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Full Length Article 
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Abstract: Hydraulic fracturing then fluid circulation in enhanced geothermal system (EGS) reservoirs have been shown to induce seismicity 

remote from the stimulation – potentially generated by the distal projection of thermoporoelastic stresses. We explore this phenomenon by 

evaluating stress perturbations resulting from stimulation of a single stage of hydraulic fracturing that is followed by thermal depletion of a 

prismatic zone adjacent to the hydraulic fracture. We use Coulomb failure stress to assess the effect of resulting stress perturbations on 

instability on adjacent critically-stressed faults. Results show that hydraulic fracturing in a single stage is capable of creating stress perturbations 

at distances to 1000 m that reach 10-5-10-4 MPa. At a closer distance, the magnitude of stress perturbations increases even further. The stress 

perturbation induced by temperature depletion could also reach 10-3-10-2 MPa within 1000 m - much higher than that by hydraulic fracturing. 

Considering that a critical change in Coulomb failure stress for fault instability is 10-2 MPa, a single stage of hydraulic fracturing and thermal 

drawdown are capable of reactivating critically-stressed faults at distances within 200 m and 1000 m, respectively. These results have important 

implications for understanding the distribution and magnitudes of stress perturbations driven by thermoporoelastic effects and the associated 

seismicity during the simulation and early production of EGS reservoirs. 

Keywords: Thermoporoelastic stress perturbations; Hot-dry rock; Enhanced geothermal system; Hydraulic fracturing; Thermal depletion; Fault 

instability 

 

1. Introduction  

Geothermal resources in hot-dry rocks have attracted worldwide attention (Zhang et al., 2019a; Aliyu and Archer, 2021; Chen et al., 2022; 

Wu et al., 2023; Dong et al., 2024) as a low-carbon energy supply. The total worldwide reserves of hot-dry geothermal rocks that are shallower 

than 10 km approaches 1.3 × 1027 J and could sustain global energy demand at the current usage for ~270 million years (Lu et al., 2018). 

Consequently, successfully developing this deep hot-dry rock resource is beneficial for both energy supply and for reducing carbon emissions. 

Well-known projects that pioneered the development of the technology to recover this resource include Fenton Hill and Newberry Volcano 

Geothermal Reservoirs in the US (Brown and Duchane, 1998; Sonnenthal et al., 2012; Petty et al., 2013; Norbeck et al., 2018), Basel Geothermal 

Reservoir in Switzerland (Bachmann et al., 2011; Kraft and Deichmann, 2014), Soultz Geothermal Reservoir in France (Calò et al., 2014; Schill et 

al., 2017), Pohang Geothermal Reservoir in South Korea (Kim et al., 2018a; Kwon et al., 2019) and Gonghe Geothermal Reservoir in China (Lei et 

al., 2019; Zhang et al., 2021). However, such hot dry rock resources are typically located in ultra-low-permeability metamorphic (e.g. gneiss and 

basalt) or igneous (e.g. granite and granodiorite) rocks (Baria et al., 1999; Kumari et al., 2018), which makes it difficult to recover the heat. To 

overcome this limitation, the approach called Enhanced Geothermal System (EGS) has been employed to enhance reservoir permeability and to 

increase the recovery efficiency of heat (Zimmermann et al., 2010; Olasolo et al., 2016) (Fig. 1). However, these EGSs may also cause unwanted 

environmental consequences. Cold-water injection and hot-water extraction can each reactivate metastable faults and induce earthquakes 

(Majer et al., 2007; Ellsworth et al., 2019), as observed at Pohang, South Korea, and Gonghe Geothermal Reservoirs, China (Zhang and Hu, 2018; 

Woo et al., 2019; Zhang et al., 2019b). 

The November 2017 Pohang Mw 5.5 earthquake is the largest known induced earthquake at an EGS site (Grigoli et al., 2018; Kim et al., 

2018b). It was the most damaging earthquake in the Korean peninsula since the last century (Westaway and Burnside, 2019) that directly 

injured >100 residents and caused >$300 million in economic losses (Lee et al., 2019a). This earthquake occurred two months after the last fluid 

injection designed to stimulate the reservoir and this stimulation was implicated in triggering the earthquake (Lee et al., 2019b). The Pohang 

EGS project involved two injection wells, i.e. PX-1 and PX-2, with both wells reaching a depth of ~4.3 km within the Permian granites. During the 

drilling of the two vertical wells, significant drilling fluid losses were observed at ~3434 m in well PX-1 and 3816-3840 m in well PX-2, indicating 

the intersection of the wells with a subsurface permeable fault or fracture (Westaway and Burnside, 2019). A total of five fluid injection tests 

were performed to stimulate the geothermal reservoir from well PX-1 in December 2016 and August 2017, and from well PX-2 in February, April, 

and September 2017. In addition to the main earthquake, a cluster of small earthquakes was also observed during fluid injection tests in the two 
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wells (Lee et al., 2019a). By September 2017, the total injection volume in the two wells had reached ~12,000 m3 with the flowback volume 

reaching ~7000 m3 (Hofmann et al., 2019). Currently, it is accepted that the high-pressure fluid injection in well PX-2 reactivated a previously 

unmapped critically-stressed fault that triggered the earthquake. 

 

 
Fig. 1. Schematic showing the layout of an Enhanced Geothermal System (EGS) with injection and production wells. The hot-dry rock (HDR) 

reservoir is located below the caprock layer. The horizontal well could directly intersect the subsurface deep fault. 

 

China also has significant hot-dry rock resources with the total hot-dry rock resource estimated as ~2.5 × 1025 J between depths of 3-10 km, 

equivalent to ~86 billion tons of coal (Zhang et al., 2020). The Gonghe Geothermal Reservoir in northwestern China is a pilot project for EGS at 

a depth of ~3705 m with temperature approaching 236 C (Gao et al., 2018). A number of fracturing-concurrent tests, including fracture 

diagnostic, acid, slick-water, temporary plugging, and gluing tests were performed on exploration well GR1 (Chen et al., 2021) from 26 August 

2019 to 30 August 2019 with injection rates of 0.5-2 m3/min for a total injected fluid volume of 2.9 × 103 m3. During the five days of hydraulic 

fracturing, more than 1300 seismic events were detected at depths of 3000-3900 m with earthquake magnitudes (ML) within the range 0-3 and 

the largest event reaching magnitude (ML) ~3 (Chen et al., 2021). 

These two examples highlight the importance of understanding the underlying mechanisms of triggering seismicity during the development 

of the hot-dry rock resource at an EGS site. Tectonic earthquakes are associated with the stability of subsurface faults (Manighetti et al., 2007; 

Vilarrasa et al., 2016; Huang et al., 2017) with hydraulic fracturing implicated in triggering via the impacts of direct fluid pressurization, 

thermoporoelastic stress changes and the loading from aseismic slip (Garagash and Germanovich, 2012; Ellsworth, 2013; Rubinstein and Mahani, 

2015; Segall and Lu, 2015; Bao and Eaton, 2016; Deng et al., 2016; Elsworth et al., 2016; Eyre et al., 2019). Direct fluid injection may elevate local 

pore fluid pressure, reduce effective stress, and trigger fault reactivation (Garagash and Germanovich, 2012; Bao and Eaton, 2016; Elsworth et 

al., 2016). However, this mechanism requires that a direct permeable pathway links the deep fault directly to the injection well (Fig. 1). Loading 

from fault aseismic slip typically requires that the fault exhibit aseismic slip and creep behavior within the overpressured zone that can transfer 

stress and induce slip on remote unstable faults and thus trigger seismicity (Eyre et al., 2019). This model is generally applicable to sedimentary 

reservoirs, such as shale reservoirs (An et al., 2020). Conversely, thermoporoelastic stresses due to fluid injection or extraction and temperature 

changes may also cause changes in total stress far away from the pressurization zone and with no direct fluid connection – and may also trigger 

reactivation (Ellsworth, 2013; Rubinstein and Mahani, 2015; Segall and Lu, 2015; Deng et al., 2016; Eyre et al., 2019). Much effort has been 

devoted to understanding the direct effect of fluid pressure on fault stability – while thermoporoelastic effects are less understood in geothermal 

reservoirs (Ghassemi and Tao, 2016). Indeed, many current studies ignore the impact of thermoporoelastic stress perturbations from fluid 

injection and thermal depletion and further do not define the magnitudes of thermoporoelastic stress perturbations - and this remains an 

important item in determining the fault reactivation potential and understanding the seismic risk (Qiu et al., 2023; Tang et al., 2023). 

We address this issue by systematically exploring the magnitude of this thermoporoelastic stress perturbation during EGS reservoir 

development for a typical system. We use Gonghe EGS in northwestern China as a case study and evaluate the thermoporoelastic stress 

perturbation that results from hydraulic fracturing and a prismatic depletion zone representing an idealized geometry within a half-space. Note 

that a uniform temperature change in the prismatic zone is qualitatively equivalent to pressure depletion in the same zone. Quantitatively, 

however, the result depends on the magnitudes of the pressure and temperature changes as well as material constants. The thermal depletion 

addressed in this paper represents the process of extracting heat from the reservoir via a heat exchange fluid – the ultimate function of a deep 

geothermal reservoir. As such, it may be regarded as the opposite process of hydraulic fracturing – as fracturing dilates the fracture from within, 

while depletion dilates the fracture by contracting the reservoir host. Although, additionally, the hydraulic fracturing also includes the 

propagation of the fractures. We use Coulomb failure stress as a measure to evaluate the effect of this thermoporoelastic perturbation on the 

stability of faults in and around the reservoir. For the purpose of this study, the threshold of the change in Coulomb failure stress that is sufficient 

to trigger instability of critically-stressed faults is taken as 0.01 MPa (Haris, 1998; Stein, 1999). This critical value of 0.01 MPa could be the 

minimum magnitude to trigger seismicity, although this threshold may be higher than this value in many cases. This study has important 

implications for understanding the stability of deep faults in hot dry rock reservoirs to ensure the safe recovery of the deep hot-dry rock resource. 
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2. Modeling methods 

In this study, we primarily focus on the thermoporoelastic perturbations resulting from a single hydraulic fracturing stage and a prismatic 

depleted zone around it, to investigate the minimum stress perturbations from an EGS site on deep fault stability. Exploring the minimum stress 

perturbations aids in defining the minimum requirements for triggering seismicity and thus in guiding hydraulic fracturing operations. 

Simplified three-dimensional (3D) sketches of a hydraulic fracture and a prismatic depletion zone are shown in Fig. 2. The simplified models are 

built to honor the typical configuration of the Gonghe geothermal site, in northwestern China and consist of an injection well (horizontal well) 

(Fig. 2a) and a production well (vertical well) (Fig. 2b). The modeling parameters are consistent with the Gonghe granites with the hydraulic 

fracturing and thermal depletion zones were all completed at a depth of 3500 m. Hydraulic fracturing and thermal depletion are processes that 

do not generally operate simultaneously - hydraulic fracturing operates over periods of hours and thermal depletion over days to weeks. Hence, 

we can explore the resulting stress perturbations independently. 

 

 
Fig. 2. Schematics of the simplified 3D views of (a) hydraulic fracture and (b) thermal depletion models. 

 

For hydraulic fracturing, a total of 1000 m3 fluid is assumed to be injected into each fracturing stage. Although multiple fractures may be 

initiated in each fracturing stage, it is assumed that all fractures in one fracturing stage are combined into a single equivalent symmetric bi-wing 

fracture with a length of 500 m and a height of 200 m, as shown in Fig. 2a. During the fluid injection, we assume no fluid leak-off and that the 

fracture width remains uniform. Then, an upper bound for fracture width of 1 cm is obtained given that 1000 m3 of fluid is injected in a fracture 

with the dimensions 500 m × 200 m (length  height). We use this upper bound fracture width to estimate the stress perturbations and to 

evaluate its impacts on fault stability at depth. We set the coordinate system such that the fracture length, width, and height are along the x, y, 

and z-directions/coordinates, respectively. The origin of the z-axis is set at the Earth's surface and the origins of the x- and y-coordinates are 

located at the center of the hydraulic fracture. Thus, the coordinates of the fracture center are defined as (0, 0, -3500) (yellow circle in Fig. 2a). 

Despite of such gross approximation for the fracture, the fracture-induced stress far away from the well is still fairly accurate since the details of 

fracture geometry smear away from the fracture and the magnitude of the response depends primarily on the total fracture volume. 

For thermal depletion, we consider a prismatic depleted zone with the dimensions 500 m× 200 m× 200 m (length × height × width). Note 

that a uniform thermal drawdown in this region with ΔT = ϵm/αt is equivalent to pressure drawdown induced volumetric strain change of ϵm = 

αbΔP/K, where αt, αb, and K represent the thermal expansion coefficient, Biot coefficient, and bulk modulus, respectively. The depleted reservoir 

will shrink as a result of thermal depletion. We assume that the temperature change is ~10 C after the depletion. By continuing the analogy with 

pressure depletion, this temperature change is equivalent to ~15 MPa (ΔP = 15 MPa) pore pressure change (considering the thermal expansion 

coefficient of granite is ~4 × 10-5 K-1) (Plevova et al., 2016). In the modeling, we assume that the pore fluid pressure is uniformly distributed 

within the hydraulic fracturing or the depletion zone. 

The coordinate system for thermal depletion is identical to that for hydraulic fracturing. The length, height, and width of the depleted zone 

correspond to the x-, y-, and z-coordinates, respectively. The origins of the x- and y-coordinates are located at the center of the prismatic depleted 

zone as (0, 0, -3500) (yellow circle in Fig. 2b). For both the hydraulic fracturing and thermal depletion, the elastic modulus (E) of the hot-dry 

rock reservoir is taken as 50 GPa with a Poisson’s ratio (ν) as 0.17. For thermal depletion, the Biot coefficient (αb) is assumed to be 0.6 (Zhang, 

2019). We use the solution of Okada (1992) to determine the displacement around a hydraulic fracture or a prismatic zone in a half-space. The 

governing equations for the two cases are given in Appendix A. The codes were written by ourselves and all calculations were performed and 

completed using MATLAB. 
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3. Results 

We calculate the poroelastic stress perturbations from the hydraulic fracture and its prismatic depleted zone following the methods 

described in Section 2.1. A horizontal area spanning -1000 m ≤ x ≤ 1000 m and -1000 m ≤ y ≤ 1000 m is selected to show the results. We plot 

the poroelastic stress perturbations from the hydraulic fracturing and thermal depletion at a vertical distance of 1000 m and also compare the 

results with their counterparts at distances of 500 m and 200 m. 

3.1. Distributions of poroelastic stress perturbations due to hydraulic fracturing 

We first analyze the poroelastic stress perturbations from a hydraulic fracture at a distance of 1000 m. This distance corresponds to the 

vertical distance between the evaluation plane and the hydraulic fracture center. Contours of poroelastic stress changes from the hydraulic 

fracture in terms of the six stress components σxx, σyy, σzz, σxy, σxz, and σyz are shown in Fig. 3. The magnitude of the poroelastic stress changes due 

to hydraulic fracturing at distances of 1000 m are on the order of 10-5-10-4 MPa. 
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Fig. 3. Contours of poroelastic stress perturbations from a single hydraulic fracture (thin black line) at a distance of 1000 m. The six panels 

represent the poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. HF stands for hydraulic fracturing. 

 

Here we employ a notation in which positive poroelastic stress changes correspond to compression. For the σxx stress component, the fluid 

injection induces a zone of extension (blue region) around the hydraulic fracture with four compression zones (yellow regions) at the top, 

bottom, left and right (Fig. 3a). For the σyy stress component, two large compression zones (yellow regions) are induced at the upper and lower 

positions of the hydraulic fracture (Fig. 3b). For the σzz stress component, a single stage of hydraulic fracturing induces a compression zone 

(yellow region) around the hydraulic fractures, but two extensional zones (blue regions) appear at the top and bottom positions (Fig. 3c). The 

magnitudes of the σxx and σxy stress components are the lowest, near 10-5 MPa. Four compression (blue regions) and four extension (yellow 

regions) zones are developed at the diagonal positions for the σxy stress component, as shown in Fig. 3d. For the σxz stress component, the 

apparent compression (blue region) and extension (yellow region) zones are induced to the left and the right of the hydraulic fracture (Fig. 3d). 
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Conversely, the top and bottom of the evaluation plane show the apparent compression (blue region) and extension (yellow region) zones, 

respectively (Fig. 3f). 

The results at distances of 500 m and 200 m are also evaluated and are presented in Figs. 4 and 5. The magnitudes of poroelastic stress 

changes are elevated from 10-5-10-4 MPa at a distance of 1000 m, to 10-4-10-3 MPa at a distance of 500 m, and 10-3-10-2 MPa at a distance of 200 

m. These results indicate that the magnitudes of poroelastic stresses increase closer to the fracture. Meanwhile, a single stage of hydraulic 

fracturing induces regions of compression (blue regions) or extension (yellow regions) and these magnitudes also decrease with the increasing 

distance from the fracture. Compared with Figs. 4 and 5, the area of perturbed stresses resulting from hydraulic fracturing also decreases at a 

greater distance. The observation that the poroelastic stresses decay rapidly with increasing distance is consistent with the results of Sumy et 

al. (2014), Lei et al. (2017), and An et al. (2021). However, the magnitudes of poroelastic stresses may be affected by a variety of parameters, 

including those related to fluid injection, reservoir rock mechanical properties, distances, and geometries. 
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Fig. 4. Contours of poroelastic stress perturbations from a single hydraulic fracture at a distance of 500 m. The six panels represent the 

poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. 

 

 
 

Fig. 5. Contours of poroelastic stress perturbations from a single hydraulic fracture at a distance of 200 m. The six panels represent the 

poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. 

3.2. Distributions of poroelastic stress perturbations due to thermal depletion 

We also analyze poroelastic stress perturbations resulting from the quenching of the hydraulically fractured zone – represented as a 

volumetric contraction of the prismatic depleted zone –specifically at a distance of 1000 m. This is the distance between the evaluation plane 

and the center of the depletion zone. Contours of the poroelastic stress changes from a prismatic depleted zone on the six stress components σxx, 
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σyy, σzz, σxy, σxz, and σyz are shown in Fig. 6. The magnitude of the poroelastic stress changes due to thermal depletion at 1000 m is within the range 

10-3-10-2 MPa, much higher than that due the dilating hydraulic fracture. 

 

 
Fig. 6. Contours of poroelastic stress perturbations from a prismatic depleted region (dashed rectangle) at a distance of 1000 m. The six panels 

represent the poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. RD stands for reservoir depletion. 

 

For the σxx stress component, the thermal depletion induces an elliptical compression zone (major axis is along the y-coordinate) around 

the prismatic depleted zone and two extension zones on the left and bottom (Fig. 6a). Similarly, the contours of the σyy stress component also 

show an elliptical compression zone (major axis is along the x-coordinate) around the depleted region, but the two extension zones are located 

at the top and bottom of the fracture (Fig. 6b). The magnitude of stress change of the σzz component is the highest (~10-2 MPa) among the six 

stress components and an annular extension zone is formed in the vicinity of -1000 m ≤ x ≤ 1000 m and -1000 m ≤ y ≤ 1000 m (Fig. 6c). Meanwhile, 
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the poroelastic stress change of the σzz component decreases gradually from the center to the boundary of the evaluation plane. For the σxy 

component, the thermal depletion results in the two compression and extension zones at the diagonal positions of the evaluation plane, as shown 

in Fig. 6d. Contours of the poroelastic stress change of the σxz and σyz components both show one compression zone and one extension zone (Fig. 

6e-f). However, the extension and compression zones are located on the left and right respectively for the σxz component, but at the bottom and 

top respectively for the σyz component. 

The modeling results of thermal depletion at distances of 500 m and 200 m are shown in Figs. 7 and 8. With an increase in the distance 

between the evaluation plane and the depletion center, the magnitudes of poroelastic stress changes increase from 10-3-10-2 MPa at a distance 

of 1000 m, to 10-2-10-1 MPa at a distance of 500 m and 10-1-1 MPa at a distance of 200 m. The results imply that the location greatly influences 

the poroelastic stress perturbation from the thermal depletion and the magnitude of poroelastic stress change increases closer to the fracture. 

In addition, the extent of the compression or extension zones also decreases closer to the fracture (Figs. 6-8), which is consistent with the 

behavior of stresses caused by hydraulic fracturing, see Section 3.1. 
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Fig. 7. Contours of poroelastic stress perturbations from a prismatic depleted region at a distance of 500 m. The six panels represent the 

poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. 

 

 
Fig. 8. Contours of poroelastic stress perturbations from a prismatic depleted region at a distance of 200 m. The six panels represent the 

poroelastic stress components (a) σxx, (b) σyy, (c) σzz, (d) σxy, (e) σxz, and (f) σyz, respectively. 

4. Discussion and implications for hot-dry rock fault stability 

The stability of faults is commonly evaluated by examining anticipated changes in the magnitude of Coulomb failure stress (CFS) (Hill, 2008; 

Gomberg et al., 2018). For a mature pre-existing fault (ignoring cohesion), fault reactivation occurs when the shear stress (τ) acting on the fault 

plane is larger than the fault shear strength (τf), which can be expressed as 
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𝜏 ≥ 𝜏f = 𝜇s(𝜎n − 𝑃f) = 𝜇s𝜎neff   (1) 

where μs is the static friction coefficient at the fault plane that is assumed to have the value of 0.7 for Gonghe granite faults/fractures (Zhang et 

al., 2023; Song et al., 2024), σn, Pf, and σneff represent the normal stress, pore fluid pressure and the effective normal stress acting on the fault 

plane, respectively. To assess whether a pre-existing fault is becoming more stable or conversely approaching failure, the change in Coulomb 

failure stress (ΔCFS) is defined from the changes in shear stress and effective normal stress as 

∆𝐶𝐹𝑆 = ∆𝜏 − 𝜇s(∆𝜎n − ∆𝑃f) = ∆𝜏 − 𝜇s∆𝜎neff   (2) 

where Δσn, ΔPf, and Δσneff represent the changes of normal stress, pore fluid pressure, and effective normal stress acting on the fault plane, 

respectively. Positive ΔCFS values indicate that the change of shear stress (Δτ) is higher than the change of fault shear strength (Δτf) and therefore 

fault reactivation is more likely to occur under this condition. The fault can be reactivated, but it may also exhibit stable sliding or aseismic slip. 

Many previous studies have indicated that it is sufficient to change the magnitude of Coulomb failure stress (ΔCFS) by only ~10-2 MPa for fault 

reactivation, especially for critically-stressed faults (Harris, 1998; Stein, 1999; Toda and Stein, 2000). 

To evaluate the stability of faults present in deep hot-dry rock reservoirs, we assume that the pre-existing granite faults strike along the 

positive x-axis and dip along the positive/negative y-axis with dip angles of 15°, 30°, 45°, 60°, and 75°. For hydraulic fracturing, we consider that 

the hydraulic fracture width is 1 cm and the distance between the evaluation plane and fracture center is 200 m. The ΔCFS values plotted along 

the y-axis from a single stage of hydraulic fracturing for different dip directions and dip angles of 15°, 30°, 45°, 60°, and 75° are shown in Fig. 9a-

b. The magnitude of the ΔCFS values due to this single-stage hydraulic fracturing approaches 10-2 MPa, indicating that a single stage of hydraulic 

fracturing could reactivate critically-stressed faults within a distance of 200 m. When the distance between the evaluation plane and fracture 

center exceeds 200 m, such as for 500 m or 1000 m in this study, a single-stage hydraulic fracture may not affect fault stability. However, the 

above results are only applicable to a single stage of hydraulic fracturing. In field operation, the fluid injection from a single well pad generally 

involves cyclic fluid injection, and the induced stress perturbations would be much higher than that due to a single stage (Kumar and Ghassemi, 

2019). In addition, varying the fault dip directions has a negligible influence on the magnitudes of ΔCFS values, while increasing the dip angles 

from 15° to 75° could not only induce the asymmetry of the results, but also affect the magnitudes of ΔCFS values. 

 

 
Fig. 9. ΔCFS values plotted along the y-axis from a single stage of hydraulic fracturing at a distance of 200 m, with the dip directions in (a) positive 

y-axis, and (b) negative y-axis. ΔCFS values plotted along the y-axis from a prismatic depletion zone at a distance of 1000 m, with the dip directions 

in (a) positive y-axis, and (b) negative y-axis. The legends show different dip angles. 
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5. Conclusions 

We calculate stress perturbations resulting from hydraulic fracturing and thermal depletion around an EGS reservoir. We use the Gonghe 

geothermal reservoir as the case study and Coulomb failure stress to evaluate the impact of stress perturbation on deep fault reactivation. The 

main conclusions of this study are 

(1) A single stage of hydraulic fracturing can induce stress perturbations on the order of 10-5-10-4 MPa at distances of 1000 m. Closer to 

the fracture, the magnitudes of stress perturbations increase to 10-4-10-3 MPa at a distance of 500 m and then to 10-3-10-2 MPa at a distance of 

200 m. 

(2) Thermal depletion of an idealized prismatic reservoir can induce stress perturbations on the order of 10-3-10-2 MPa at a distance of 

1000 m - much higher than that due to a single stage of hydraulic fracturing. The stress perturbations from thermal depletion also increase closer 

to the fracture. The magnitudes of stress perturbations increase to 10-2-10-1 MPa at a distance of 500 m and to 10-1-1 MPa at a distance of 200 m. 

(3) The Coulomb failure stress is used to evaluate the stability of faults deep within the reservoir. An applied single stage of hydraulic 

fracturing can influence the stability of deep faults within 200 m of the fracture, while the range of influence from the prismatic thermal depletion 

is much larger, reaching 1000 m. And in the case of thermal depletion, the magnitude of the effect further grows with time. Besides, the potential 

seismogenic zone, defined for hydraulic fracturing, also corresponds to the location of the pore pressure diffusion zone, with direct fluid 

pressurization also affecting fault stability. 

(4) Our results have important implications for understanding the stability of faults within and adjacent to hot dry rock reservoirs and 

the potential for triggering earthquakes on reactivated faults. Both hydraulic fracturing and subsequent thermal depletion can affect the stability 

of adjacent critically-stressed faults. The stress perturbations would be much higher than these estimates for the case of cyclic hydraulic 

fracturing and long-term depletion. Thus, it is necessary to evaluate the potential for deep fault instability under these stress perturbations to 

ensure safe and effective recovery of heat from deep hot-dry rock reservoirs. 
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Highlights 

 

• Stress perturbations from a single hydraulic fracture are <10-4 MPa at a distance of 1000 

m. 

• Stress perturbations from thermal depletion (~10 ℃) reach 10-2 MPa at a distance of 1000 

m. 

• Stress perturbations from both sources diminish with distance but increase with time for 

continued thermal depletion. 

• Single stage hydraulic fracturing and temperature depletion can reactivate critically-

stressed faults within distances of 200 m and 1000 m, respectively. 
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