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Abstract Distributed acoustic sensing (DAS) has emerged as a promising seismic technology for
monitoring microearthquakes (MEQs) with high spatial resolution. Efficient algorithms are needed for
processing large DAS data volumes. This study introduces a deep learning (DL) model based on a Residual
Convolutional Neural Network (ResNet) for detectingMEQs using DAS data, named as DASEventNet. The test
data were collected from the Utah FORGE 16A (78)‐32 hydraulic stimulation experiments conducted in April
2022. The DASEventNet model achieves a remarkable accuracy of 100% when discriminating MEQs from
noise in the raw test set of 260 examples. Surprisingly, the model identified weak MEQ signatures that have
been manually categorized as noise. The decision‐making process with the model is decoded by the classic
activation map, which illuminates learning features of the DASEventNet model. These features provide clear
illustrations of weak MEQs and varied noise types. Finally, we apply the trained model to the entire period
(∼7 days) of continuous DAS recordings and find that it discovers >5,700 new MEQs, previously unregistered
in the public Silixa DAS catalog. The DASEventNet model significantly outperforms the traditional seismic
method Short‐Term Average/Long‐Term Average (STA/LTA), which detected only 1,307 MEQs. The
DASEventNet detection threshold is Mw− 1.80 compared to the minimum magnitude of Mw− 1.14 detected by
STA/LTA. The spatiotemporal distribution of the newly identified MEQs defines an extensive stimulation zone
and more accurately characterizes fracture geometry. Our results highlight the potential of DL for long‐term,
real‐time microseismic monitoring that can improve enhanced geothermal systems and other activities that
include subsurface hydraulic fracturing.

Plain Language Summary We introduce the DASEventNet model, a deep learning approach for
detecting microearthquakes (MEQs) using distributed acoustic sensing (DAS) data. The model, based on a
Residual Network Convolutional Neural Network (ResNet), is tailored to process large volumes of DAS data, a
challenge for traditional methods. The model underwent rigorous validation processes, achieving an
unprecedented 100% accuracy rate in distinguishing between 260 MEQs and noise raw test instances. Using a
classic activation map, we highlighted the capacity of the model to differentiate betweenMEQs and varied noise
types, even those bearing a resemblance to MEQs. The model could detect weak MEQs initially classified as
noise, revealing its sensitivity. When applied to a week‐long data set of DAS recordings, the model identified
over 5,700 new MEQs, markedly surpassing the detection capabilities of the standard Short‐Term Average/
Long‐Term Average (STA/LTA) approach and the initially cataloged ∼1,307 MEQs. Notably, DASEventNet
detects MEQs as low asMw− 1.80, more sensitive than the STA/LTA'sMw− 1.14 threshold. The spatiotemporal
analysis of these newly detected MEQs revealed a broader stimulation zone, offering a more precise delineation
of fracture geometries. These findings underscore significant advantages of DASEventNet for long‐term, real‐
time microseismic monitoring in enhanced geothermal systems and other subsurface activities.

1. Introduction
Enhanced geothermal systems (EGS) mark a significant advance in harnessing geothermal energy, particularly
from impermeable Hot Dry Rock (HDR) formations. A critical component of EGS is hydraulic stimulation, a
process designed to enhance rock permeability in HDR formations, thereby facilitating efficient heat exchange
(Majer et al., 2007; Tester et al., 2006). This process, however, is inherently coupled with induced seismicity as
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fracture networks are reactivated within the reservoir with related concerns of seismic hazard (Gaucher
et al., 2015; Majer et al., 2007).

Microseismic monitoring, traditionally executed through surface and downhole geophone arrays, has been pivotal
in delineating the dynamics of hydraulic fracturing processes (Grechka & Heigl, 2017; Kwiatek et al., 2014;
Maxwell, 2014; Staněk et al., 2022). It serves as a cornerstone for hydraulic fracture characterization and
stimulated reservoir volume evaluation, informing operational decisions and hazard assessments. Traditional
seismic monitoring methods, primarily reliant on geophone arrays, have limitations in terms of spatial resolution
and susceptibility to surface noise interference (Eisner et al., 2010; Lellouch et al., 2020). This is especially
problematic in densely populated or urban areas where anthropogenic activities significantly contribute to seismic
noise, thereby hindering the detection of smaller but crucial seismic events (Lv et al., 2023; Stork et al., 2020;
Verdon et al., 2020). The introduction of Distributed acoustic sensing (DAS) technology (Hartog, 2017) has
substantially enhanced microseismic monitoring capabilities in the energy industry. This innovative technology,
leveraging fiber‐optic cables as dense seismic sensor arrays, enables detailed and extensive sampling of seismic
wavefields. The excellent spatial resolution offered by DAS is particularly advantageous in hydraulic fracturing
and EGS development, where delineating the geometry and understanding the complex dynamics of fracture
networks and mitigating associated seismic risks are paramount (Jin & Roy, 2017; Lellouch et al., 2019; Ugueto
et al., 2019). DAS has the ability to provide continuous, high‐resolution seismic data using extensive lengths of
fiber and represents a marked improvement over traditional seismic monitoring methods, leading to successful
detection and analysis of microseismic events (Farhadiroushan, 2019; Karrenbach et al., 2019; Webster
et al., 2013) and source mechanisms (Baird et al., 2020; Vera Rodriguez & Wuestefeld, 2020).

The applications of DAS extend from seismic monitoring for injected CO2 plumes (Daley et al., 2013) to hy-
draulic fracturing monitoring (Bakku, 2015; Verdon et al., 2020), geothermal monitoring (J. Ajo‐Franklin
et al., 2022; Lellouch et al., 2020, 2021; Yu et al., 2023), flow monitoring (Mateeva et al., 2014; Shen &
Zhu, 2023), icequake monitoring (Hudson et al., 2021; Walter et al., 2020), traffic vehicle monitoring (Martin
et al., 2018; T. Zhu et al., 2021), and earthquake monitoring (Lindsey et al., 2017), showcasing its remarkable
versatility across various fields. Recent reviews cover this broad range of applications (Lindsey & Martin, 2021;
Zhan, 2019). However, the adoption of DAS technology brings its own set of challenges. The sheer volume of
data generated, routinely reaching terabytes daily, poses significant computational and data processing hurdles
(Clarke et al., 2019; Ma et al., 2023). This high data volume, coupled with the critical need for timely data analysis
to inform operational decisions in hydraulic fracturing, underscores the necessity for advanced and efficient data
processing methods. Moreover, the variable signal‐to‐noise ratio (SNR) along the fiber complicates the extraction
of precise seismic signals, rendering traditional detection methods like STA/LTA less effective (Ma et al., 2023;
W. Zhu et al., 2023).

Machine learning (ML) and deep learning (DL) methods have become a promising approach to overcome
challenges in processing DAS data. These advanced methods can effectively handle large volumes of DAS data,
identifying important features that would be difficult to extract using traditional data processing techniques.
Developments in DL, like convolutional neural networks (CNNs), have proved to be particularly effective in
classifying and analyzing seismic data, offering better detection capabilities than conventional algorithms (Perol
et al., 2018; Ross et al., 2018; W. Zhu & Beroza, 2019). The application of machine learning to detect micro-
seismic events in DAS data generally follows methods similar to those applied for station or geophone data (Boitz
& Shapiro, 2024; Chai et al., 2022; Consolvo & Thornton, 2020; Hernandez et al., 2022). One strategy in this
domain is the generation of synthetic microseismic events (Mousavi & Beroza, 2023) through methods such as
anisotropic forward modeling (Stork et al., 2020), or employing homogeneous elastic medium forward modeling
(Binder & Chakraborty, 2020). The use of synthetic data is advantageous, particularly in augmenting the number
of training examples, a necessity in scenarios where high‐quality, labeled seismic data are scarce or difficult to
acquire (Leong & Zhu, 2024). Further developments include the integration of synthetic data into CNN frame-
works (Binder & Tura, 2020), as well as the use of CNN‐based transformer models (Liu et al., 2022; Yang
et al., 2023). An alternative approach uses conventional seismic signals and noise, captured by traditional
broadband seismometers (Hernandez et al., 2022) or geophones (Boitz & Shapiro, 2024). Ma et al. (2023) and
Mousavi and Beroza (2022) used data augmentation strategies to artificially generate more events with various
SNRs for training. However, a significant challenge with these synthetic models is their often‐limited complexity,
which may not adequately reflect the diverse range of real‐world seismic scenarios (Mousavi et al., 2024). In
contrast, several studies have directly utilized raw DAS data to train ML and DL models. Examples include
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training VGG (Huot et al., 2022; Lellouch et al., 2022; Ma et al., 2023), ADE‐Net2 (Lv et al., 2023), and U‐net
models (W. Zhu et al., 2023). These approaches leverage raw DAS data, which contain a broader spectrum of
seismic signatures and anomalies typical of real‐world scenarios. Recent work by Zhu et al. (2023) introduced
PhaseNet‐DAS. They used a pre‐trained PhaseNet model (W. Zhu & Beroza, 2019) to produce phase picks and
earthquake detection on Long Valley and Ridgecrest DAS cables. Furthermore, the preprocessing of DAS data
has evolved to enhance the effectiveness of ML models. Techniques such as bandpass filtering, median sub-
traction (e.g., Chien et al., 2023), and median filtering (e.g., Liu et al., 2022), together with the implementation of
STA/LTA methods (e.g., Lv et al., 2023), are employed to refine the data before it is fed into the ML algorithms.
This preprocessing serves to isolate relevant seismic signals and reduce noise, thereby improving the training
process. Most methods have demonstrated relative success, yet often fall short of the accuracy achieved through
manual labeling. An exception is the advanced CNNmodel proposed by Huot et al. (2022), which, leveraging the
continuous wavelet transform technique, successfully identified low‐amplitude events in DAS fibers that were
overlooked in manual analysis. In addition, a U‐Net CNN microseismic event detection network trained on DAS
and geophone data developed by Boitz and Shapiro (2024) provided a complete event catalog down to magnitude
Mw ∼ − 1.6 for the 2019 Utah FORGE stimulation. Despite progress, challenges persist in interpreting and
elucidating the intricacies of current machine learning models. Crucial questions remain unanswered, particularly
regarding the specific criteria these models use to discern seismic events from noise, the features they assimilate
during training, and whether their detection principles align precisely with established human understanding.

In this study, we developed the DASEventNet model, employing a Residual Network (ResNet) CNN architecture,
to detect microseismic events from a week‐long continuous data set recorded by the Silixa DAS fiber during Utah
FORGE (Frontier Observatory for Research in Geothermal Energy) Well 16A (78)‐32 hydraulic stimulation in
April 2022. The DASEventNet model was trained on 1,309 raw DAS events (Silixa LLC, 2022), identified via
STA/LTA, alongside an equal number of diverse noise samples. The DASEventNet model achieves a perfect
accuracy of 100% in discriminating MEQs from noise in the raw test data sets, featuring learned characteristics
that align with expert knowledge. We then apply the trained model to the entire period of DAS recordings, and
successfully discover 5,749 new MEQs not registered in the public catalog generated by the STA/LTA method.
The detectable minimum magnitude of the DASEventNet model is analyzed and its capability showcased in
detecting low‐magnitude events and some events that were manually classified as noise. We develop a
comprehensive MEQ catalog and use it to investigate the seismicity response to hydraulic stimulation activities
and evaluate the stimulated reservoir volume during hydraulic stimulations at the Utah FORGE site.

2. Data Set Acquisition and Generation
2.1. DAS Data Acquisition

Utah FORGE is a pioneering field laboratory dedicated to the development, testing, and demonstration of
technologies essential for the commercialization of EGS (Moore et al., 2020). It utilizes four vertical wells—56‐
32, 58‐32, 78A‐32, and 78B‐32—for seismic monitoring and tool testing.Well 16A (78)‐32 serves as the injection
well and is deviated at an angle of 65° from vertical. In April 2022, a three‐stage hydraulic fracturing treatment
was conducted at the toe of this well. The objective was to create fracture systems that facilitate long‐term water
circulation and efficient heat transfer between the injection well and the production well 16B (78)‐32, drilled in
2023 (McLennan et al., 2023).

For the microseismic monitoring of the stimulations, an array of deep borehole geophone sensors was deployed as
the primary network in well 56‐32, 58‐32, and 78B‐32 under the current maximum limit of 200°C (Figure 1). The
fiber‐optic cables are installed in metal tubes cemented behind the casing in wells 78A‐32 (up to a depth of
975.4 m) and 78B‐32 (up to 1,219.2 m) (McLennan et al., 2023). A Silixa DAS interrogator connecting with the
fiber is used to record mciroseismic signals, with a channel spacing of 1 m, a gauge length of 10 m, and a sampling
rate of 4 kHz. In this study, we used DAS array data that were recorded continuously in well 78B‐32 from 16 April
2022, at 16:30 (UTC) to 24 April 2022, at 14:30 (UTC), coinciding with the entire period of the three‐stage
stimulation conducted on well 16A (78)‐32. There were also two levels of analog geophone pairs deployed
post stimulation for continuous long‐term monitoring of reservoir microseismicity. The works of Dyer
et al. (2021) and Rutledge et al. (2022) provide a comprehensive summary of the monitoring system deployed at
Utah FORGE.
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Silixa LLC provided a catalog of microseismic events recovered using an STA/LTA automatic event detection
algorithm, complemented by bandpass filtering and signal‐to‐noise ratio (SNR) thresholding. This approach
detected 1,309 events (Silixa LLC, 2022). However, the event location quality is poor due to the limitations of
placement and completion depths of wells 78A‐32 and 78B‐32.

2.2. Data Set Generation

To develop an effective DL model for detecting microseismic events during hydraulic stimulation of well 16A
(78)‐32, we assembled a comprehensive data set comprising 1,296 events from the Silixa catalog, along with an
equal number of noise examples. The original data set contained 1,309 events, but due to partial availability of
Silixa DAS files, only 1,296 events were used for the analysis. The examples of noise were carefully selected from
periods of DAS records when hydraulic stimulation activities were inactive, ensuring they were unlikely to
contain overlooked low‐amplitude events.

1. Data processing

To manage computational resources efficiently, we decimated the data to a sampling rate of 1 kHz. Each element
in the data set was structured in a 2D data window, sized at 1,021 channels by 2,000 sampling points, corre-
sponding to a 2‐s duration. A band‐pass filter ranging from 25 to 150 Hz was applied, informed by spectrogram
analysis, to focus on the frequency range relevant to the microseismic events. Then we applied the median filter
on the data to eliminate similar energy noise across channels.

2. Data labeling

The data set entries were labeled “1” for events (containing a single microseismic event) and “0” for noise.
Rigorous manual checks were conducted on all 1,296 events to prevent mislabeling. A similar verification process
was employed for noise samples, ensuring that they were accurately categorized and did not inadvertently contain
microseismic energy. To enrich the model learning capability for microseismic detection, three different types of

Figure 1. Perspective view of the hydraulic stimulation well 16A (78)‐32, the three deep wells 58‐32, 56‐32, and 78B‐32 and
shallow well 78A‐32 (reproduced from (Dyer et al., 2021; Rutledge et al., 2022)). Deep geophone chains in wells 56‐32, 58‐
32, and 78B‐32 are shown as blue dots, the depths of which were limited by temperature (<200°C). The analog geophone
pairs, installed in the deep wells post stimulation, are shown as green dots. Silixa Distributed Acoustic Sensing fiber was
installed behind the casing in wells 78A‐32 and 78B‐32 as shown in Figure 1b. The three stages of the stimulation
experiments (S1, S2, S3) in well 16A (78)‐32 are also shown in Figure 1a.
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noise examples were included. Examples of the processed data windows, utilized as input for the DL model, are
illustrated in Figure 2.

The data set was divided into training, validation, and test sets, maintaining a ratio of 0.75:0.15:0.1. Importantly, a
balance between event and noise examples was maintained in each subset to ensure the effectiveness of the model
across varying data types. Table 1 provides details of events and noise for each subset.

3. Deep Learning Model
Here, we treat the DL task as a binary classification problem, distinguishing between microseismic events and
noise. The ResNet‐50 architecture is employed in the DASEventNet model for its ability to train very deep neural
networks. The key to its effectiveness lies in its skip‐connections, which enable the network to avoid the vanishing
gradient problem by reusing activations from previous layers. These residual connections are crucial for deep
network training, ensuring that gradient information is not lost and that the training process continues effectively
(He et al., 2016).

3.1. Model Structure

ResNet‐50, a deep CNN architecture comprising 50 layers, has revolutionized
the field of computer vision and offers significant implications for geo-
scientific applications (Dramsch, 2020). It is composed of a stacked sequence
of layers designed to facilitate the training of deep neural networks by
leveraging residual learning, which addresses the degradation problem that
occurs when networks become too deep.

The DASEventNet architecture, as illustrated in Figure 3, is structured into
six main steps after the initial input layer. The initial step is characterized by a
convolutional layer, which applies filters to the input to extract low‐level

Figure 2. Examples of processed 2D data for deep learning model training. Panels (a–c) are three examples of microseismic events, displaying different levels of signal
intensity to represent the range of events. Panels (d–f) illustrate three distinct types of noise encountered in the data set: (d) Type I noise, characterized by the tube‐wave
pattern; (e) Type II noise, marked by noticeable disturbances in the upper distributed acoustic sensing channels; and (f) Type III noise, random noise distinguished by its
lack of regular or discernible pattern.

Table 1
Data Distribution Across Training, Validation, and Test Sets

Category Training (75%) Validation (15%) Test (10%) Total

Event (1) 969 193 130 1,292

Noise (0) 969 193 130 1,292

Total 1,938 386 260 2,584
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features. This is followed by batch normalization, which stabilizes the learning process by normalizing the output
of the previous layer, and a ReLU activation function that introduces non‐linearity to the model. A max pooling
layer then reduces the spatial dimensionality, ensuring that the network remains computationally efficient.

The subsequent steps consist of a series of convolutional blocks (CONV blocks) and identity blocks (ID blocks),
both of which contain layers of convolutional filters followed by batch normalization and ReLU activation.
However, the convolutional blocks and the identity block serve different purposes within the network. A con-
volutional block typically serves as the starting block for each step after the first, and its role is to transform the
feature maps both in terms of depth and spatial dimensions. Each convolutional block contains three layers of
convolutions: the first 1 × 1 convolution reduces depth (number of filters), the 3 × 3 convolution operates at the
reduced dimension to extract features, and the final 1 × 1 convolution restores the depth again. These layers are
complemented by a shortcut connection that also modifies the dimensions to match the output, usually through a
1 × 1 convolution on the shortcut path.

In contrast, identity blocks do not alter the spatial dimensions or depth; they maintain the size of the input
throughout. An identity block consists of similar layers of convolution blocks, but the shortcut connection simply
adds the input directly to the output of the block without any transformation. This allows the network to focus on
learning the residual mappings, effectively making the deeper layers refine the features extracted by previous
layers without the risks of vanishing gradients.

In the final step, the network transitions from feature extraction to classification. It includes a global average
pooling layer, which reduces each two‐dimensional feature map to a single scalar, effectively summarizing the
spatial information. This is followed by a flattening operation to convert the multidimensional tensors into a one‐
dimensional tensor, which is then fed into a fully connected (FC) layer that produces the model output.

3.2. Model Performance

We selected the DASEventNet model based on a specific set of parameters and callbacks to optimize training
efficiency and classification accuracy. The training process was regulated by a learning rate scheduler starting
with an initial rate of 1 × 10− 4. This rate was set to decrease by 50% after 10 epochs and 90% after 20 epochs,
aligning with our strategy of fine‐tuning the weights of networks during the training progression. The Adam
optimizer (Kingma & Ba, 2015) was employed for its effectiveness in stochastic optimization, paired with binary
cross‐entropy (Zhang & Sabuncu, 2018) for the loss function, a standard choice for binary classification tasks.
Accuracy was the chosen metric to evaluate model performance. To mitigate the risk of overfitting, an early
stopping mechanism was integrated into the training process. This callback was configured to halt training if no
significant improvement (greater than 1 × 10− 4) was observed in the validation loss over a span of 20 epochs. The
model underwent extensive training with a batch size of 16 across 100 epochs, ensuring comprehensive learning
and robust model performance without overfitting. Our best model achieved both 100% accuracy on the vali-
dation set with 386 samples and 100% accuracy on the un‐touched test set including 260 samples as shown in
Table 2.

Figure 3. Schematic of the DASEventNet Architecture. This diagram illustrates the sequential steps of the DASEventNet
model, beginning with the initial input followed by a zero‐padding layer. The subsequent stages involve convolutional layers
(CONV), batch normalization (Batch Norm), and activation functions (ReLU), concluding with a max pooling layer (MAX
POOL). The core of the model consists of four steps with convolutional (CONV BLOCK) and identity blocks (ID BLOCK),
where the ID BLOCK includes skip connections that bypass the intermediate layers, allowing the input to be added directly to
the output. The final step transitions to classification with global average pooling (AVG POOL), flattening, and a fully
connected (FC) layer (FC), leading to the output.
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To rigorously assess the performance and reliability of our optimal DASE-
ventNet model, we conducted a comprehensive cross‐validation procedure.
This involved reshuffling the data set four additional times, each time
redistributing the data (events and noises) into training, validation, and test
sets for re‐training. This method evaluated the model convergence and sta-
bility across different data splits, providing a robust measure of its
generalizability.

Remarkably, in all five iterations, the model consistently achieved 100%
accuracy in the validation set, successfully identifying MEQs from noise. On
the test set, four iterations maintained 100% accuracy, while one iteration
achieved 99.23% accuracy, with a minor discrepancy where two batches of

noise were misclassified as events. These consistent results across multiple data configurations affirm the
robustness and reliability of the model. Despite the slight variation in one test set iteration, the overall perfor-
mance underscores the model effectiveness in accurately detecting MEQs.

3.3. Classic Activation Map

To elucidate the underlying features and patterns learned by our DASEventNet model and to understand its
response to various inputs, we employed the technique of class activation mapping (CAM), a technique intro-
duced by Zhou et al. (2016). This approach is able to visualize the activation patterns within final convolutional
layers of the model, specifically after the global average pooling stage, as illustrated in Step 6 of the ResNet‐50
architecture. Essentially, CAM lies in its ability to highlight the regions of the input image that are most influential
in the model classification decision‐making process.

As illustrated in Equation 1, the CAM is computed by aggregating the feature maps from the final convolutional
layer of the ResNet50 model, each weighted by their corresponding coefficients from the FC layer. Specifically,
this process involves multiplying each feature map by its associated weight — as determined in the FC layer —
and then summing these products.

CAM =∑
n

i=1
wi × fi (1)

where fi denotes the feature map output from the final convolutional layer, corresponding to the output of Step 5 in
the ResNet50 model, as illustrated in Figure 3. The parameter wi represents the weights associated with the FC
layer of the ResNet50 model. Each neuron of the FC layer has a weight wi which signifies the importance or
contribution of a particular feature fi toward the final classification decision.

Figure 4 presents the CAM examples of three events with varying strengths and complexity of seismic events as
processed by the DASEventNet model. Those three events and/or coda in Figures 4a–4c are effectively high-
lighted by higher activation values in their distinct CAM plots (Figures 4d–4f). In contrast, as depicted in Figure 5,
inputs representing three different types of noise exhibit lower activation values across the CAM plots
(Figures 5d–5f). This difference between high activation values in Figure 4 and low activation values in Figure 5
indicates the effectiveness of our DASEventNet model for discriminatingMEQs from noise. The alignment of the
model detection criteria with human interpretation, as evidenced by these activation patterns, further attests to the
robustness and reliability of the model in classifying MEQs.

3.4. Application of the Model to Entire DAS Records During the Well 16A (78)‐32 Hydraulic Stimulation

We applied the DASEventNet model to the full data set (7‐days) of continuous DAS recordings during the three‐
stage hydraulic stimulation. The data set extends from 17 April 2022, at 03:00 UTC to 23 April 2022, at 13:40
UTC and contains over 267,000 2D data windows. It took about 14.85 hr for the model to analyze the entire set of
data windows, averaging 0.2 s to process each individual data window using 40 CPU cores at the Penn State Roar
Collab cluster. The model identified 5,794 samples as microseismic events. We manually checked all predicted
events, and only 45 events were false detections.

Table 2
The DASEventNet Model Performance

Category Accuracy (%)

Training set (1,938 samples) 969 events 100

969 noises

Validation set (386 samples) 193 events 100

193 noises

Test set (260 samples) 130 events 100

130 noises
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Figure 4. Comparative visualization of original event inputs and CAMs for the DASEventNet model. Panels (a–c) display three examples of input events processed by
the model. Panels (d–f) correspond to their respective class activation mapping, which illuminate the regions within the inputs that are most influential in guiding the
model classification decisions. Weak event signals are zoomed in and shown within the white frames for better visualization.

Figure 5. Comparative visualization of original noise inputs and CAMs for the DASEventNet model. Panels (a–c) display three examples of input noise packets
processed by the model. Panels (d–f) correspond to their respective class activation mapping, which illuminate the regions within the inputs that are most influential in
guiding the model classification decisions.
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Our method found 5,749 new MEQs that were not cataloged by Silixa using the traditional STA/LTA method,
which detected 1,309 events. Thus our DL method expanded the catalog by a factor of ∼5. Table 3 presents a
detailed comparison between the MEQs detected by the DASEventNet model and those identified by the STA/
LTA method for each stage of well the 16A (78)‐32 hydraulic stimulation. The total number of detected events,
including those used for training the model, amounts to 226 in Stage 1, 289 in Stage 2, and 6,543 in Stage 3. This
marks a significant improvement over the original STA/LTA method.

Porras et al. (2023) implemented a semblance‐based seismic event detection method, analyzing the spatial
coherence of seismic wavefields along geometrical hyperbolic trajectories in the 78B‐32 well DAS data. They
tested their method on the DAS data from the Stage 3 stimulation in well 16A (78)‐32. They successfully
identified 2065 reliable MEQs, doubling the number of events detected in Stage 3 using STA/LTA. In contrast,
our model detected a total of 6,543 events in the Stage 3 stimulation, exceeding the event count detected by the
method of Porras et al. (2023) more than threefold. Additionally, all the 2065 MEQs in the catalog provided by
Porras et al. (2023) are detected by the DASEventnet model. Such an expansion demonstrates the superior
performance and increased sensitivity of the developed model for detecting weak microseismic events in DAS
data.

It is worth noting that Geo‐Energie Suisse compiled a catalog of microseismic events (MEQs) during stimulations
using deep borehole geophones deployed in wells 58‐32, 56, and 78B. These wells are located much closer to the
stimulation well 16A (78)‐32 compared to the 78B‐32 well used in this study (Figure 1). The deep borehole
geophone catalog includes 36,641 MEQs, with 5,264, 6,732, and 24,645 events detected in Stages 1, 2, and 3,
respectively (Dyer et al., 2023). However, as introduced by Dyer et al. (2023), only 823, 1,323, and 5,288 events
in these stages have visually verified reliable locations and magnitude estimations. The rest of their detected
events are problematic for their use. For instance, 14,502 events across the three stages were located using an
unreliable automatic bootstrap method without verifications, and 14,705 events remained unlocated with unre-
liable magnitudes. For a detailed introduction to this deep borehole catalog, please refer to Supplementary Table
S1 in Supporting Information S1. In this study, we only compared the MEQs with reliable location and magnitude
data from the deep borehole geophone catalog by Dyer et al. (2023). As shown in Table 3, their catalog
significantly increased the MEQ counts in Stages 1 and 2, while our model detected more events in Stage 3.

4. Discussion
4.1. Detection Capability of the ResNet Model

The detection capability of the DASEventNet model exceeds that produced by standard seismic techniques, but
our procedure involves several steps. During manual inspection, some samples exhibited simultaneous presence
of events and tube‐wave noise within the same time window (Figures 6a and 6b). Figures 6c and 6d show their
CAM plots, identifying a clear pattern of high activation values in the event signal zones, demonstrating the
capability of the model to differentiate between event signals and tube‐wave noise.

DASEventNet is designed for detecting MEQs from DAS data in the Utah FORGE project rather than estimating
event locations and magnitudes. The challenges associated with estimating event magnitude using DAS ampli-
tude information include issues such as unknown cable coupling, single‐component sensing, uncertain instru-
mental response and uncommon amplitude saturation behaviors of DAS fibers (Ajo‐Franklin et al., 2019; Lindsey
et al., 2020), though some estimation methods were proposed (Gök et al., 2024; Lior, 2024; Yin et al., 2023).

Table 3
Comparison of MEQs Detected in the Silixa Catalog, DASEventNet Model, the Catalog by Porras et al. (2023), and the Deep Borehole Geophone Catalog With Reliable
Locations Introduced by Dyer et al. (2023) Across Different Stages

Stage
Silixa catalog

(STA/LTA method)
Semblance‐based seismic event detector

(Porras et al., 2023) DASEventNet
MEQs with reliable locations and magnitudes in deep

borehole geophone catalog (Dyer et al., 2023)

1 45 / 227 823

2 57 / 309 1,323

3 1,207 2065 6,596 5,288

Total 1,309 / 7,132 7,434
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Additionally, direct determination of event locations from DAS recordings is also limited by the geometric
placement and completion depth of the DAS fiber in well 78B‐32.

Nevertheless, we also analyzed the minimum magnitude of events that could be detected by the DASEventNet
model. We instead determine the DAS event magnitude and location by correlating event timings from the DAS
with those recorded in the deep borehole geophone catalog provided by Geo‐Energie Suisse. Due to different
deployment depths of borehole geophones and DAS fibers (∼1,000 m gap), a time discrepancy for the same
events must exist but remains unknown. We used an ad‐hoc timing match by assuming that if a DAS‐recorded
event occurred within a 0.2‐s window after an event recorded in the deep borehole geophone catalog by Geo‐
Energie Suisse, they were considered the same event. The 0.2‐s gap was determined by comparing the occur-
rence times of the same check shot event recorded in both the Geo‐Energie Suisse geophone catalog and the Silixa
DAS catalog. Similarly, reliable location information was derived using data from the deep borehole geophone
catalog, given the challenges posed by the placement and completion depths of well 78B‐32 in directly deter-
mining event locations from DAS fiber data.

With this event synchronization, we discovered that the DASEventNet model is capable of reliably detecting
events with magnitudes as low as Mw− 1.80 as shown in Figure 7b1. This detection capability is notably more
sensitive than the minimummagnitude ofMw− 1.14 (Figure 7a1) obtained using the traditional STA/LTA method
used by Silixa LLC. In comparison, Boitz and Shapiro (2024) developed a U‐Net CNN network for microseismic
event detection in DAS data from the 2019 Utah FORGE stimulation. Their model, which incorporated the
geophone information for training, could detect events magnitudes down to Mw− 1.6. However, our

Figure 6. Data examples including both tube‐wave noise and event signals (a–b), and their CAMs (c–d) for the DASEventNet model.
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DASEventNet model does not require geophone data for training and achieves a lower detectable magnitude
compared to their approach. Figure 8 demonstrates a comparison of the magnitude distribution between events
detected by our model and those identified by the STA/LTA method. The proposed DASEventNet detection
model significantly increases the number of detected low‐magnitude events across the three stages, indicating the
superior capability of the model in identifying a broader range of seismic activities.

In addition, the model displayed an exceptional capability to identify unregistered weak events in the borehole
geophone catalog that were not visually apparent in the original input data. The CAM plots for these events
affirmed their classification, as shown in Figure 9. This outcome illustrates the comparable, and in some cases
superior, performance of the model relative to manual classification methods, particularly in detecting weak
events that might be missed in conventional visual analyses.

4.2. Spatiotemporal Distribution of MEQs During the Hydraulic Stimulation Period

The temporal evolution of microseismic events in response to injection and pressure histories in each stage of
hydraulic stimulation was analyzed, as illustrated in Figure 10. Our developed model presented a more complete
catalog for Stage 1 and Stage 2 stimulations compared to the Silixa catalog, leading to some interesting

Figure 7. Comparison of minimummagnitude between events detected by the DASEventNet model and the STA/LTAMethod. Panel (a1) shows the original distributed
acoustic sensing (DAS) records with a magnitude of − 1.14, the minimum event magnitude detectable by the STA/LTA method. Panel (b1) shows the original DAS
records with a magnitude of − 1.80, detectable solely by the proposed DASEventNet model. Panels (a2, b2) present the corresponding class activation mapping plots for
panels (a1) and (b1), respectively. The weak event signals are zoomed in and shown within the white frames for better visualization.
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observations. For example, the peak seismicity rate (>8 events/minutes) in Stage 1 (Figure 10a) likely corre-
sponds to rapid changes in injectivity over a short period, potentially due to transient poroelastic stresses in the
reservoir that enhance earthquake triggering (Segall & Lu, 2015). The peak seismicity rate in Stage 2 (Figure 10b)
might relate to well pressures reaching the formation breakdown pressure (∼46.7 MPa) (McLennan et al., 2023)
which then increases seismicity rate. Stage 2 also performed a hard shutdown midway through the maximum rate
step (5.56 m3/min) to examine the microseismic response and test the hypothesis that cyclic injection could reduce
microseismicity (McLennan et al., 2023). However, no significant change in seismicity rate was observed before
or after the hard shutdown from our catalog, as shown in Figure 10b, possibly due to the aforementioned limi-
tations in SNR and large distances between the Stage 2 stimulation zone and the DAS fiber installation depth.

We also note that the temporal changes of detected events did not closely align with the entire injection and
pressure history during these stages (Figures 10a and 10b). Several factors might contribute to this limitation.

Figure 8. Comparison of microearthquakes (MEQs) magnitude distributions between catalogs detected by the developed
DASEventNet model and STA/LTA method (Silixa LLC, 2022). Panels (a, b, c) are a comparison of the MEQ magnitude
distribution for Stages 1, 2, and 3, respectively.

Figure 9. Comparative visualization of original inputs and their CAMs for the DASEventNet model. Panels (a–c) display three examples of inputs where event signals
are not visually apparent. Panels (c–d) correspond to their respective CAMs with highlighted weak event signal regions. The weak event signals are zoomed in and
shown within the white frames for better visualization.
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From the perspective of DAS fiber detection capabilities, one possible reason is the well intervention activities
during Stage 1 and Stage 2 in well 78B‐32 (Silixa LLC, 2022), which resulted in a higher signal‐to‐noise‐ratio
(SNR) than Stage 3. For example, the average SNR values calculated for all 45 events in Stage 1 and the 57
events in Stage 2 in the Silixa LLC catalog had average SNR values of 2.80 and 2.67, respectively. However, the
1,208 events in Stage 3 had an average SNR of 3.27. Another factor is the different distances from stimulation
zones of these three stages to the DAS fiber. As shown in Figure 1, Stage 1 and 2 stimulations were conducted at
deeper locations in the 16A (78)‐32 wellbore, with Stage 1 in a 200ft open‐hole section at the wellbore toe
(3,287.9m–3348.8 m measured depth (MD)) and Stage 2 in a 20ft perforation interval (3,218.7–3,224.8 m MD)
(McLennan et al., 2023). In contrast, Stage 3 occurred in a 20 ft perforation interval at 3,084.6–3,090.7 m MD
(McLennan et al., 2023). Given that the deepest channel of 78B‐32 DAS fiber is installed at a depth of 1,037.2 m
(Dyer et al., 2021), variations in stimulation depth could lead to significant differences in the seismic signal
energy captured by the DAS fiber. Both Stages 1 and 2 pumped slickwater as the hydraulic fracturing fluid
without proppant, whereas Stage 3 used crosslinked polymer fluid with microproppant (McLennan et al., 2023).
The application of proppant could maintain hydraulic fractures open, and the stresses induced by tensile fracture
opening plays a significant role in controlling the spatiotemporal evolution of induced seismicity (Kettlety
et al., 2020). In addition, the lower response to injection history in Stage 1 might be due to the existence of
multiple preexisting natural fractures in the openhole section (Xing, Damjanac, et al., 2022; Xing, Wray,
et al., 2022; Zeinabady & Clarkson, 2023).

The temporal evolution of seismicity in Stage 3 demonstrated a more vigorous response to the injection history
(Figure 10c). The seismicity rate increased with the increase in injectivity, peaking at maximum induced
injectivity. Since MEQs are mechanistically linked to the creation of porosity and permeability (Fang et al., 2018;
Ishibashi et al., 2018; Yu, Mali, et al., 2024, Yu, Zhu, et al., 2024), they are often used to evaluate the success of
hydraulic stimulation (Riffault et al., 2018, 2019; Shapiro et al., 1997). The well‐matched seismic response in
Stage 3 may indicate successful creation of hydraulic fractures during stimulation. This could further be validated
by the spatial distribution of theMEQs as shown in Figure 11, which illustrates the spatial distribution ofMEQs as
detected by the DASEventNet network and STA/LTAmethod. The quantification of stimulation zones in Stages 1
and 2, as indicated by the previous MEQ distributions in all catalogs, is not sufficient due to previously mentioned
limitations. However, the Stage 3 MEQs detected by the proposed DASEventNet network revealed a more
extensive stimulated reservoir volume. This suggests a more precise delineation of the fracture network created in
the Stage 3 stimulation experiments in comparison to the MEQs detected by the STA/LTA method in the DAS
arrays. In addition, the spatio‐temporal distribution of the Stage 3 MEQs shown in Supplementary Figure S3 in
Supporting Information S1 illustrates that the Stage 3 MEQs events migrate from the vicinity of the injection
location to more distant locations and exhibit a planar fracture geometry perpendicular to the deviated wellbore.
Despite significant differences in the locations of the monitoring wells, installation depths of geophones and DAS

Figure 10. The three‐stage stimulation history ((a): Stage 1, (b) Stage 2, (c) Stage 3) and corresponding microearthquakes sequences detected by the DASEventNet
model and STA/LTAmethod (Silixa LLC, 2022). Panels (A1–C1) show the history of pressure and injection rate for Stage 1–3 stimulations. Panels (A2–C2) shows the
injectivity (defined as the ratio between injection rate and pressure) together with the temporal evolution of seismicity as detected by our ResNet‐50 model and STA/
LTA methods, respectively during the three‐stage stimulation.
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fibers, and the sensitivity of geophones and DAS, we compared the Stage 3 MEQ distribution of DASEventNet to
MEQs with reliable location in the deep borehole geophone catalog. As shown in Supplementary Figure S1 in
Supporting Information S1, both catalogs exhibit similar fracture geometry in Stage 3.

5. Conclusions
We present a DL DASEventNet model for MEQ detection in continuous DAS data recorded during the hydraulic
stimulation experiments in the Utah FORGEwell 16A (78)‐32 in April 2022. Our model was trained using catalog
DAS events from well 78B‐32, consisting of 1,292 MEQs and an equal number of noise samples. The model
achieved a perfect accuracy of 100% in distinguishing MEQs from noise within the test data set containing 260
samples. We illustrated the learned features of the model on both event and noise samples by using the classic
activation map technique. We found that the event signals were accurately captured and emphasized with higher
activation values, while the noise domain exhibited lower negative activation values. This not only provides
insights into how the model works but also ensures that detection criteria of the model are aligning with expert
understanding. Notably, the activation maps revealed the capability of the model to detect weak MEQs that are
manually classified as noise and to accurately capture the event signal domains where tube‐wave noise is present.

We applied the DASEventNet model to the complete suite of DAS recordings for the entire hydraulic stimulation
period, predicting a total of 7,058 MEQs. This number significantly surpasses the event count of 1,309 identified
using the STA/LTA method, with the model revealing 5,749 newMEQs, which expanded the DAS catalog by ∼5
times. Furthermore, the model exhibited a better detection capability compared to the semblance‐based seismic
event detection method introduced by Porras et al. (2023). In Stage 3 of the stimulation, the DL model detected
6,543 events, in contrast to the 2,065MEQs identified by Porras et al. (2023). Compared to a detectable minimum
magnitude of − 1.14 based on the STA/LTA method, our ResNet‐50 model demonstrates a remarkable capability
in reliably detecting events with magnitudes as low as Mw− 1.80. We observed that such minor events, typically
elusive in conventional methods or manual classification, are effectively identifiable by the proposed DASE-
ventNet model. The catalog compiled in this research reveals that the temporal evolution of seismicity rates in

Figure 11. Comparison of microearthquake distributions between the DASEventNet model and the STA/LTA method.
Events (in blue) detected by the STA/LTA method are also identifiable by the DASEventNet model. Panel (a) is the 3D
distribution of microseismic events of the three stages detected by the DASEventNet model and the STA/LTA method.
Panels (b) and (c) are the top view and side view of Panel (a) respectively.
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Stage 3 exhibits a strong correlation with the injectivity history, suggesting a potential increase in permeability
during stimulation. In addition, the spatial distribution of MEQs in Stage 3 indicates the successful creation of a
stimulated volume of potentially reactivated fracture networks. These observations are particularly noteworthy
despite the constraints posed by the fiber placement depths in well 78B‐32. The MEQs detected by the DL model
have significantly enhanced the understanding of the seismic response to the stimulation operation histories and
fracture characterization in the hydraulic stimulations conducted in the Utah FORGE well 16A (78)‐32 in April
2022.

The proposed model in this study holds potential for real‐time and long‐term monitoring of seismic events, not
only during the stimulation experiments but also throughout the production period of EGS reservoirs. This
capability is especially relevant where seismicity may be induced by the injection of cold water, demonstrating
the versatility and applicability of the developed model in varied geothermal operation scenarios.

Data Availability Statement
The DAS data used in this study for the Utah FORGE well 16A (78)‐32 stimulation can be found at Pan-
kow (2022). The DAS catalog and report generated by Silixa LLC. for the Utah FORGE well 16A (78)‐32
stimulation can be accessed via Silixa LLC (2022). The deep borehole geophone catalog can be accessed via:
Karvounis et al. (2022). The DASEventNet model as well as the microseismic catalog are freely available at Yu
et al. (2024a, 2024b).
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