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ABSTRACT

CO2 injection is a promising technology for enhancing gas recovery (CO2-EGR) that concomitantly reduces carbon emissions and aids the
energy transition, although it has not yet been applied commercially at the field scale. We develop an innovative workflow using raw data to
provide an effective approach in evaluating CH4 recovery during CO2-EGR. A well-calibrated three-dimensional geological model is gener-
ated and validated using actual field data—achieving a robust alignment between history and simulation. We visualize the spread of the CO2

plume and quantitatively evaluate the dynamic productivity to the single gas well. We use three deep learning algorithms to predict the time
histories of CO2 rate and CH4 recovery and provide feedback on production wells across various injection systems. The results indicate that
CO2 injection can enhance CH4 recovery in water-bearing gas reservoirs—CH4 recovery increases with injection rate escalating. Specifically,
the increased injection rate diminishes CO2 breakthrough time while concurrently expanding the swept area. The increased injection rate
reduces CO2 breakthrough time and increases the swept area. Deep learning algorithms exhibit superior predictive performance, with the
gated recurrent unit model being the most reliable and fastest among the three algorithms, particularly when accommodating injection and
production time series, as evidenced by its smallest values for evaluation metrics. This study provides an efficient method for predicting the
dynamic productivity before and after CO2 injection, which exhibits a speedup that is 3–4 orders of magnitudes higher than traditional
numerical simulation. Such models show promise in advancing the practical application of CO2-EGR technology in gas reservoir
development.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0212652

I. INTRODUCTION
The increasing urgency to mitigate greenhouse gas emissions,

particularly carbon dioxide (CO2), from the combustion of fossil fuels,
and to combat global warming underscores the critical need for inno-
vative solutions.20,31,35 Carbon capture, utilization, and storage
(CCUS), including CO2-enhanced gas recovery (CO2-EGR), CO2-
enhaced oil recovery (CO2-EOR), and CO2-enhanced deep brine
recovery (CO2-EWR), are all promising strategies to achieve net-zero
emissions by 2050.1,21,22,42 As one of the promising CCUS options,
CO2-EGR can reduce CO2 emission by sequestering it into gas reser-
voirs and simultaneously enhancing CH4 production.32,42 Despite
its potential, the commercialization and field-scale application of

CO2-EGR technologies have not yet been widely implemented.25,60

Advanced evaluation and prediction of well performance during CO2

injection based on the specific characteristics of the targeted gas reser-
voirs are crucial in facilitating the implementation of such techniques
and leveraging their full potential in carbon mitigation efforts.

Various studies have identified key parameters affecting the per-
formance of CO2 storage and CH4 production for CO2-EGR.

6,65

Critical parameters include reservoir characteristics, including perme-
ability, porosity, thickness, depth, initial reservoir pressure, and in situ
gas and water volume, together with operational conditions such as
injection and production pressures.44,48 A notable impediment to CH4

recovery is the ascending gas–water interface during CH4 production,
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which increases gas phase flow resistance and heterogeneity of satura-
tion.41 Reservoir heterogeneity plays a crucial role in CO2-EGR effi-
ciency as it can reduce the size of the region swept by CO2 and leads to
early breakthrough of CO2.

45,63 This identifies a gap in optimizing the
interplay between injection parameters and formation heterogeneity.
The behavior of CH4, CO2, and water in the reservoir, particularly
under CO2 injection remains ambiguous.

Extensive research has been conducted on CO2-EGR at the lab
scale, focusing on understanding CO2–CH4–H2O interactions, refining
petrophysical mechanisms, and assessing the impact of reservoir het-
erogeneity and rock–fluid interactions.19,30,47 Recent investigations
exploring the behavior of H2O–CH4–CO2 mixtures in porous media
have considered more petrophysical mechanisms, such as advection,
dispersion, and diffusion.5 However, a large gap between theoretical
studies and practical application still exists. Thus, there is a need for
effective methodologies to evaluate gas production behavior and to
define optimal operational conditions that maximize gas production
and CO2 sequestration.

A comprehensive multi-field-coupled process-based modeling
approach is necessary to address the complex phenomena that control
such systems. While attempts to simulate and predict the variations in
key parameters influencing reservoir development, including using his-
tory matching, have been explored,29,40,55 the inherent complexity of
CO2-EGR as a coupled multi-scale transport process characterized by
nonlinear relationships presents challenges to numerical simulators in
accurately modeling gas production dynamics during CO2 injection
and displacement.7 Laboratory experiments and simulations often fall
short of fully replicating the subsurface conditions of the reservoir,
generally relying on idealized models.15,16,33 However, the develop-
ment of data-driven artificial intelligence (AI) technologies offers
promising avenues in navigating these complexed reservoir conditions,
especially in applications of CO2-enhanced oil recovery (CO2-
EOR).3,66,67 Machine learning (ML) and deep learning (DL) algorithms
offer unique advantages for analyzing complex reservoir datasets and
predicting reservoir performance.36,37 ML algorithms, such as support
vector machines (SVM), random forests, and gradient boosting
machines, can analyze vast amounts of reservoir data to identify pat-
terns and relationships that may not be apparent through traditional
analysis methods.46 By learning from historical reservoir data, ML
models can make accurate predictions about future reservoir behavior
and optimize gas injection strategies to maximize recovery.46,62 DL, a
subset of ML, has emerged as a powerful tool for analyzing large and
complex datasets in various domains.56,57 DL algorithms, such as con-
volutional neural networks (CNN) and recurrent neural networks
(RNN), are capable of learning intricate features from raw data and
performing sophisticated tasks.15,18 DL algorithms can analyze seismic
data, well logs, and gas well productivity to identify subtle patterns and
anomalies indicative of reservoir properties and performance.4,11,43

Thus, the capacity of deep learning (DL) algorithms to predict fluid
displacement effects from the perspective of CO2 injection into gas res-
ervoirs, is a promising field for further investigation.

In this study, we introduce a methodology that merges numerical
simulation and DL methods to predict CH4 production behavior and
evaluate CH4 recovery potential. This is completed for CO2-EGR in
carbonate gas reservoirs of the Longwangmiao formation in the
Sichuan Basin. We first construct an accurate three-dimensional geo-
logical model based on actual field parameters. This is then calibrated

and validated, demonstrating a robust match between historical and
simulated production data over 7 years. Then, we simulate CO2 injec-
tion processes at the gas–water interface after depletion and analyze
the production rates of CH4, CO2, and H2O under diverse injection
conditions. Furthermore, to forecast CH4 and CO2 production rates
under various CO2 injection scenarios, DL models are developed by
training on multiple datasets derived from numerical simulations
within this high-fidelity geological model. The prediction capability of
three deep learning models, including temporal convolutional network
(TCN), long short-term memory (LSTM), and gated recurrent unit
(GRU) models, are evaluated in this study. The innovative approach of
integrating conventional numerical simulation with DL techniques is
poised to offer rapid, precise, and extensive quantitative insights in
applications of CO2-EGR in gas reservoirs. This facilitates the real-
time optimization of injection–production strategies across different
reservoir conditions and operational conditions, enhancing workflow
efficiency and speeding up CO2-EGR evaluation in real time and in
support of field-scale operations.

II. MODELING
A. Gas reservoir characteristics

The overall recovery of CH4 from water-bearing gas reservoirs is
generally low due to the rising gas–water interface. This phenomenon
leads to the formation water occluding the pore structure, thereby
impeding CH4 production as water saturations increase.59 We use the
Cambrian Longwangmiao formation gas reservoir in the Sichuan
Basin, China, as a type example. This reservoir is primarily composed
of carbonates, with complex geological structure, including dissolved
open-pores and natural fractures.27 The reservoir is strongly heteroge-
neous with permeability in the range !0.01–100 mD and porosity in
the range!0.1%–10%.58 Such conditions provide favorable conditions
for formation water channeling and the blocking of the flow of CH4.
This issue is further exacerbated by the presence of bottom water—
with a critical need to resolve such issues.61

B. Model description
We assembled an accurate geological model for this reservoir by

combining the observed conditions within the area surrounding the
well (Table I). The reservoir simulation model comprises
150" 150" 19 grid blocks, with each block 100m in the x and y direc-
tions and divided into 19 stacked horizontal layers. The reservoir fluids
comprise three components: CO2, CH4, and H2O. The reservoir tem-
perature is 137 #C with a reference pressure gradient anchored at a ref-
erence depth of 4370m with a reference pressure of 66MPa. Reservoir
thickness is 201m, with an initial gas–water interface height of
4375m. The original geological reserves are 1.06" 1010 m3, and the
average gas saturation is 37.62%. We use a dual-porosity, dual-perme-
ability model to represent fracture and matrix characteristics based on
well logging data. The average porosity and permeability of the matrix
are 2.1% and 2.34 mD and for the fractures are 6.8% and 25 mD.
Average tortuosity is recovered from core observations as 1.52 with a
diffusion coefficient of 2.0" 10$6 m2/s.

C. Simulation and history matching
We use CH4 and H2O production data from well-1 as daily histo-

ries of gas and water production, bottom hole pressure and production
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system to history match production by adjusting the relative perme-
ability and capillary pressure curves. We achieve a good fit, as shown
in Fig. 1. Based on the actual production from well-1, we observe that
the presence of formation water significantly impacts the production
of CH4. After approximately 300days of production, water production
suddenly increases, accompanied by a decrease in gas production.
According to our predictive results, if we do not implement measures
to increase the recovery efficiency of the gas reservoir in time, the gas
well will face abandonment under depleting development.

D. CO2 injection
Injecting CO2 into water-bearing gas reservoirs can improve pro-

duction of CH4 as demonstrated and supported by laboratory experi-
ments.24 Mechanisms contributing to CO2-EGR include the following:

1. Replenishing reservoir energy: Injecting CO2 increases pore fluid
pressures and gradients and thereby enhances gas flow.21,38,39

2. Displacement and diffusion: Competitive adsorption between
CO2 and CH4 on mineral surfaces such as clay, calcite, and
quartz aid fluid displacement.8,9,14,34 Injected CO2 present on
rock surfaces and diffusion of CO2 in matrix pores effectively
spreads out and increases the CO2-swept area.

13,23

3. Gravity differentiation: Under reservoir conditions, CO2 is super-
critical.12 This state favors plug or piston flow over mixing with
CH4, thereby improving fluid displacement efficiency.10 A barrier
also forms between the water and gas phases, slowing the intru-
sion of formation water.41,53

4. Porosity and permeability enhancement: CO2 reacts with forma-
tion water to generate carbonic and other acids, etching the pore
space and increasing permeability and porosity.54 This enhances
reservoir connectivity and, thereby, gas flow.2

5. Reducing capillary pressure: The dissolution of CO2 into forma-
tion water reduces the interfacial tension at the gas–water–solid

interface by lowering the density of the formation water.50,51

This process effectively alleviates the blockage of flow channels
characterized by high capillary pressures, resulting in a reduction
of flow resistance.52

Given these many interacting processes, the challenges of imple-
menting this technique at field scale requires accurate prediction and
evaluation of the effects of CO2 injection. We use a model for CO2

injection at a second well (well-2) that is strategically positioned
2200m away from well-1 during the depleted production stage. CO2 is
injected into the reservoir at six different injection rates: 5.5, 6.5, 7.0,
7.5, 8.0, and 8.5" 105 m3/day, each with a CO2 mole fraction of 100%.

E. Characteristics of CO2 injection into gas reservoirs
From the simulation results, it is evident that CO2 injection can

effectively enhance CH4 production. CH4 production rates are shown
after 100 days at injection rates of 0, 5.5, 6.5, 7.0, 7.5, 8.0, and 8.5
" 105 m3/day and are 1.899, 2.681, 2.821, 2.891, 2.961, 3.031, and
3.121" 105 m3/day, respectively, as shown in Fig. 2. More importantly,
there is a significant increase in CH4 recovery. Compared to continu-
ing depletion of the reservoir without CO2-EGR, CH4 recovery rates
increase by 1.61%, 1.85%, 1.97%, 2.08%, 2.19%, and 2.29% at the
respective injection rates. The breakthrough time for CO2 in well-1
also decreases (earlier) with increasing injection rates, as 594, 524, 436,

TABLE I. Model parameters representing the reservoir.

Parameter Value

Grid 150" 150" 19
Average pressure (MPa) 66.14
Reservoir depth range (m) 4315–4516
Average matrix porosity (%) 2.1
Average fracture porosity (%) 6.8
Average matrix permeability (mD) 2.34
Average fracture permeability (mD) 25
Rock compressibility (1/MPa) 1.62" 10$9

Water–gas contact elevation (m) 4375
Average gas saturation (%) 37.62
Temperature (#C) 137
Diffusion coefficient (m2/s) 2.0" 10$6

Tortuosity 1.52
Fraction of CO2/CH4 (injected well) 1.0/0.0
Original gas in place, OGIP (m3) 1.06" 1010

Original water in place, OWIP (m3) 3.58" 107

FIG. 1. Actual production data and historical fitting results of well-1 in the
Longwangmiao formation gas reservoir: (a) daily gas rate, (b) cumulative gas rate,
(c) daily water rate, (d) cumulative water rate, and (e) well bottomhole pressure. For
a more intuitive comparison and analysis, the time-axis is consistent across all five
subplots. The fitting results are excellent, indicating that well-1 initially adopts
constant-rate production then switches to constant-pressure production (depleted
development) after approximately 700 days due to an increase in water rate.
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378, 311, and 292days, respectively. Therefore, higher injection rates
contribute to improved gas recovery efficiency. Figure 3 illustrates that
injection velocity is directly proportional to the spread of the CO2

plume.

III. DEEP LEARNING METHODS AND ALGORITHM
The subsurface displacement of CH4 via CO2 injection engenders

complex physical processes, which are challenging for the current
numerical simulation methods. While these methods can represent the
underlying processes, they are often hampered by high computational
demands. In response to these challenges, we explore the application
of deep learning algorithms to replicate the complex physical processes
associated with CO2 injection into carbonate gas reservoirs.3,64,67,68 We
use three neural network models, LSTM, TCN, and GRU, to train the
simulation results obtained in Sec. III to predict the CH4 production
rates in scenarios that were not directly modeled, thereby enhancing
the predictive capability beyond the limitations of traditional numeri-
cal simulation.

A. LSTM
Long short-term memory (LSTM) is a type of recurrent neural

network (RNN) designed to overcome the vanishing gradient problem
in traditional RNNs, enabling the model to capture long-range depen-
dencies in sequential data. It has memory cells with self-connections
that allow them to maintain information over long sequences. The key

FIG. 2. Full-cycle dynamic productivity of well-1 at different CO2 injection rates: (a)
daily gas rate, (b) daily CO2 rate, (c) cumulative CO2 rate, and (d) CH4 recovery
rate. For more intuitive comparison and analysis, the time-axis is consistent across
all four subplots. Well-2 is injected with CO2 into the gas reservoir at rates of 5.5,
6.5, 7.0, 7.5, 8.0, and 8.5" 105 m3/day, respectively. Compared to depleted devel-
opment, the productivity of Well-1 shows a significant increase in CH4 production
after CO2 injection, with production increasing with the injection rate.

FIG. 3. Two wells in the geologic model.
Production well-1 in red and injection well-
2 in blue. Spread of the CO2 plume after
200d for injection at rates of: (a) 5.5, (b)
6.5, (c) 7.0, (d) 7.5, (e) 8.0, and (f)
8.5" 105 m3/day, respectively.
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components of an LSTM cell include a cell state, an input gate, a forget
gate, and an output gate.15,26

The LSTM architecture and equations allow the model to selec-
tively update and retrieve information from the cell state, facilitating
the learning of long-term dependencies in sequential data.49 In the
provided problem of predicting gas well production over time, LSTM
is suitable for capturing dependencies in sequential data. Gas produc-
tion may be influenced by historical injection rates, and LSTM can
learn to capture these long-term dependencies, making it effective for
time series prediction.

B. GRU
Gated recurrent unit (GRU) models are another type of recurrent

neural network like LSTM but with a simpler structure. They combine
the memory cell and hidden state into a single state, making it compu-
tationally more efficient. GRU has reset and update gates that control
information flow.18,43

The GRU architecture consists of specialized gating mechanisms
that control the flow of information through the network. It has two
gates: the reset gate and the update gate. The reset gate decides how
much past information to forget, and the update gate decides how
much of the new information to store.37

GRU models have fewer parameters compared to traditional
LSTMs, making them computationally more efficient. GRUs are effec-
tive when dealing with shorter sequences where preserving long-term
dependencies is less critical. GRU models have proven effective in vari-
ous sequence-related tasks, including natural language processing,
time series prediction, and speech recognition.56

For the gas well production problem, GRU can be effective in
learning dependencies in the input sequence. Its simplified structure
makes it computationally less expensive compared to LSTM, but it can
still capture the temporal dynamics of gas production in response to
varying injection rates.

C. TCN
Temporal convolutional network (TCN) models are convolu-

tional neural networks designed for sequence modeling tasks. They use
dilated convolutions to increase the receptive field exponentially with-
out increasing the number of parameters. This allows TCN to effi-
ciently capture long-range dependencies.36

TCN uses dilated causal convolutions, which operate on a
sequence in a way that respects the temporal order. The dilation rate
controls how far apart the elements of the convolutional kernel
are. TCN often includes multiple stacked blocks, each containing
dilated causal convolutions followed by activation functions like
ReLU.37

These convolutions allow TCN to capture long-range dependen-
cies effectively. Multiple blocks are stacked to increase the receptive
field and improve the ability of the model to capture complex patterns.
The outputs from different blocks are summed to produce the final
output sequence. The architecture and operations of TCNs make them
well-suited for sequence modeling tasks and they have demonstrated
success in various applications, including time series prediction.46

In the context of predicting gas well production, TCNs can effec-
tively capture the temporal patterns and dependencies in the input
data. The varying injection rates and their impact on gas production

can be learned by the dilated convolutions of TCNs, making them suit-
able for time series forecasting.

D. Hyperparameters
The hyperparameters used in the deep learning algorithms play

critical roles in training the model effectively.17,28 The model efficiently
processes training data with an optimal batch size and iterations by
balancing computational resources repeatedly. Employing a single
dense layer with ReLU activation ensures simplicity and nonlinearity,
essential for capturing complex patterns. A dropout rate of 0.01 miti-
gates overfitting by randomly dropping out input units during train-
ing. The Adam optimizer dynamically adjusts learning rates based on
recent gradients, optimizing model performance. Meanwhile, the
choice of mean squared error as the loss function accurately quantifies
prediction accuracy. These hyperparameters were thoughtfully selected
after repeated attempts to ensure the deep learning model effectively
predicts gas reservoir performance during CO2 injection. The
hyperparameters of the model selected in this study are presented in
Table II.

IV. MODEL PERFORMANCE AND PREDICTION
A. Dataset and evaluation metrics

We predict the three parameters of gas rate, CO2 rate, and CH4

recovery separately. Each parameter is related to time, production
pressure difference, injection rate, and other production conditions.
The training set consists of numerical outputs at injection rates of 5.5,
6.5, 7.0, and 8.5" 105 m3/day. The validation set includes data at an
injection rate of 8.0" 105 m3/day, while the prediction set involves
data at an injection rate of 7.5" 105 m3/day. We utilize three deep
learning algorithms to learn the relationship between the feature
parameters and production conditions in the training set, enabling us
to predict well feedback under unknown production conditions.

LSTM is effective when there are long-term dependencies in the
gas well production data and can learn to remember injection rate pat-
terns over extended periods. TCN is suitable for capturing temporal
patterns and dependencies efficiently, making it effective for modeling
the complex relationships between injection rates and gas production
over time. GRU, being computationally efficient, is suitable when a

TABLE II. Hyperparameter settings of each model.

Deep learning
algorithm Hyperparameters

LSTM

Batch size¼ 32, Iteration¼ 1500, Dense¼ 1,
Activation¼ relu, Dropout rate¼ 0.01,

Optimizer name¼ adam,
Loss function name¼MSE,

TCN

Batch size¼ 32, Iteration¼ 1500, Dense¼ 1,
Activation¼ relu, Kernel size¼ 2,

Optimizer name¼ adam,
Loss function name¼MSE,

GRU

Batch size¼ 32, Iteration¼ 1500, Dense¼ 1,
Activation¼ relu, Dropout rate¼ 0.01,

Optimizer name¼ adam,
Loss function name¼MSE,
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balance between model complexity and computational resources is
desired and it can still capture temporal dependencies in the input
data.4 Each algorithm addresses the gas well production prediction
problem differently, offering various trade-offs in terms of model com-
plexity and computational efficiency. The choice among them depends
on factors such as the nature of the data, the desired model interpret-
ability, and available computational resources. Root mean square error
(RMSE), mean absolute error (MAE), and R-squared errors (R2) are
selected to describe the performance of the deep learning model in pre-
dicting the effect of CO2 injection to enhance gas recovery.17 RMSE
measures the average magnitude of the errors between the predicted
and actual values, giving greater weight to larger errors due to squar-
ing. MAE computes the average absolute differences between the pre-
dicted and actual values, providing a straightforward measure of
prediction accuracy.

B. Model performance
The evaluation of model efficacy relies on how well the predictive

model aligns with the validation data. Consequently, the alignment of
the predictive model enables the extraction of dataset patterns and
relationships during training. Figure 4 depicts the predictive outcomes
derived from the validation dataset of each model. As illustrated in
Fig. 4, the predictive outcomes of all models correspond to the general
trend of the actual values. Figure 5 demonstrates that both ends of the
100% agreement line perfectly accommodate the predictive and actual
values of all models. Moreover, the quantitative assessment of model
predictions is conducted (as shown in Table III). This suggests that the
GRU model is adept at capturing the overall data trend and is less
likely to yield extreme predictive outcomes. The predictive results of
the validation set indicate that all models can effectively grasp the fun-
damental dataset patterns and relationships. These models exhibit a
high level of adaptability to validation datasets. Furthermore, in com-
parison to LSTM and TCN models, the GRU model demonstrates
superior predictive performance for the dataset.

C. Model prediction
Once the model undergoes training, forecasting responses for an

independent test set offers a more accurate assessment of the model’s

performance on novel and unobserved data. Figure 6 illustrates the
predicted efficacy of all models on the test set. The predicted outcomes
of all models on the test sets resemble those on the training sets, with
the actual and predicted values following the same trajectory (refer to
Fig. 6). However, there exists a discrepancy between the projected out-
comes of all models and the actual values. The disparity between the
TCNmodel and the actual values is the most substantial.

Figure 7 displays the optimization results of three algorithms for
subterranean fluid displacement via CO2 injection. The x-axis depicts
the predicted data, while the y-axis represents the simulated data.
The GRUmodel continues to exhibit strong performance on the test set
(as shown in Table IV). In addition to the alignment of the actual and
predicted values at both extremities of the 100% agreement line, all eval-
uation metrics identify it as the most precise prediction model. Elevated
R2 values signify the GRU model’s ability to elucidate a significant por-
tion of the dataset’s variability. This underscores the model’s heightened
accuracy and reliability in predicting the methane production rate from
the gas reservoir under CO2 injection-induced displacement—thus, ren-
dering it the optimal model for precisely forecasting gas flow rates via
CO2 displacement.

D. Advantages of deep learning
The forecasting outcomes presented in Secs. IVB and IVC dem-

onstrate that the three models effectively anticipate the synthetic data-
set of fluid displacement driven by CO2. Nonetheless, the precision of
the predictive outcomes varies among LSTM, TCN, and GRU.

(1) The prognostications of the GRU model within the training and
testing sets exhibit relative stability, yielding superior predictive
efficacy. This is primarily attributed to the resilience of the
model to noisy data. The GRU model adeptly filters out noise
via specialized gating mechanisms, whereas the LSTM and TCN
models might excessively conform to noise within the input
sequence. This distinction is reflected in the heightened R2 value
of the GRU model.

(2) The GRU model demonstrates notable potential in optimizing
fits. Both the training and test sets’ R2 values of the LSTM algo-
rithm exceed 0.99, indicating commendable predictive perfor-
mance. However, the GRU model achieves high and accurate

FIG. 4. Predicted results of the deep learning model on the validation set: (a) predicted daily gas rate at an injection rate of 8.0" 105 m3/day, (b) predicted daily CO2 rate, and
(c) predicted CH4 recovery. Each model is trained on feedback data from well-1 at injection rates of 5.5, 6.5, 7.0, and 8.5" 105 m3/day. The validation set consists of feedback
data from well-1 at an injection rate of 8.0" 105 m3/day.
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predictive outcomes in merely 100 epochs, compared to the
LSTM model’s requirement of 2000 epochs. This discrepancy
primarily stems from the GRU model’s ability to selectively
retain crucial information from previous sequence steps,
whereas the LSTM model operates fundamentally sequentially,
constraining its scalability and computational efficiency.
Consequently, the GRU model boasts superior computational
efficiency.

(3) With regard to a small dataset, the GRU model more effectively
assimilates sequence features from the data than the LSTM and
TCN models, thereby enhancing prediction accuracy and gener-
alizability. Precise prediction of this limited sample data holds
significant implications, offering reliable forecasts of gas flow
rates and furnishing valuable insights into key process

FIG. 5. Evaluation index for the validation set. We evaluated the predicted gas rate, CO2 rate, and CH4 recovery under the CO2 injection rate of 8.0" 105 m3/day using three
metrics: RMSE, MAE, and R2. Smaller values of these metrics indicate closer proximity between the predicted and raw values, reflecting better algorithm performance (more
details in Table III).

TABLE III. Evaluation results for the validation set.

Metrics Prediction variables LSTM GRU TCN

RMSE Gas rate 542.1223 384.4980 1389.7737
CO2 rate 54.0668 52.8161 237.2061

CH4 recovery 0.0013 0.0013 0.0424
MAE Gas rate 268.0795 160.1173 1175.8388

CO2 rate 44.4493 43.3606 130.9392
CH4 recovery 0.0011 0.0012 0.0022

R2 Gas rate 0.9995 0.9996 0.9985
CO2 rate 0.9999 0.9999 0.9998

CH4 recovery 1 1 1
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FIG. 6. Predicted results of the deep learning model on the test dataset. (a) Predicted daily gas rate at an injection rate of 7.5" 105 m3/day, (b) predicted daily CO2 rate, and
(c) predicted CH4 recovery.

FIG. 7. Evaluation index for the testing set. We evaluated the predicted gas rate, CO2 rate, and CH4 recovery under the test set using three metrics: RMSE, MAE, and R2.
Smaller values of these metrics indicate closer proximity between the predicted and raw values (more details in Table IV).
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interactions, as well as predictions concerning gas recovery, gas
pressure, and CO2 fraction within gas reservoirs. Such insights
carry substantial practical significance.

(4) To sum up, the test results underscore GRU’s prowess in han-
dling nonlinear dynamic relationships and capturing long-term
dependencies within irregular sequences more effectively. This
achievement is facilitated through its information flow selection
network, which proficiently discerns patterns across varied time
scales.

V. DISCUSSIONS
A. Optimization of deep learning in the prediction
workflow

Deep learning models are capable of handling complex nonlinear
relationships, without requiring the comprehension of complex theo-
retical equations and ideal assumptions about field properties. They
can adapt to different data and applications and help optimize CO2

injection for CH4 recovery process in ways that traditional mathemati-
cal models cannot—this reflects significant potential for their applica-
tion. Gas that is difficult to desorb at normal pressure can be
discharged using underground CO2 injection, benefiting from its dis-
placement. The accurate prediction of CH4 flow rate facilitates the
optimization of the CO2 injection process and reasonable use of the
“gas injection start-stop” opportunity to maximize the CH4 recovery.
This mitigates potential safety hazards and improves the safety of pro-
duction and its capacity. Simultaneously, by optimizing CO2 injection,
gas fields can minimize the volume of CO2 required to achieve ideal
production, thereby increasing their carbon “efficiency.” This has
immense practical significance for optimizing production systems,
improving gas production, and reducing gas drainage costs. The GRU
model, which accurately predicts the change in CH4 flow rate in the
CO2 injection process to enhance CH4 recovery, was further evaluated
to reduce the time cost of numerical simulation. A few improvements
proved beneficial: a) Only the CO2 injection rate, CO2 rate, and mix-
ture flow rate are used as input layers. The dimension of the input fea-
tures could be increased. Additionally, the dynamics of the CO2

injection process and prediction accuracy could be improved by ana-
lyzing the changes in injection rate and CO2 range in the plume spread
during CO2 injection. b) The GRU model can be combined with other
methods to enhance prediction accuracy and efficiency. For example,
using machine learning techniques to preprocess data can help remove

outliers and improve data quality. c) The reliability of the model can
be further tested through field experiments and by implementing GRU
on a hardwired device. This may facilitate the identification of differ-
ences between the model prediction and actual field data and guide
further model optimization.

B. Exploring applications of deep learning in CO2-EGR
CO2-EGR is an integral mechanism in the implementation of

CCUS. The application of deep learning algorithms in the field of gas
reservoir development has emerged as a promising path, demonstrat-
ing considerable potential for revolutionizing traditional approaches to
well productivity evaluation and in predicting the effectiveness of dif-
ferent CO2 injection rates on CH4 recovery.

One notable application of deep learning algorithms lies in the
accurate evaluation of productivity. By leveraging neural networks and
advanced data analytics, these algorithms can process vast datasets,
including production histories of gas and water, bottomhole flowing
pressures, and other relevant parameters. The models thus enable the
prediction and optimization of well performance, offering a dynamic
and data-driven approach to well productivity assessment. The models
may also need to consider additional factors, such as plume shape,
spread area, actual gas behavior, and real reservoir heterogeneity, pro-
viding valuable insights into the intricate interplay between CO2 and
CH4 transport within the reservoir. While the application of deep
learning in gas reservoir development shows great promise, challenges
remain, including the need for extensive and diverse datasets for train-
ing robust models. Additionally, the integration of actual injection–
production data into these algorithms poses a challenge that demands
further research. Future directions also may involve enhancing the
adaptability of deep learning models to different geological settings.
The ability to assess productivity accurately and optimize CO2 injec-
tion strategies for enhanced CH4 recovery signifies a transformative
shift in the field.

As technology advances and challenges are addressed, the
application of deep learning in gas reservoir engineering holds the
promise of unlocking new efficiencies and insights, ultimately contrib-
uting to sustainable and optimized gas reservoir development
practices.

VI. CONCLUSIONS
We apply deep learning algorithms to predict CH4 production

from a carbonate reservoir using CO2 injection for enhanced gas
recovery (CO2-EGR). This, first-of-its-time application captures the
relationships among different features, including injection rates, gas
production, CH4 recovery, and other features. The analysis confirms
that underground fluid displacement using the CO2 injection could
enhance CH4 recovery and with good predictive results. Specific con-
clusions are as follows:

(1) Injecting CO2 into depleted water-bearing gas reservoirs effec-
tively increases CH4 recovery and mitigates the rise of the gas–
water interface. A positive gradient variance is quantitatively
observed between injection rate and CH4 recovery. The injec-
tion rate influences CO2 breakthrough time and swept area,
with higher injection rates resulting in earlier CO2 break-
through times and larger swept area.

TABLE IV. Evaluation results for the testing set.

Metrices Prediction variables LSTM GRU TCN

RMSE

Gas rate 521.5285 396.5081 8480.4833
CO2 rate 177.8914 129.1449 939.8968

CH4 recovery 0.0046 0.0031 0.0424

MAE

Gas rate 398.3128 257.7799 6362.2829
CO2 rate 104.3755 76.8614 625.2721

CH4 recovery 0.0036 0.0025 0.0377

R2

Gas rate 0.9995 0.9996 0.9848
CO2 rate 0.9998 0.9999 0.9983

CH4 recovery 0.9999 0.9999 0.9983
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(2) Deep learning algorithms predict performance of the models
with greater computation efficiency. We focus on pressure gra-
dients and time series among training sets and employed the
TCN, LSTM, and GRU models to learn from CH4 rate, CO2

rate, and CH4 recovery under varying CO2 injection rates. We
predict the performance and feedback of production wells over
a spectrum of production systems. The GRU algorithms exhibit
the most reliable and effective predictive performance. For gas
well time series as features, it exhibits the smallest values for
RMSE, MAE, and R2. GRU is computationally faster than
numerical simulation by 3–4 orders of magnitude.

(3) The application of deep learning models in gas reservoir engi-
neering presents a transformative opportunity. These models,
adept at handling intricate nonlinear relationships without
necessitating complex theoretical equations, offer a dynamic
approach to optimizing CO2 injection for CH4 recovery. By
accurately predicting CH4 rates and analyzing CO2 injection
dynamics, they enable the precise optimization of injection pro-
cesses. However, challenges persist, including the need for
diverse datasets and the integration of actual injection–produc-
tion data. Future directions may involve enhancing model
adaptability to diverse reservoir settings. Despite challenges, the
application of deep learning promises to revolutionize tradi-
tional approaches to well productivity evaluation, offering
insights into CO2–CH4 transport dynamics and contributing to
sustainable gas reservoir development.
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NOMENCLATURE

AI Artificial intelligence
CCUS Carbon capture, utilization, and storage

CO2-EGR CO2-enhanced gas recovery
CO2-EOR CO2-enhanced oil recovery
CO2-EWR CO2-enhanced deep brine recovery

DL Deep learning
GRU Gated recurrent unit
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
R2 R-squared error value

RMSE Root mean square error
RNN Recurrent neural network
TCN Temporal convolutional network
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