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Crustal permeability generated through
microearthquakes is constrained by
seismic moment

Pengliang Yu 1,2 , Ankur Mali 3, Thejasvi Velaga4, Alex Bi5, Jiayi Yu2,
Chris Marone1,6, Parisa Shokouhi7 & Derek Elsworth 1,2

We link changes in crustal permeability to informative features of micro-
earthquakes (MEQs) using two field hydraulic stimulation experiments where
both MEQs and permeability evolution are recorded simultaneously. The
Bidirectional Long Short-Term Memory (Bi-LSTM) model effectively predicts
permeability evolution and ultimate permeability increase. Our findings con-
firm the form of key features linking the MEQs to permeability, offering
mechanistically consistent interpretations of this association. Transfer learn-
ing correctly predicts permeability evolution of one experiment from amodel
trained on an alternate dataset and locale, which further reinforces the innate
interdependency of permeability-to-seismicity. Models representing perme-
ability evolution on reactivated fractures in both shear and tension suggest
scaling relationships in which changes in permeability (Δk) are linearly related
to the seismicmoment (M) of individualMEQs asΔk / M. This scaling relation
rationalizes our observation of the permeability-to-seismicity linkage, con-
tributes to its predictive robustness and accentuates its potential in char-
acterizing crustal permeability evolution using MEQs.

The distribution of permeabilities in the shallow crust are known to
diminish as a power law with depth1–3. This is driven by both the
extreme sensitivity of fracture permeability to increasing stress4 and
the rapiditywithwhich damageoccasioned by tectonic strainswill heal
and seal5–8. Both stress and temperatures increase with depth. The
attempt to create a fluid transmissive crust for the recovery of energy
or fuels typically relies on reactivating existing fractures in shear9 or
fracturing in tension10,11 – each mode of hydraulic-shearing or
hydraulic-fracturing driven by artificially elevated fluid pressures.
These modes of permeability creation result from frictional reactiva-
tion and/or brittle fracture of the crust and are typically accompanied
by micro-earthquakes (MEQs).

The spatial distribution of the resulting microseismicity provides
amethod tomonitor fracture development. MEQdata carry important
information about the spatial distribution of hydraulic rockproperties,
such as permeability. This interpretation is based on the major
hypothesis that MEQs result from a decrease in frictional resistance
resulting from an increase in pore pressure thus triggering the reac-
tivation of sliding along preexisting cracks. The generation of MEQs
may signify the creation of porosity, with their locations hinting at the
form and topology of the resultant architecture of connected perme-
able pathways. Where the crust is of sufficiently low initial permeabi-
lity,the permeability may be increased by many orders of magnitude.
This offers the prospect that changes in permeabilitymay be defined if
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the energy release or other features of the MEQs are mechanistically
linked to the creation of porosity and thereby permeability. Such a
linkage requires a mechanistic connection between MEQs, fracture
motion and changes in fracture morphology and wall rock damage12,13.

Various methods and models have been proposed to estimate
permeability based on seismicity and other related data. Effective
permeability in a large rock volume may be evaluated from the esti-
mation of hydraulic diffusivity consistent with the timing and location
of the MEQ triggering front14,15. The hydraulic diffusivity is further
applied by Chen et al. to image the final stage permeability distribution
based on the tracer data with the occurrence time constraints of
MEQs16. Continuous measurements of seismicity density may also be
assimilated to estimate spatial permeability distribution based on
Kalmanfiltering17,18. Earthquakehypocentershavebeenused as aproxy
of pore pressure increase during well stimulation to invert the spa-
tiotemporal permeability enhancement for Paralana EGS and Haba-
nero EGS stimulations in Australia19,20. Relatively few studies have
investigated the use of MEQmagnitude as a proxy for permeability or
information regarding changes in fracture porosity. In a few cases,
cumulative slip displacement (or cumulative seismic moment) has
been used to estimate the fluid pressure distribution and from that
infer the extent of the stimulated reservoir21, and workflows accom-
modating MEQs in a more granular manner12,13,22.

Illuminating the potential mechanistic relationship between
MEQ characteristics and induced permeability changes requires
access to high-quality datasets necessarily containing concurrent
measurements of both quantities. These data should include
accurate MEQ locations from a high-resolution seismic network
together with local measurements of fluid injection pressures and
volumes. Such high-quality data are rare but a number of field
trials are now available where permeability has been purposely
created through hydraulic stimulation in the subsurface with
concurrent seismic measurements. These highly constrained field
experiments offer the possibility to retrieve the form of the
relation linking features of the MEQs to the observed change in
permeability using Machine Learning (ML) methods – we utilize
these rare datasets.

Due to their ability to identify obscured patterns and relation-
ships, ML methods have recently been widely applied in the geos-
ciences to extract broad patterns from large and noisy datasets23–28.
Here, we process high-fidelity concurrent measurements of perme-
ability changes driven byMEQs usingmachine learning (ML)models to
discern linkages between injectivity (ratio of flow rate to injection
pressure) and microseismicity and thereby constrain key underlying
processes. Measured injectivities are first converted to permeability –

amaterial property rather than an experimental response - then linked
to the timing, location, and magnitude of MEQs. We use high-fidelity
data from the EGS Collab and Utah FORGE 16 A (78)−32 well hydraulic
stimulation studies - providing detailed concurrent time series of
changes in permeability and MEQs - to constrain the functional rela-
tionship between seismicity and permeability using ML methods. We
explore optimal formats for the ML strategy, confirm the form of key
features linking the MEQs to permeability and define a functional
relationship that ismechanistically consistent with this linkage.We use
the ML system to make predictions on independent suites of data via
transfer learning and demonstrate that key features of the seismicity-
permeability dependency are universal.

Results
We use high-fidelity injection pressure/rate and MEQ records
from stimulation demonstrations at the EGS-Collab and Utah-
FORGE projects where the objective is to create new porosity and
hence permeability. We use these data to construct time history
records of changes in permeability and connect those to moment
magnitudes, locations and timing of MEQs. In particular, the

discrete (in time) MEQ features are extracted and combined with
the time-continuous pumping-derived permeability records and
processed by ML models.

EGS Collab hydraulic stimulation experiment datasets
Experiment 1 of the EGS-Collab project was one of a series of injec-
tion experiments to develop a mechanistic understanding of
hydraulic stimulation in crystalline rock at decameter scale29. Sepa-
rate injection and recovery holes are flanked by fans of monitoring
holes to record rock mass displacements, electrical resistivity
tomography (ERT) and seismic signals. This experiment is excep-
tionally well-constrained by the continuous monitoring and catalo-
ging of active and passive seismic data (CASSM) throughout the
injection period30,31. These meso-scale experiments were conducted
at a depth of ~1.5 km, as accessed from an experimental adit, where
depths and stresses are representative of real EGS reservoirs32,33. Five
episodes of hydraulic stimulation were performed at EGS Collab in
May 2018. The first two episodes (Ep1, and Ep2) used very low
injection rates with few MEQs29,34 and no permeability change signal
to effectively utilize in constraining the MEQ-permeability relation-
ship. However, we use data from the three subsequent continuous
hydraulic stimulation episodes (Ep3, Ep4, and Ep5) where step-rate
injections (Fig. 1a1, b1, c1) reactivated and created fractures adjacent
to the injection borehole with significant signals for MEQs and per-
meability change. Injection episode Ep3 took place on May 24, 2018,
using high injection rates to further propagate the fracture and allow
it to connect to well E1-P, extending a nominal fracturing radius of
5.0m generated in previous stimulation episodes29. The final two
injection episodes (Ep4, Ep5) were conducted on May 25 with the
goal of repeating the injection stimulation of Ep3 and to make
additional measurements of the Step-rate Injection Method for
Fracture In-situ Properties (SIMFIP)29.

The location, time, and magnitudes of MEQs were recorded con-
currently with time histories of injection29,31. In the hydraulic stimula-
tions, seismicity initiated when pressure exceeded ~26MPa (Fig. 1a2, b2,
c2) suggesting that this stress level might represent the fracture pro-
pagation pressure34,35. Water jetting was observed by downhole camera
in the recovery borehole during Ep5, indicating an hydraulic connection
between injection (E1-I) and production (E1-P) wellbores from the
remobilization or creation of fractures29. The spatiotemporal distribu-
tion of MEQs during the three episodes of stimulation approximate a
radially expanding (cylindrical) geometry (Fig. 2)13.

Utah FORGE 16A (78)−32 well hydraulic stimulation test
datasets
The Utah Frontier Observatory for Research in Geothermal Energy
(FORGE) is a field demonstration project testing the utility of multi-
stage hydraulic stimulation for the development of Enhanced Geo-
thermal Systems (EGS). Well 16 A (78)−3236 is a deep (~2500m) and
highly deviated well initiating at the surface37 with three separate
stages of hydraulic stimulation conducted at three different locations
near the toeof thewell. Stimulation Stage 1 is in theopen-holewellbore
at the toe of the well with Stages 2 and 3 being initiated through
perforated intervals in the casing. Stage 1 was stimulated with water
and Stages 2 and 3 with slickwater followed by crosslinked polymer,
with Stage 3 also including the injection of proppant38. Similar to EGS
Collab, a step-rate injection procedure was employed for all three
hydraulic stimulation stages. Effective flowing networks or zones of
permeability enhancement were generated during the three stimula-
tions as evidenced by the signatures of relatively constant injection
pressures (stage 1: Fig. 3a1) or decreasing injection pressure (stages 2
and 3: Fig. 3b1, c1) while increasing injection rate36.

A high-resolution seismic network detected events as small as
magnitude −2. A total of >2700 MEQs were recorded over the three-
stage stimulation, with some continuing after the completion of each
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stimulation stage. We filtered out the scattered MEQ data that were
distant to themainMEQ cloud.We filtered out the scatteredMEQ data
that were distant to the main MEQ cloud; the spatiotemporal dis-
tribution of the filtered MEQs represent an approximately spherical
zone, as shown in Fig.4.

Measurement of permeability changes
Well injectivity, defined as the ratio of injection rate to wellhead
pressure, is one useful proxy for monitoring the formation and
evolution of fluid permeability39 providing a simple diagnostic of
the stimulation success. We evaluate injectivity for the full suite
of injection data pertaining to the multiple episodes/stages in the
two datasets. These data are punctuated by halts and shut-ins, as
shown for EGS-Collab (Fig. 1a2–c2) and Utah FORGE (Fig. 3a2–c2).
We cap recorded decreases in injectivity in the waning stages of
injection at peak injectivity – as representative of the irreversible
gain in permeability – since evolved permeability would not sig-
nificantly decrease as excess pressures and flow rates drop
to zero.

We use a diffusionmodel to follow themigration of the triggering
front of the MEQ cloud15,40,41. For a homogeneous and isotropic med-
ium, the triggering front is approximated as15,40:

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDΔt

p
ð1Þ

where r is the separation between the migrating seismic front and
injection point; D represents the best-fit hydraulic diffusivity; Δt is the
elapsed time since initiation of injection t0, e.g,Δt = ti � t0. A constant
hydraulic diffusivity of 0:008m2=s is fitted for EGS Collab across all
three episodes as shown in Fig. 1a3–c3 – representative of progressive
stimulations of the same zone. Three different hydraulic diffusivity
values (Fig. 3a3, b3, c3) are returned for the three stages at Utah
FORGE, representative of the three different locations accessed along
the wellbore.

We convert measured injectivities to mean permeability by
defining approximated radial (EGS-Collab) or spherical (Utah FORGE)
flow geometries representative of the different geometries of the

Fig. 1 | Seismicity and injection observations for EGS Collab from Episode 3
(Ep3) to Episode 5 (Ep5). The first row (a1–c1) shows the evolution of injection
pressures (P) and injection rates (Q) during hydraulic stimulation. The second row
(a2–c2) shows the timehistoryof injectivity (I) andMEQmomentmagnitudes (Mw).

The third row (a3–c3) shows the pressure-diffusive radius (r) fitted to the location
of seismicity relative to the injection location (Shapiro et al., 1997; 2002). The
fourth row (a4–c4) shows changes in permeability (kc) and changes in two MEQ
features (viz. seismicity rate (λ), and the cumulative log of seismic moment (M)).

Fig. 2 | Location, timing, and magnitude of MEQs recorded during EGS Collab
stimulation tests Ep3-5, where event timing is shown by symbol color with
magnitude scaled by symbol radius. For the events shown, moment magnitude
ranges from −8.98 to −1.83. Note radial migration of the seismicity.

Article https://doi.org/10.1038/s41467-024-46238-3

Nature Communications |         (2024) 15:2057 3



evolving seismicity clouds and wellbores – and assuming steady flow
within the evolving cloud. For EGS Collab, the seismic front (Fig. 2)
propagates radially from the injection wellbore that is long in relation
to the distal radius of the seismicity front, ultimately representing the
external far-field pressure boundary. For FORGE, the injection zone
length is short in comparison to the distal pressure boundary (Fig. 4)
and evocative of spherical propagation of the seismicity front and
corresponding far-field pressure boundary. The permeability for the
EGS Collab experiment is thus:

k =
μI
2πh

ln
rt
rw

� �
ð2Þ

where k is the average permeability, μ is the viscosity of the injected
fluid (water) accounting for borehole temperature, h is borehole/
cylindrical-zone length and I is the injectivity defined as the ratio of
flow rate (Q) to pressure differential (ΔP =Pd � Pe). Pd is the downhole
pressure, Pe is the pressure at the pressure external boundary, coin-
cident with the seismicity front. The parameter rw is the interior
injection wellbore radius and rt is the radius to the external flow
boundary observed and utilized for Eq.(1). Similarly, for Utah FORGE,
the average permeability is expressed as:

k =
μI
4π

1
rw

� 1
rt

� �
ð3Þ

Fig. 3 | Seismicity and injection observations for the three stages of hydraulic
stimulation at Utah FORGE. The first row (a1–c1) shows the evolution of injection
pressure (P) and injection rate (Q) during hydraulic stimulation. The second row
(a2–c2) shows the timehistoryof injectivity (I) andMEQmomentmagnitudes (Mw).

The third row (a3–c3) shows the pressure-diffusive radius (r) fitted to the location
of seismicity relative to the injection location (Shapiro et al., 1997; 2002). The
fourth row (a4–c4) shows permeability changes (kc) and changes in two MEQ
features (viz. seismicity rate (λ), and cumulative logarithmof seismicmoment (M)).

Fig. 4 | Characteristics ofmicroseismic events in UtahFORGE stimulation tests.
a–c show the location, timing, andmagnitude ofMEQs across Stages 1 to 3 (S1–S3).
The event timing is shown by symbol color with magnitude scaled by symbol

radius. Themoment magnitude range of the events spans from −2.09 to 0.52. Note
spherical migration of the seismicity.
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where radii represent the spherical geometry of the stimulated zone.
We note that it is always difficult to accurately characterize the MEQ
distribution using exact geometry. Herewe assumeda simple spherical
MEQ distribution as broadly characteristic of the flow geometry based
on the MEQ observations. This assumption as spherical (Utah FORGE)
or radial (EGS Collab) flow does not affect the process of linking MEQs
to permeability changes since permeabilities calculated from the two
geometries are linked to injectivity through a constant representing
the flow geometry.

Since initial permeabilities are low (∼ 10�17m2) and we are inter-
ested in the observed change from those low initial values. Therefore,
we introduce normalized permeability change kc, kc = log k=k0,
defined as the ratio of permeability at a given time to the initial
reservoir permeability and use this to characterize permeability evo-
lution, with positive kc indicating permeability enhancement. Being a
dimensionless parameter, kc also aids direct comparison between
different sites and stimulation experiments. Figures 1a4, b4, c4, 3a4,
b4, c4 illustrate the normalized permeability changes during the entire
stimulation period for EGS Collab Ep3-Ep5 and Utah FORGE S1-S3,
respectively. The data show that permeability increasesmonotonically
as constrained by cropping all terminal declines in injectivity as the
injection wanes. Again, this is consistent with the notion that most of
the permeability enhancement is irreversible. We note that the best-fit
hydraulic diffusivity used in this study might not be the only one that
matches the migration of the triggering front for the MEQs data.
However, it would not affect the calculation of permeability changes,
as the effect of hydraulic diffusivity is factored out; instead, the loca-
tion of the migrating pressure front used as a proxy for the evolving
steady flow geometry.

MEQ feature extraction
We extract features from the available MEQ catalogs spanning the
stimulation injection period and attempt to link these to the observed
changes in permeability. We exclude MEQs recorded post-stimulation
in this study, when events could have been triggered either by the
diffusive expansion of fluid pressure decay42 or poroelastic stressing43,
as these likely do not significantly alter permeability. Two features
were extracted from the MEQs catalog: seismicity rate (λ) and cumu-
lative logarithmic seismic moment (M). As the MEQ locations were
used to define the evolving flow radius and to then calculate perme-
ability, we did not extract features related to MEQ locations to avoid
the risk of artificially correlating MEQs to permeability changes.

Higher injection rates or cumulative hydraulic energy (the time
integral of the product of wellhead pressure and injection rate) are
associatedwith increased seismicity rates,whichmight provide insight
into reservoir connectedness27. Also, direct observations from both
EGS Collab (e.g., Fig. 1a2) and Utah FORGE (e.g., Fig. 3b2) indicate that
injectivity changes are associated with changes in seismicity rate,
suggesting an underlying association between seismicity rate and
permeability change. The seismicity rate, λi, at injection time, ti, is
calculated by summing the number of events in the following interval
½ti,ti +Δtw�, and dividing by the interval length, Δtw. This averaging
approach, using a backward-looking moving time window of duration
Δtw, imposes a controllable degree of smoothing on the stochastic
earthquake process (Supplementary Fig. S4, Fig.S5). In this study, Δtw
was set as 2min and the seismicity rate changes over time for both EGS
Collab and Utah FORGE are depicted in Figs. 1a4–c4, 3a4–c4, respec-
tively. The rationale and sensitivity analysis of Δtw is explored and
discussed in next section.

The second feature extracted is the cumulative logarithmic seis-
mic moment. This metric has been instrumental in estimating the size
of the activated reservoir volume, leading to the strategic placement of
a new production well21,44. Moreover, a variety of field studies on
seismicity triggered by fluid injection have shown that the total release
of seismic energy (or seismic moment) is directly correlated with

hydraulic energy45,46. The cumulative logarithmic seismicmoment,M,
is defined as the cumulative sum of seismic moment during the
cumulative time interval of ½0,ti +Δtw�, expressed as:

M=
Xti +Δtw
t =0

logM0 ð4Þ

Here, M0 is the seismic moment, converted from the moment
magnitude, Mw as47:

logM0 = 1:5Mw + 13:5 ð5Þ

Using seismic moment M0, rather than moment magnitude Mw,
provides a direct connection to rupture area and slip; it also avoids the
issue of accommodating negative moment magnitudes while repre-
senting an integration that directly scales with strain energy release.
The evolution of cumulative logarithmic seismic moment (M) with
time is illustrated in Figs. 1a4–c4, 3a4–c4 for three episodes of the EGS
Collab and three stages of the Utah FORGE hydraulic stimulation
experiments.

Stand-alone models for EGS Collab and Utah FORGE datasets
We use our observations of MEQs and local permeability creation to
define a framework for predicting permeability evolution utilizing a
Bidirectional Long Short Term Memory (Bi-LSTM) stateful neural
network (See Methods section)48,49. We note for our observations that
stateful models such as LSTM are well suited for modelling sequential
data and capturing the temporal dependence than stateless neural
networks50. In ‘uni-directional’ LSTM models, the state at a given time
captures the data history i.e., information in the preceding data sam-
ples. A bi-directional LSTM model is advantageous when the output
(permeability change) depends on the entire predictor sequence
(seismic moment) as it captures both backward and forward depen-
dencies through time50. Additionally, bi-directional LSTM models
provide improved stability and faster convergence, as detailed by
analysis in the Supplementary Table S11 and Text. The goal is to fore-
cast permeability evolution (model output) from features of the MEQs
(input features), namely seismicity rate, λi, and cumulative logarithmic
seismic moment, Mi extracted from the EGS Collab and Utah FORGE
datasets. We evaluate the models for each dataset and then the gen-
eralizability of the model across these two datasets through transfer
learning.

We test two deep learningmodels - Bidirectional Long-short Term
Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (Bi-GRU) -
and observe stable performance using the Bi-LSTM model (Supple-
mentary Table S1 and Table S2). Our best-performing Bi-LSTM model
for the EGS Collab dataset consists of 2 hidden layers with 128 nodes
each and one linear layer. A batch size of 105, a learning rate of 0.0003
and 700 epochs are utilized. We employ the modified physics-
informed loss function introduced earlier (Eq. 8) together with the
Adam optimizer51 and the R2 score metric to evaluate model perfor-
mance. As shown in Fig. 5a, the trained EGS Collab Bi-LSTM model
replicates permeability evolution over time with remarkable accuracy
– as demonstrated by the excellent test R2 score of 0.937. The
monotonically increasing prediction of permeability attests to the
effectiveness of our physics-constrained loss function. Notably, the Bi-
LSTM EGS Collabmodel accurately captures the ultimate permeability
value, although it may not fully match the intermediate time history.

For the Utah FORGE dataset, we adopt a similar Bi-LSTM structure
to predict permeability changes based on MEQ features. Our best-
performingmodel for this dataset has two hidden layers with 64 nodes
each, a batch size of 96, a learning rate of 0.001 with 150 epochs. As
illustrated inFig. 5b3, theUtahFORGEBi-LSTMmodel also returnshigh
fidelity fits across the training, validation and test sets. Although the
test R2 score is 0.85, our predicted terminal permeability aligns well
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with the observed value. One possible explanation for the relatively
poorer performance on the test set (Stage 3) using the model trained
on Stage 1 may lie in the different hydraulic stimulation operations
employed between these two stages. Specifically, Stage 1 was con-
ducted on the open-hole wellbore section, whereas Stage 3 targeted a
perforated interval. Additionally, variations in the types of working
fluids used across these stages36 could contribute to distinct patterns
in permeability evolution. Second, fromamachine learning theoretical
perspective, the discrepancy in the performancebetweenBi-LSTMand
Bi-GRU lies in their convergence and stability characteristics (Supple-
mentary Table S1 and Table S2)52,53. If the model fails to reach a stable
point, then its prediction will be inconsistent, hampering its general-
ization performance. In this study, we adapt a grid search to improve
performance; although one can find better model parameters for this
problem by using neural architecture search that will lead to optimal
performance. For the parameter Δtw used for calculating seismicity
rate feature, we studied the model performance under different Δtw
for both EGS Collab and Utah FORGE datasets. As shown in Supple-
mentary Tables S9, S10, the Bi-LSTM model with Δtw =2min returns
the best R2 scores on both validation and test datasets although a
range of values all return acceptable results. An optimal result may
exist since a short Δtw misses the resulting change in permeability,
consistent with the expectation that hydraulic response time is finite,
and a long Δtw smooths and smears the seismic response and

effectively removes information from the data in the intensive
hydraulic stimulation processes (Supplementary Figs. S4, S5). Inter-
esting, the R2 does not change significantly with increasing of Δtw
(when Δtw>2min) especially for the Utah FORGE dataset as shown in
Supplementary Table S10. This insensitivity may reflect the fact that
cumulative logarithmic seismic moment is the key feature in predict-
ing permeability changes, and this feature does not change under
different Δtw.

Transfer learning
We use transfer learning to evaluate the generalizability of the models
across the two datasets. Specifically, the trained Utah FORGE Bi-LSTM
model is used to make predictions for the EGS Collab data, then
vice versa.

The transfer learnedmodel for the EGS Collab dataset is based on
the stand-alone Utah FORGE Bi-LSTMmodel (referencemodel). This is
accomplished by using the sameBi-LSTM architecture as the reference
model and using the pre-trained weights (trained and validated on the
Utah FORGE dataset) for model initialization. Next, the model weights
and hyperparameters are fine-tuned using Episode 3 of EGS Collab
resulting in a learning rate of 1 × 10�3, a batch size of 104 with 650
epochs for the transfer learned model. Similarly, a transfer learned
model for Utah FORGE dataset was constructed based on the stand-
alone EGS Collab Bi-LSTM. The Utah FORGE transfer learned model

Fig. 5 | Comparison between raw permeability data (ground truth) and pre-
dictions from training, validation and test sets for EGS-Collab andUtah FORGE
datasets, respectively. The first row shows the EGS Collab Bi-LSTMmodel outputs
compared with raw data using Ep3 for training (a1), Ep4 for validation (a2) and Ep5

for testing (a3). The second row shows theUtah FORGE Bi-LSTMmodel predictions
compared with raw data using Stage 1 for training (b1), Stage 2 for validation (b2)
and Stage 3 for testing (b3).
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was trained using 110 epochs, a batch size of 96 and a learning rate of
1 × 10�3. The Adam optimization algorithm and adjusted physics-
constrained loss function were employed for all transfer learning
models. Detailed evaluation of transfer learning capability for various
deep learning models across two datasets is demonstrated in Sup-
plementary Tables S5, S6.

As depicted in Fig. 6a, the EGS Collab transfer learned model
yielded accurate predictions of permeability on both validation
(Episode 4) and test (Episode 5) sets, with R2 scores of 0.91 and
0.80, respectively. Likewise, it was possible to successfully
transfer the EGS Collab Bi-LSTM model to the Utah FORGE data-
set, as illustrated in Fig. 6b. Moreover, both transfer learned
models were capable of predicting the ultimate permeability of
hydraulic stimulations. The success of transfer learning under-
score the domain-independence and generalizability of the
extracted MEQ features in predicting permeability evolution –

and hint to the prospect that a robust causative physical linkage
may exist between the creation of porosity/permeability and
release of strain energy indexed by cumulative MEQ magnitudes.
Nevertheless, prediction accuracy of the model may be con-
strained by the quality of the dataset. This is particularly true for
datasets that necessitate concurrent measurements of accurate
MEQ locations from high-resolution seismic networks, along with
local measurements of fluid injection pressures and volumes. For

a relatively small dataset or when the relationship is simple, and
all dataset splits come from the same distribution, one could
observe machine learning models performing comparably to
deep learning models; however, in the scenarios involving out-of-
distribution and transfer learning, neural-based models often
have an advantage over classical ML models54–56.

Discussion
The good performance and transferability of our ML models
suggest that changes in permeability can be associated with
particular MEQ features, namely seismicity rate and cumulative
logarithmic seismic moment. In particular, the successful imple-
mentation of transfer learning across the two independent data-
sets suggests a generalization of this association. Thus, with a
connection tentatively established, a question remains as to the
nature, underlying physics and scaling of such relationships.
Seismicity rate can be transformed into seismic moment based on
the Gutenberg-Richter magnitude-frequency relationship57 with
the cumulative logarithmic seismic moment integrating both the
frequency and magnitude information of MEQs – akin to scaling
with cumulative energy release. Therefore, functional relation-
ships linking permeability change and seismic moment appear
physically motivated and plausible. EGS reservoir stress state and
material properties may be quantitatively correlated with MEQ

Fig. 6 | Comparison between ground truth and transfer learning prediction
results for EGS-Collab and Utah FORGE datasets, respectively. The first row
shows the results of transfer learning applied to the EGS Collab dataset
results comparison (Ep3 for training (a1), Ep4 for validation (a2), Ep5 for testing (a3))

using the Utah FORGE Bi-LSTMmodel. The second row shows the results of transfer
learning applied to the Utah FORGE dataset results comparison (Stage 1 for training
(b1), Stage 2 for validation (b2), Stage 3 for testing (b3)) using the EGSCollabBi-LSTM
model. Note that the predictions are quite good for both cases of transfer learning.
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magnitudes by noting that for an observed limited range of stress
drops, seismic moment correlates with fault slip area. Thus, for
this slipping patch, a fractal scaling of roughness will condition a
larger dilation for a larger patch size – and hence a larger change
in permeability22. Furthering this logic, we explore physical con-
nections between seismic moment of MEQs and permeability
evolution.

Changes in the permeability of individual fracturesmaybe related
to the change in aperture Δb from an original aperture b0 as:

Δk =
ðb0 +ΔbÞ2

12
� b2

0

12
ð6Þ

and to overall bulk permeability or transmissibility via the cubic law
as58:

Δk =
ðb0 +ΔbÞ3

12s
� b3

0

12s
ð7Þ

where s is the spacingbetween adjacent parallel fractures.Where initial
permeability is small in comparison to the change inpermeability, then
b0≪Δb and Eq. (10) reduces toΔk ∼ Δb3

12s :Where fractures remobilize in
shear, then aperture change is controlled by dilation over the existing
fracture topography – the amplitude of which grows with the dimen-
sion of the mobilized patch. For failure in shear, the aperture will
increase by an increment bs as conditioned by a slip offset Δus and
fracture dilation angle i, as59:

bs =Δus tan i ð8Þ

Similarly, seismic moment, M0, is defined as:

M0 =M
s
0 =GAΔus ð9Þ

whereMs
0 is the seismic energy released for slip on a fault patch of area

A embedded within a medium of average shear modulus G: For frac-
ture extension by tensile opening, this equivalent moment, M0 is
defined as60:

M0 =M
n
0 = 2GAΔun ð10Þ

where theMn
0 is the seismic energy releasedduring fractureopening or

closing and Δun is the normal displacement in crack opening or
closing.

Incorporating Eqs. (10–12), the seismic moment in shear Ms
0 is

linked to change in permeability Δk as:

Ms
0 =

GA 12sΔks

� �1=3
tan i

ð11Þ

whereΔks is the permeability change resulting from fracture shearing.
Similarly, usingEq. (10) andEq. (13), themoment in tensileopening,Mn

0

may be expressed as:

Mn
0 = 2GA 12sΔkn

� �1=3 ð12Þ

where Δkn is the permeability change resulting from fracture opening
in extension. In addition, the seismic moment released from a volume
V surrounding a fault may also be expressed as57:

M0 =VΔτ ð13Þ

where Δτ is the shear stress drop, typically in the range 0.1-10MPa61–63.
Assuming this volume scales with the area of the transected fault of
edge dimension a 63 then for a prismatic fault area A∼a2 and volume

V ∼a3 enabling the scaling A∼V 2=3 to be established. Thus, incor-
porating the scaling between moment M0 and fault area, A, an analo-
gous destressed volume V may be defined by combining Eq. (14) and
Eq. (16) with A∼V 2=3 to link permeability change directly with seismic
moment in shearMs

0 as:

Δk =Δks =M
s
0Δτ

2tan3i=12sG3 ð14Þ

Similarly, combining Eqs. (15) and (16) defines permeability
change due to tensile opening as:

Δk =Δkn =M
n
0Δτ

2=96sG3 ð15Þ

Thus, where permeability is generated by MEQs in shear, tension
or in mixed modes, Eqs. (17) and (18) reflect the surprising linear
proportionality between permeability change and seismic moment in
either shear or tension as: Δks / Ms

0 and Δkn / Mn
0. Shear modulus

and stress drop varywithin narrowbounds63, and fracture spacing for a
given locationwith reactivating pre-existing fractures will be invariant.

Moreover, extensive earthquake observations indicate a pro-
portionality between seismic moment and slip area63:

logA / 2
3
logM0 ð16Þ

albeit for larger earthquakes than those considered here. This
observed scaling is a manifestation of Eq. (16) with the proportionality
A / V 2=3. Thus, Eq. (19), may also be used to confirm the scaling rela-
tionship linking changes in permeability and seismic moment. By
substituting Eq. (19) into Eq. (14) or Eq. (15), a change in permeability is
proportional to the respective seismic moments as Δk / M0 reaf-
firming the relations of Eqs. 17, 18. Since individually in both shear and
tension Δk / M0 then permeability enhancement resulting from
mixedmode failurewould logically also conform to this scaling. Hence
the quality in the predictive capability and transferability of the Bi-
LSTMmodels. We also test standardmachine learning models such as
linear regression, XGBoost, elastic-net and ensemblemethods (Voting
Regression) for our standalone experiments in both the EGS Collab
and Utah FORGE datasets (Supplementary Tables S1, S2). For our
Voting Regression ensemble model, we combine decision-trees,
XGBoost and Elastic-net models, confirming the linear relationship
among the features and output variables, aligning with the posited
linear theoretical relationship between permeability changes and
seismic moment.

Of course, if the scaling Δk / M0 holds, then a linear relation
should be apparent in the incremental form Δk / M0 for individual
events or in the time integrated form as

R
Δk / R

M0 where the inte-
gration is for successive events as k=k0 / ΣM0. However, plots of
normalized permeability change (Δk=k0) versus seismicmoment (M0)
and normalized permeability (k=k0) versus cumulative seismic
moment (

P
M0) do not reflect this (Supplementary Figs. S2, S3). This

mismatch may be explained by considering adherence to the funda-
mental assumption that incremental changes in permeability (Δkn) are
larger than initial (k0) or evolving permeability (kn) as Δkn≫kn. This is
likely true for the first MEQ, but not for the last.

For the first MEQ: k0 ! 0 therefore b0 ! 0 thus Δk /
b0 +Δb
� �3 / Δb3 and the scaling relations Δk / M0 and

R
Δk / R

M0

as equivalent to k=k0 / ΣM0, as derived previously, should all hold.
Thus, the early time evolution of permeability with time (Figs. 6, 7) and
with cumulative seismic moment (Supplementary Figs. S2, S3) should
evolve with an initial but unprescribed gradient, as apparent in the
steep gradients in these figures.

For the last MEQ: Δkn≪kn therefore Δbn≪bn thus Δkn /
bn +Δbn

� �3 / b3
n and aperture and therefore permeability will change

little with successive MEQs or with time. Thus, the time history of
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permeability at late time will asymptote to zero gradient – the form
apparent in Figs. 6, 7 and in the permeability versus cumulative seismic
moment of Supplementary Figs. S2, S3. This concave downwards
evolution of these plots represents the change from Δk / M0 and
k=k0 / ΣM0 scaling being appropriate for the firstMEQ-driven change
in permeability, but not for the last or late term changes where the
assumption of preceding permeability kn ! 0 is no longer valid at
late time.

However, this early-time linear scaling between permeability
change and seismic moment in part explains the robustness of the
predictions recovered from the Bi-LSTM models applied individually
as well as the strong performance of the two transfer learnedmodels –
even though the late-time response departs from this scaling. The
training of the ML routines is able to accommodate this evolution and
hence provide robust estimates of evolving permeability. These results
guide our understanding of permeability evolution within fractured
reservoirs where MEQs are ubiquitous and implicated in the evolution
of permeability while offering a framework to predict and control
stimulation outcomes regardless of failure mode. Such an ability to
predict changes in permeability and to adapt stimulation methods for
desired outcomes can lead to optimized stimulation techniques
improving the efficiency and sustainability of subsurface recovery of
energy and fuels and promoting the understanding of natural evolu-
tion of crustal permeability. It is important to note that the relationship
between injection volume and cumulative seismic moment may not
always hold in the case of larger earthquakes induced by fault reacti-
vation, such as theMw-5.5 event during the Pohang EGS stimulation64,65

and several events larger than 5.0 in the SichuanBasin during shale gas
fracturing66. In our study, we focus on linking small MEQs to perme-
ability enhancement during hydraulic stimulations. The largest
moment magnitudes of events at the EGS Collab and Utah FORGE are
−1.83 (Fig. 2) and 0.52 (Fig. 4), respectively. These small MEQs result
from the creation of porosity, suggesting the form and topology of the
resultant architecture of connected permeable pathways. LargerMEQs
would also impact permeability in a similar way but large-scale reac-
tivation of a discrete fault is not apparent in these field studies.

We have explored the role of microearthquakes (MEQs) during
hydraulic stimulation in driving permeability changes. The EGS Collab
and Utah FORGE datasets where high resolution and concurrent
measurements of permeability and seismicity (MEQs) are available
allow meaningful constraint of these processes. Observations of raw
injection flow rate data constrained by injection pressures allow

injectivity to be causally linked to MEQs and in turn to changes in
permeability. Select features of theMEQs are used to developmachine
learning (ML) models to predict observed changes in injectivity pro-
cessed to define the corresponding changes in permeability. This raw
dataset used is then linked using machine learning (ML) to develop
relationships between permeability changes and key features for the
EGS Collab and Utah FORGE datasets. For both datasets, Bi-LSTM
models constrained by a basic physics-based constraint are trained,
validated then tested to predict permeability evolution using the MEQ
features namely, the seismicity rate and the cumulative logarithmic
seismic moment. Success of transfer learning confirms the general-
izability of the models i.e., the potentially universal connection
between the extracted MEQ features and permeability change thus
suggesting that response of distinct sites and stimulation scenarios
maybepredictable fromdata fromother disparate geographic regions
and geologic terranes with little additional model fine tuning.

Leveraging sample-by-sampling normalization and adjusted loss
functions, our best-performing stand-alone Bi-LSTM models have
demonstrated promising results in predicting permeability changes
over time for both EGS Collab and Utah FORGE datasets. The sample-
by-sample normalization addresses the challenge associated with the
different variable range in training vs validation and test sets. The
model performances on validation and test dataset reflect our physical
understanding of the differences across stimulation episodes and
stages. The transfer learned models showcase the generalizability of
the models across the two datasets, alluding to an underlying physical
connection.

These insights lay the groundwork for a deeper understanding of
the interactions between microseismic events and the evolution of
reservoir permeability. Importantly, theoretical arguments linking
anticipated changes in fracture network permeability with the seismic
moment release from the MEQs suggest a linear linkage as Δk / M0

and a posteriori infer the success of the prediction for the MLmodels.
The physical interpretations of our functional equations elucidate the
underlying mechanics of hydraulic stimulation processes, confirming
the key features linking with permeability obtained from ML models.
Although complexities and uncertainties present challenges, the
established relationships form a valuable theoretical foundation for
further research and practical applications in the context of optimized
stimulation techniques, efficient energy extraction, seismic mitigation
for EGS reservoir and unconventional hydrocarbon recovery and for
understanding the evolution of permeability in the crust.

Methods
EGS Collab Episodes 3, 4, and 5 are discrete experiments conducted
sequentially at the same location29. To preserve the sequence, Episode
3 was used as the training set and Episode 4 as the validation set to
perform hyper-parameter optimization for the Bi-LSTM models. Epi-
sode 5 served as the unseen test set to evaluate the generalization
capability of the trained model. Similarly, for the Utah FORGE dataset,
Stage 1 serves for training and Stage 2 for validation, with Stage 3
reserved for testing.

Normalization
Min-max normalization or standardization based on the training set
statistics constitutes the first pre-processing step. Initial data analysis
for both EGS Collab and Utah FORGE stimulations revealed different
distributions and data ranges for seismicity rates andmoments across
all episodes/stages (Supplementary Fig. 1). For example, the seismicity
rate, λ, ranged between 0 and 45 events per minute in EGS Collab
Episode 3 (Fig. 1a4), but only 0-12 and 0-11 for Episode 4 (Fig. 1b4) and
Episode 5 (Fig. 1c4), respectively. Similarly, for Utah FORGE, the
Stage 1 cumulative logarithmic seismic moment, M, increased from
0 to 2:5 × 103 (Fig. 3a4), to a much broader range of 0 to 1 × 104 in
Stage 2 (Fig. 3b4) and Stage 3 (Fig.3c4). However, the need to preserve

Input Cell Bi-directional 
memory Cell Output Cell

Fig. 7 | Schematic representation of the Bi-LSTM neural network used in
this study. The Bi-LSTM structure includes input cell (yellow), bi-directional
memory cell (blue), and output cell (green). The bi-directional memory cells are
capable of processing data sequences in both forward and backward directions,
denoted by the red arrows, to capture temporal dependencies for improved pre-
diction accuracy.
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the time series nature of the data precludes the common practice of
combination and shufflingof all data atdifferent stages/episodes into a
unified dataset for subsequent training, validation and test set split-
ting. As a result, training, validation, and test sets (i.e., distinct episodes
or stages) have very different statistics making it impossible to
implement the traditionalnormalizationor scandalization approaches.
To address this challenge, we used a novel normalization method for
sample-by-sample min-max normalization for the validation and test
sets, while a traditionalmin-max normalizationmethod was applied to
the training set.

Data can only be normalized using the statistics of seen data i.e.,
the training set. The essence of the sample-by-sample min-max nor-
malization method is to perform the normalization based on the
assumption that samples are introduced in a pure online learning
scenario, where the model is exposed to single sample at a time. This
introduces amechanismof calculating a runningmin andmaxover the
unseen distribution, without any need of knowing the entire distribu-
tions statistics. For the normalizationof the ith sample of the validation
set, we first combine the training set and all seen samples up to the ith
sample normalization as dataset Xval , expressed as:

Xval = ½xtrain1 , xtrain
2 , . . . , xtrainn , xval

1 , xval2 , . . . , xval
i � ð17Þ

where xtrain
j ðj = 1,2, . . . ,nÞ represents a sample in the training set, n is

the length of the training set and xval
j ðj = 1,2, . . . ,iÞ is a sample in the

seen validation set. Then, we perform the min-max normalization for
the ith sample (xvali ) in the validation dataset by finding the minimum
and maximum values of combined dataset Xval , e.g.:

xvalnormi =
xval
i �minðXvalÞ

maxðXvalÞ �minðXvalÞ
ð18Þ

The same process is applied to each sample in the test set. Here,
we only use all seen samples in the test set to combinewith the training
and validation sets. This approach resolves the issue of range disparity
between training, validation, and testing sets without violating the
normalization principles.

Bi-LSTM network structure
The basic Bi-LSTM network structure used in this study is depicted in
Fig.7, including input cells, output cells, and Bi-directional memory
cells. The Bi-directional memory cells incorporate both backward and
forward information about the sequence at every time step. This
processes the input cells with two hidden states, enabling them to
preserve information from both past and future at any point in time.
For details of the internal structure of the Bi-directional memory cell,
such as the forget gate, update gate, and output gate, we refer readers
to Sepp & Jurgen49.

Physical informed loss function
Topreserve themonotonically increasing trend of permeability during
the stimulation process, we introduce a new loss function which
extends the traditional mean squared error (MSE) objective function
with an additional penalty term which helps stabilize the learning by
providing improved gradient estimates. The adjusted loss function, L,
is given by:

L=MSE +α × jyðtiÞ � yðti�1Þj ð19Þ

Here, yðtiÞ and yðti�1Þ are the prediction output values at time ti
and ti�1, respectively. The parameter α is a non-negative scalar penalty
coefficient, which is set to 0 when yðtiÞ ≥ yðti�1Þ; otherwise, α is set to
jαj to ensure that it is positive. We used α values of 1000 and 150 for
the EGS Collab and Utah FORGE datasets, respectively. We compared
model performance between models using a proposed physically

informed loss function and using a standard MES loss function (α =0)
with results shown in Supplementary Tables S7, S8 – these indicate
that adding the physics-based constraint to the loss function aids
convergence and better represents the relationship among different
variables compared to standard regression loss. We also compared
model performance across various α values (Supplementary Fig. S6,
S7). As α value increased, models better preserved the monotonically
increasing trend, physically suggested by the data - i.e. the heuristic
that MEQ damage that creates permeability is irreversible. A broad
range of α values would result in models maintaining this mono-
tonically increasing trend in permeability evolution.

Data availability
The EGS Collab experiments data and seismic catalog data can be
found at: https://gdr.openei.org/submissions/1311. Utah FORGE well
16 A (78)−32 stimulation injection data used in this study can be found
at https://gdr.openei.org/submissions/1379. The seismic catalog
recorded during Utah FORGE well 16 A (78)−32 stimulation can be
access via https://gdr.openei.org/submissions/1429.

Code availability
Codes supporting the findings of this manuscript are available from
the corresponding author upon request.
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