices with non‐zero perme-
abilities. Local fracture clusters with high permeability can reduce the flow path of fluid in a low‐permeable
matrix, thereby enhancing the overall connectivity of fractured media (Matthäi & Belayneh, 2004). Several
methods, like the connectivity field, geological entropy, and the ternary diagram and its extension (Alghalandis
et al., 2015; C. C. Barton et al., 1989; Sanderson &Nixon, 2015; Ye et al., 2021) are applicable for both single and
multiple clusters. These methods usually focus on the topological structures and largely ignore the impacts of
overall hydraulic conductance. Therefore, these methods are unsuitable to treat complex fracture networks
composed of multiple clusters.

Natural fracture networks are always composed of multiple clusters, a phenomenon commonly observed in
outcrop maps, see Figures 1a–1c. Even within a large cluster, fracture sealing due to compressive loads or crystal
growth can lead to aperture reduction and division of a single cluster into multiple clusters with intricate sealing
patterns (Im et al., 2018; Ukar & Laubach, 2016). Hence, quantifying the connectivity of systems comprising
multiple clusters is crucial and holds significance beyond the realm of fracture networks, as multi‐cluster systems
exist in many scientific fields, such as materials science and biology.

To accounts for individual fracture clusters and their interactions, we proposed a new connectivity metric Ct
(Section 2) and implement the metric to analyze natural fracture networks interpreted from real outcrop maps
considering different conditions, including the impact of fracture sealing, alteration of central clusters, and cluster
linkage. The results demonstrate connectivity variations and explain real‐world phenomena, which has brought
essential insights for us to understand subsurface fracture networks and have great potential for further analysis.

Figure 1. (a) Brejões Outcrop, Irecê Basin, Brazil (Prabhakaran et al., 2019).(b) A sketch map of a simple fracture network composed of three clusters. Different
distances used in Equation 1 are denoted. T‐type, X‐type, and I‐type nodes are marked in different colors. (c) Outcrop map (Map 3) of Hornelen basin, western Norway
(N. E. Odling, 1997). Individual clusters have different colors. (d) The shortest distance between the start cluster and the central cluster. The distance is determined by
traversing multiple intermediate clusters along the shortest path, ensuring the minimum distance in the permeable matrix.
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2. Materials and Methods
To accounts for individual fractures and their interactions, a straightforward yet powerful metric, Ct, is introduced
for assessing the connectivity of natural fracture networks made up of multiple clusters. In this work, we
implement the proposed metric on natural outcrop maps; therefore, the metric here is suitable for 2D fracture
systems. However, it can be conveniently extended to 3D fracture systems, as demonstrated in the Discussion
section.

Ct =∑
n

i=0
(
kmμw
kf μ

)(1 −
di
dmax

)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Interaction term

× (
li
ltotal

)Ci
⏟⏞⏞⏟
Individual term

(1)

here n is the number of fracture clusters; km and kf are the matrix and fracture permeabilities, respectively; μ and
μw are the fluid and water viscosity, respectively; di represents the shortest distance in the matrix from cluster i to
the central cluster; dmax is the diagonal length of the bounding box that encloses all fractures in the considered
fracture system; li denotes the total length of fractures in cluster i; ltotal is the total length of all fractures in the
system; and Ci is the connectivity metric of cluster i. The parameters kf , μw, and dmax normalize the respective
variables.

The newly defined metric focuses on two main aspects of connectivity. The individual terms in Equation 1 pertain
to the connectivity of each cluster weighted by its relative size. The interaction terms account for the hydraulic
conductance of the matrix between the central cluster and cluster i, i = 1, 2,…n. The central cluster can be either
the largest cluster or any other cluster, and the choice of the central cluster is one of the key factors discussed
below.

In individual terms, Ci can represent any connectivity metric for cluster i. In this study, we adopt the average
number of links for each branch as the metric of connectivity (Sanderson & Nixon, 2015). This choice is suf-
ficient, because variable fracture apertures are excluded in the subsequent analysis of the fracture networks.
Outcrop maps have experienced severe weathering and stress release during upward movement, which signifi-
cantly changes fracture apertures. Therefore, aperture information from an outcrop map is generally unreliable.
However, various apertures can also be incorporated with more complex connectivity metrics, such as global
efficiency (Zhu et al., 2021).

Ci =
3 × NT + 4 × NX

NB
, (2)

where NT, NX, and NB refer to the numbers of T‐type, X‐type nodes and branches. NB is calculated with 1/2
(NI+ 3NT+ 4NX) andNI is the number of I‐type nodes. The respective node types are illustrated in Figure 1b.Ci is
a dimensionless number between 0 and 2.0, with a larger value indicating better connectivity.

The key procedure to obtain the individual term is to find the T, X, and I‐type nodes in the natural fracture outcrop,
which is done by a novel pixel‐based fracture detection algorithm (Zhu, He, Santoso, et al., 2022). Intersection
nodes in the outcrop map are identified and classified into different node types based on the number of branches.
The I‐type nodes have only one branch, T‐type nodes have three branches, and X‐type nodes have four or more
branches. Intersection nodes with more than four branches have a low probability of occurrence and constitute a
tiny proportion of the outcrop map. Therefore, we have omitted them. If aperture variations of fractures are
included, global efficiency can be used as the connectivity metric for individual clusters (Zhu et al., 2021).

In interaction terms, the flow between different clusters follows Darcy's law (Equation 2), and the term refers to
the normalized hydraulic conductance of the matrix within them.

Q =
kmA
μΔL

Δp (3)

In comparing conductance with the interaction term, ΔL is replaced by di; A represents the seepage area, which is
related to the size of the cluster. Since we have accounted for the size effect in the individual term, the seepage
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area is standardized to one for all cases considered in this work. For specific engineering applications, the actual
permeability and viscosity can be used, while in this work, the coefficients regarding relative permeability and
viscosity are also standardized to 1. The metric proposed in this work is dimensionless, as shown in Equation 1;
therefore, it can be applied to any scale of fracture networks. However, the scale of fracture networks cannot be
extremely small, where insufficient micropores exist to satisfy the representative elementary volume (REV)
required for the implementation of Darcy's law.

The key procedure to obtain the interaction term is to calculate the shortest distance between two clusters. Directly
considering the distance between a local cluster and the central cluster may not be suitable, as fluid in a distant
local cluster can be indirectly connected to the central cluster through multiple intermediate clusters. Therefore, it
is essential to determine the shortest distance in the matrix through these intermediate clusters (as shown in
Figure 1d). To achieve this, the fracture system is transformed into a graph system. Each cluster is treated as a
node, and up to 15 closest neighboring clusters are identified and linked to the cluster. The neighboring nodes are
connected with links, where the length of the link represents the shortest distance between two node clusters.
Selecting a sufficient number of neighboring clusters is critical to ensure that the fracture system forms a con-
nected graph. However, an excessively large number can significantly increase computational complexity.
Through trial and error, 15 is identified as an acceptable and sufficient value. Subsequently, the Dijkstra algorithm
(Cormen et al., 2022) is applied to find the shortest paths between any arbitrary cluster and the central cluster.
When considering two neighboring clusters i and j, the shortest distance between them is determined by finding
the shortest distance between all pairs of line segments in the ith fracture cluster and the jth cluster. This problem
is further decomposed into calculating the shortest distance between two line segments, which can be broken
down into the shortest distance between the end nodes and the line segment.

The new metric is implemented to analyze natural fracture networks automatically interpreted from various
outcrop maps from different published works (80 in total) with a novel fracture detection algorithm, which are
spread across different parts of the world and vary in scale from millimeters to kilometers (C. C. Barton, 1995;
Bertrand et al., 2015; Becker et al., 2018; Bisdom, n.d.; Duffy et al., 2017; Gillespie et al., 1993; Healy
et al., 2017; Holland et al., 2009; Jafari, 2011; N. E. Odling, 1997; N. Odling et al., 1999; Prabhakaran et al., 2021;
Segall & Pollard, 1983; Thiele et al., 2017; Watkins et al., 2015; Wyller, 2019).

With the newly defined connectivity metric, we can quantify the connectivity of the entire fracture network and
investigate the connectivity variations under different conditions, including the impact of fracture sealing,
alteration of central clusters, and cluster linkage. These three conditions are commonly observed and essential for
engineering practice. Fracture sealing occurs naturally, but its quantitative impact on the connectivity of
complicated fracture networks is rarely discussed. The central cluster can be considered a distinct linkage zone for
artificial instruments and natural fracture networks. For example, when drilling a vertical well, it may encounter a
natural fracture cluster, which can be regarded as the central cluster. Different well positions lead to different
central clusters, and, in turn, they affect the connectivity of the whole field and the final production. In fractured
reservoirs, different wells may exhibit significantly various production rates. Fracture cluster linkage can be
attributed to various reasons, such as the reactivation of natural fractures, drilling of horizontal wells, and the
generation of hydraulic fractures.

To analyze 80 outcrop maps, the cluster‐check algorithm must be executed thousands of times. Hence, the
implementation of an efficient cluster‐check algorithm becomes imperative. In this study, we use a fast Monte
Carlo algorithm (Newman&Ziff, 2001) andmake the calculation computationally feasible (Zhu et al., 2022). The
optimized cluster‐check algorithm is 100 times more efficient than a highly cited open‐source software, ADFNE
(Alghalandis, 2017). In 80 outcrop maps collected, 63 shows spanning cluster, indicating good geometrical
connectivity (Zhu, He, Santoso, et al., 2022). Six outcrop maps with different scales are selected as represen-
tatives to better illustrate results in the following section, while the full results for all outcrops are available in the
Supporting Information (SI).

3. Results and Discussion
3.1. Impact of Fracture Sealing

In reality, inevitable fracture sealing degrades well‐connected fracture networks into disconnected fracture
clusters. The sealing patterns of natural fracture networks can be extremely complex, depending on the chemistry
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of formation fluids, fluid pressure, and temperature (Laubach et al., 2004; Ukar & Laubach, 2016). To mimic
sealing patterns and conduct a preliminary investigation into their impact, fractures are divided into small seg-
ments, and different proportions (5% and 10%) of fractures are randomly sealed. In the SI, a relatively realistic
scenario is considered where a longer fracture has a lower probability of being sealed since it usually has a larger
aperture, and vice versa. More complex sealing patterns, such as thin rinds or veneers, and bridge structures, are
possible for implementation with given geostatistical rules. Fracture sealing also highly depends on fracture
strength and current stress states. Critically stressed fractures can slip and enhance permeability (C. A. Barton
et al., 1995). The stress‐dependent sealing patterns can be further investigated with more knowledge of the
fracture strength distribution, in situ stress states, and the failure criterion. For connectivity analysis, the sealed
fracture segments are considered to have low permeability similar to the matrix. The largest cluster is chosen as
the central cluster. The variations in connectivity considering different degrees of fracture sealing are shown in
Figure 2a.

The more severe fracture sealing leads to lower connectivity of the fracture networks. From the original fracture
map to the map with 5% sealing, the largest relative decrease is 26.5% in Map 5, and the least decrease is 15.7% in
Map 3. The average decrease is 18.3% for the six chosen maps. From the fracture map with 5% fracture sealing to
maps with 10% sealing, the largest decrease is 17.1% in Map 3, and the least decrease is 11.6% in Map 4. The
mean decrease is 15.6% for the six selected maps.

For the entire collection of outcrop maps, the results are shown in (Figure S1 in Supporting Information S1). The
mean decrease from the original maps to maps with 5% sealing is 19.1%, and from maps with 5% sealing to maps
with 10% sealing, the mean decrease is 18.4%. For the relatively realistic scenario (Figure S2 in Supporting
Information S1), similar results are obtained with a slightly more severe decrease in connectivity observed with
fracture sealing. This is mainly because more short fractures are sealed, creating more local clusters. Therefore,
fracture sealing has a significant impact on the entire fracture connectivity, with 5% of fracture sealing
approximately decreasing 20% of the connectivity. Previous work concluded that a small proportion of fracture
sealing can prevent the formation of spanning clusters in geometrically well‐connected fracture networks (Zhu
et al., 2022). With the newly defined connectivity metric, quantitative evaluation becomes possible.

Connectivity in fracture networks demonstrates a positive correlation with flow‐related outcomes, such as
permeability or production rate of the fractured formation, as shown in Figure 4. A water‐gas flow simulation in a
discrete fracture matrix system is conducted with UNCONG (Li et al., 2015). Detailed settings of the simulation,
such as the relative permeability curve in the matrix and fractures, and boundary conditions, are consistent with
previous work (Zhu, He, Li, et al., 2022). The fracture permeability is five orders of magnitude larger than that of
the matrix to mimic a low‐permeable formation. The pressure distributions in cases with different degrees of
fracture sealing are illustrated in Figures 4a–4c. For the central cluster connected to the production well, gas easily
transports to the fracture from the neighboring matrix and flows to the production well. In contrast, for local
fracture clusters, the significant resistance in the matrix prevents efficient flow to the production well, resulting in

Figure 2. Connectivity variations for six outcrop maps considering (a) different degrees of fracture sealing and (b) central cluster alteration from the largest cluster (cyan
bar) to the smallest cluster (blue bar). In panel (a), the cyan, blue, and magenta bars refer to the connectivity values of outcrop maps with 0, 5, and 10 percent of fracture
sealing. The two green or red rectangles between two bars represent the connectivity variations caused by the changes in the largest cluster or local clusters.
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high pore pressure. The production performance sharply decreases with increasing sealing degree, as shown in
Figure 4f.

A decrease in connectivity can be further decomposed into two factors: the first one is variation of connectivity
attributed to the largest cluster, and the second is attributed to the remaining local clusters (see Figure 2a).
Fracture sealing divides the original largest cluster into smaller clusters, thereby reducing the individual terms in
Equation 1. Changes of the structure of a fracture network can have either a positive or negative impact on the
interaction term in Equation 1. For the largest cluster, we observed that, across all 80 fracture maps, the individual
term consistently outweighs the interaction term. Consequently, the first factor is always negative, leading to a
reduction in connectivity. Regarding the remaining local clusters, fracture sealing increases the number of local
clusters but decreases the size of each cluster. Therefore, the impact of fracture sealing on the individual term can
be either positive or negative. Combining this term with an uncertain interaction term, results in either a negative
or positive effect on connectivity. The results in Figure 2a (Figures S3–S12 in Supporting Information S1)
indicate that in most cases local clusters contribute to an increase in connectivity.

3.2. Impact of Central Cluster Alteration

The detailed structures of fracture networks in the subsurface are unknown in most cases. Therefore, in engi-
neering practice, vertical wells may or may not intersect with fracture clusters. In fractured reservoirs, neigh-
boring wells may exhibit significantly different production rates. The following analysis can partially explain
such phenomena from a perspective of connectivity variations caused by different well locations.

Alteration of the central cluster, shifting from the largest to the smallest, represents the best and worst scenarios in
an actual drilling process. The corresponding variations in connectivity are depicted in Figure 2b. To simulate a
scenario closer to reality, we opt for 5% of fractures to be sealed. The original map without any fracture sealing,
along with maps featuring 10% fracture sealing, are available in (Figures S13–S15 and Tables S2–S4 in Sup-
porting Information S1). The results indicate that the decrease in connectivity is marginal, and the impact of
central clusters is insignificant. These minor variations primarily result from the standardization of the co-
efficients (relative permeability and viscosity of the interaction term) and the shortest distance calculation, where
only distances with high resistance in the matrix are considered. Fractures exhibit significantly higher perme-
ability than the matrix; thus, their resistance is negligible compared to that of the matrix. The distance through
fracture clusters is excluded, rendering the impact on the interaction terms of connectivity negligible.

According to the decomposition results, ΔCt caused by the largest cluster consistently exhibits a negative trend, as
expected. ΔCt caused by local clusters can be either negative or positive, but it is more likely to be negative (also
as observed in Figures S16–S25 in Supporting Information S1). Since the numbers and relative sizes of clusters
remain unchanged, the decrease is attributed to the diminished interaction term for both the largest cluster and
local clusters.

In the original map, altering the central cluster results in a mean decrease of 1.1% across six selected outcrop
maps. With 5% sealing, the mean decrease reaches 1.5%, and with 10% fracture sealing, it further rises to 2.1%.
Comparing the original maps to those with varying degrees of sealing, there is a consistent upward trend in the
mean decrease of connectivity. If this trend persists, altering clusters may have a notable impact on overall
connectivity. Actual fracture sealing can be significant, breaking down the well‐connected fracture networks into
poorly connected ones and reducing overall connectivity.

In the original fracture outcrop maps, the majority of fracture networks are well‐connected, with 63 out of 80
forming a spanning cluster. Hence, the connectivity of the entire fracture network is typically dominated by the
largest cluster. Changing central clusters has a minor impact on the interaction term for the largest cluster,
resulting in a final reduction in connectivity that is insignificant compared to the cases with fracture sealing. In
cases with fracture sealing, fracture clusters have more uniform sizes, and the entire network connectivity is not
predominantly controlled by a single large cluster but by several local clusters. Consequently, changes in the
central cluster have a more significant negative impact on connectivity.

Additionally, Figure 2b illustrates the connectivity contribution of the largest cluster in magenta. It reveals that the
largest cluster significantly contributes to connectivity, while the smallest cluster (central cluster) has an almost
negligible connectivity contribution. As observed from Figures 4c, 4d, and 4f), matrix permeability is crucial to
flow. Although the connectivity results of Figures 4c and 4d are close, the corresponding flow performances are
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significantly different. For the low‐permeability formations, wells located in the largest cluster (Figure 4c) access
more flow paths involving fractures, while wells intersecting the smallest cluster (Figure 4d) are isolated by a low‐
permeability matrix.

3.3. Impact of Cluster Linkage

To examine the impact of cluster linkage, we consider the addition of an infinitely long fracture centered at the
centroid of the largest cluster within the system and connecting multiple clusters. Five percent of fractures are
sealed to mimic reality. The orientation of the newly introduced fracture varies between 0 and π radians. The
variations of connectivity resulting different fracture orientations are illustrated in Figure 3.

The addition of long fractures can enhance the connectivity of the fracture network by expanding the size of the
largest clusters and simultaneously reduces the distance between local clusters and the central (largest) cluster.
Maps 1, 2, and 3 have small variations in connectivity, while Maps 4, 5, and 6 exhibit a relatively large increase in
connectivity, exceeding 5% for the maximum increase. From the outcrops shown in Figure 3, it is evident that
Maps 1 to 3 have a more homogeneous distribution of fractures, while Maps 4 to 6 display a more heterogeneous
and anisotropic pattern.

For heterogeneous and anisotropic cases, there exists an optimal orientation that can significantly increase the
connectivity of the system. Map 5 achieves the highest connectivity increase (31.5%) at the orientation of 13/36 π,
and multiple clusters can be connected by the added long fracture. The complete results are available in (Figures
S26–S38 and Table S5 in Supporting Information S1). Several outcrop maps that have fewer fractures and
anisotropic distributions experience increases of more than 100%, with Map 58 showing the highest relative
increase at 4,806%. Therefore, cluster linkage can always increase the connectivity of the fracture system, and
heterogeneity and anisotropy plays a vital role.

Figure 3. Connectivity variations for six outcrop maps in which individual clusters are linked by an infinitely long fracture with different orientations. To standardize the
plot, we choose resolution (m/pixel) as the representative scale for the outcrop map.
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Enhanced connectivity generally corresponds to higher hydraulic diffusivity and increased production rates.
Therefore, linking multiple clusters at the optimal orientation through artificial treatment can substantially
enhance production performance as observed in Figures 4e and 4f. In engineering applications, such as hydraulic
fracturing, achieving the interconnection of multiple clusters is complex and depends on in‐situ stresses, injected
fluid properties, and treatment modes. Geostress determines orientation of horizontal wells and direction of
hydraulic fractures, but natural fracture clusters also play a role in forming the stimulated reservoir volume and
influence production (Zhu, He, Li, et al., 2022). The in‐depth investigation of fracture initiation/reactivation and
propagation is out of the scope of this work and will be addressed in future research. However, the formed fracture
network is always a multi‐cluster system due to the complex stress alteration and heterogeneity of rock strengths.
Therefore, the proposed connectivity metric serves as a powerful tool for quantifying the evolving hydraulic
fracture networks and can aid in well design.

3.4. Discussion

In this study, we expand the analysis from individual clusters to intricate systems comprising multiple clusters and
enable the quantification of connectivity. The proposed connectivity metric can further include detailed fracture
geometries, such as aperture and tortuosity of flow path within fractures. More complex connectivity metrics,
such as global efficiency (Zhu et al., 2021), can be utilized to describe the connectivity of individual clusters in
Equation 1. In addition, it is possible to combine pore network models and enhance the characterization of the
connectivity in a more detailed fracture‐matrix system. This quantification facilitates the exploration of con-
nectivity variations within fracture networks and provides crucial insights for subsurface fluid transportation
processes. Through the aforementioned analysis, it becomes feasible to optimize well placement and design
strategies to interconnect multiple fracture clusters, consequently, enhancing overall network connectivity and
improving well performances.

The connectivity index introduced in this research relies on the selection of a central cluster. We keep the central
cluster choice in the connectivity calculation to describes its impact on the entire network connectivity. However,
calculating an average over all clusters eliminates dependence on the selection of the central cluster, ensuring a
more robust and unbiased evaluation of network connectivity.

Ct =
1
n
∑
n

j=0
∑
n

i=0
(
kmμw
kf μ

) (1 −
dij
dmax

) × (
li
ltotal

) ci (4)

Figure 4. Gas pressure distribution in a water‐gas flow simulation for different cases. The surface is intentionally made transparent to show the discrete fractures
(Map 3).
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where dij is the shortest distance between the cluster i and cluster j. By adopting this approach, we transform the
connectivity index into an independent parameter, directly associated with the structural rock characteristics and
fluid properties.

The proposed metric is suitable for characterizing connectivity of complex fracture networks in 2D. However,
actual fractures in the deep subsurface are always three‐dimensional. The metric defined in Equation 1 can be
conveniently extended to 3D fracture networks with slight adjustments.

Ct =∑
n

i=0
(
kmμw
kf μ

)(1 −
di
dmax

)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Interaction term

× (
Ai
Atotal

)Ci
⏟̅⏞⏞̅⏟
Individual term

(5)

where di represents the shortest distance in the matrix from 3D cluster i to the central cluster; dmax is the diagonal
length of the bounding box that encloses all 3D fractures in the considered fracture system; Ai denotes the total
area of fractures in cluster i; Atotal is the total area of all fractures in the system; and Ci is the connectivity metric of
3D cluster i. To calculate di, similar procedures in 2D cases are implemented. The only difference is to calculate
the shortest distance between two neighboring clusters i and j. If the 3D fracture is represented by polygons, the
shortest distance between neighboring clusters is determined by finding the shortest distance between all pairs of
polygons in the ith fracture cluster and the jth cluster. This problem is further decomposed into calculating the
shortest distance between two polygons, which can be broken down into the shortest distance between the vertices
and the polygon. Detailed information about 3D fracture networks in the deep subsurface is often inaccessible
with current techniques, such as seismic maps or wellbore images. Consequently, this limitation hinders the
implementation of the metric to evaluate connectivity in actual subsurface fracture networks and provide opti-
mization strategies to enhance well performance. Additionally, factors like well size, density, and trajectory are
crucial for evaluating interactions between natural structures and artificial equipment. Stochastic Discrete
Fracture Networks (SDFN) offer a practical alternative for generating complex fracture networks in 2D, 3D, and
4D (accounting for the fracture growth process) (Zhu et al., 2022). Through Monte Carlo or Latin hypercube
sampling methods, it is feasible to generate thousands of realizations of complex 3D fracture networks consid-
ering various geometric patterns. Subsequently, systematic analysis of their connectivity evolution becomes
possible. The novel connectivity metric proposed in this work serves as a fundamental tool. When combined with
the powerful capabilities of HATCHFRAC (Zhu et al., 2022), an in‐house discrete fracture network software, more
in‐depth investigations can help us better understand the complex nature of subsurface formations.

4. Conclusions
In this work, we proposed a new metric to quantify the connectivity of complex fracture networks composed of
multiple clusters. By investigating the connectivity variations considering fracture sealing, alteration of central
clusters, and cluster linkage, several important conclusions can be summarized as below:

• Fracture sealing strongly impacts overall fracture connectivity, with 5 percent of sealed fractures reducing
connectivity by approximately 20 percent.

• The connectivity reduction is small when transitioning the central cluster from the largest to the smallest one.
However, the largest cluster significantly contributes to overall connectivity, and the smallest one contributes
minimally, which can partially explain the divergent well production performances in the same fractured
formation.

• Natural fracture networks increase connectivity by linking more clusters, with heterogeneity and anisotropy
playing a pivotal role in governing this increase. For heterogeneous and anisotropic fracture networks, an
optimal well orientation exists and can cause substantial enhancements in connectivity. These findings help to
refine well drilling operations and optimize production performance.

Data Availability Statement
All the synthetically generated data used for connectivity analysis in the study are available at Mendeley Data via
(Zhu, 2024) with a CC BY 4.0 license. The interpreted data for 80 outcrop maps are available at 4TU.
ResearchData via (Zhu, 2021) with a CC0 license.
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