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Summary
Sand screenout, the most frequent incident during hydraulic fracturing, is one of the major threats to operational safety and efficiency. 
Screenout occurs when advancing hydraulic fractures are blocked by injected proppant-slurry, stall, and develop fluid overpressure. 
Because massive wells are still being hydraulically fractured every year, operational safety has become a critical and urgent issue that has 
always been overshadowed by the whether-or-not controversy. However, the suddenness and unheralded surprise of screenout make it 
extremely difficult to predict and handle. Previous efforts attempt to predict screenout as discrete events by interpreting injection pressure 
directly. We propose and then demonstrate a self-updating (via data and experience augmentation) and customizable (numerical models 
and algorithms) data-driven strategy of real-time monitoring and management for screenout based on records of shale gas fracturing. Two 
new indicators—proppant filling index (PFI) and safest fracturing pump rate (SFPR)—are improved and then integrated into the strategy. 
The PFI reveals the mismatch between injected proppant and hydraulic fractures and provides a continuous time-historical risk assess-
ment of screenout. A pretrained ensemble learning model is applied to process the geological and hydraulic measurements in real time 
for the PFI evolution curve during fracturing operations. Integrated with the SFPR, a stepwise pump rate regulation strategy is deployed 
successfully to mitigate sand screenout for field applications. Four field trials are elaborated, which are representative cases exhibiting the 
data-driven approach to monitor and manage sand screenout during hydraulic fracturing.

Introduction
Hydraulically fractured horizontal wells have accounted for most of all new wells since late 2014 in the United States and for 83% of the 
total linear footage drilled as of 2016 [about 670,000 wells according to the U.S. Energy Information Administration (2018). During the 
fracturing operation, sand screenout is one of the most frequent major incidents jeopardizing safe hydraulic fracturing. This is especially 
the case for unconventional reservoirs using low-viscosity fracturing fluid (e.g., slickwater) (Aud et al. 1994; Barree and Conway 2001; 
Nolte and Smith 1981). Sand screenout is usually caused by the proppant settling, piling up, and then blocking flow in artificial fractures 
and thereby stalling the propagating hydraulic fracture tip (Dontsov 2022; Wang and Sharma 2023). The consequent injections of fluids 
and proppant, therefore, build pressure sharply and threaten the safety around the wellhead. An emergency pump shutdown is usually 
performed to relieve the wellhead pressure. Meanwhile, the injected proppant may settle down and bury the wellbore, which often 
requires a suspension of fracturing operations, opening the well for flowback and flushing to clean the wellbore, and then rebuilding the 
pump rate for the following operation (pumping the perforating gun for the following stages). Therefore, dealing with sand screenout is 
both a time- and economically consuming process. Forewarning and then mitigating such events is a logical pathway to simultaneously 
improve both the safety and economic outcomes of fracking.

The direct monitoring and detection of sand screenout events thousands of meters underground are neither mature nor currently eco-
nomical (Yew and Weng 2014). The provision of expensive microseismic monitoring has not proved successful, as clear signals are dif-
ficult to detect and robust diagnostics are even more difficult to define (Li et al. 2019; Warpinski et al. 2012). Advanced fracture-diagnostic 
techniques (radioactive tracers combined with nuclear logging and fiber-optic sensing, among others) improve the monitoring of fluid/
proppant transport through perforation clusters, but it is still challenging to detect the real-time proppant behavior in fractures deep into 
reservoirs (Shoaibi et al. 2023; Tang et al. 2017; Wu et al. 2021). Screenouts are typically defined as discrete events by manually inspect-
ing the fracturing pressures (Geary et al. 1993; Massaras and Massaras 2012) or by using machine learning algorithms (Ben et al. 2020; 
Hu et al. 2020; Sun et al. 2020; Yu et al. 2020). One major limitation is that discrete predictions give little lead time to the sudden onset 
of screenout, thus leaving limited time for the operator to perform remedial measures, even with 100% correct outcomes. The other is the 
error and bias in the direct interpretation of the fracturing pressure, due to its sensitivity to variations in frictional resistance to flow, prop-
pant settling, and fracture propagation (Daneshy 2007; Nolte 1991; Roussel et al. 2012). Moreover, real-time screenout management is 
another key issue that is rarely reported because reducing or staunching the pump rate is the sole mitigative action (to a rapid or near-
instantaneous jump in fracturing pressure). This action completely depends on the experience of the operator in knowing how quickly or 
by how much the pump rate should be regulated. Completely stopping flow or applying an inappropriately low pump rate will aggravate 
screenout by promoting proppant settling and dune creation in the fracture and will also intensify water hammer effects and their damage 
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to well integrity, exacerbating the problem at restart (Harris and Pippin 2000; Willingham et al. 1993). Therefore, a robust method to 
define and regulate, in real time, the emergency pump rate is urgently needed.

We propose a new data-driven strategy for the real-time monitoring and management of sand screenout. This method improves and 
then integrates two key indices that are used for post-fracturing analyses in our previous studies—the PFI (Hou et al. 2023) and the SFPR 
(Hou et al. 2022a): (i) The PFI (defined as the volume proportion of proppant-filled fractures to the total volume of proppant-accessible 
fractures) estimates the mismatch between proppant injection and underground fracture propagation in real time. This more accurately 
reflects the true mechanism of screenout compared with the previous interpretation of surface-measured fluid pressure. A time-continuous 
PFI curve is produced by a pretrained ensemble learning workflow updated by real-time records. This presents the time histories of the 
fracturing process compared with previous predictions of discrete events, thus allowing for early warning and then preventative measures. 
(ii) The SFPR is generated by mining the data from prior screenout cases based on a deep learning workflow combined with sensitivity 
analyses of the U-shaped correlation between pump rate and screenout probability. This suggests the regulation rate and range required 
of the pumping to prevent or mitigate screenout. The new strategy can self-update by continuously collecting new cases and data from 
field applications.

The numerical models and algorithms are the two core techniques of the new strategy, which are customizable and may be improved 
by fundamental research. In our field trials, the new strategy successfully prevented three screenout events. The high efficiency and broad 
applicability of this new data-driven method provide an urgently needed technique to monitor and manage sand screenout during hydrau-
lic fracturing.

Methodology
Integrated Strategy and Its Application. A new data-driven strategy and its application for the real-time monitoring and management 
of sand screenout are proposed as shown in Fig. 1, which integrates the PFI and SFPR, data collection, numerical models, and machine 
learning workflows. Details of hypotheses and definitions of PFI and SFPR are explained in Fig. 2 and the Supplementary Material. The 
upper orange-line workflow uses the data from screenout and near-screenout fracturing wells to train an ensemble learning algorithm. This 
algorithm is pretrained by historical records (Supplementary Material, Tables S-1 and S-2) and then predicts the PFI monitoring curve 
for the real-time fracturing operation by manually feeding in the real-time measurements. The lower blue-line workflow analyses data 
from screenout cases and generates a pump rate management strategy (SFPR) for real-time regulation when encountering the screenout 
to prevent or mitigate the operational risks. The SFPR is fitted based on the U-shaped correlation between pump rate and the screenout 
probability that was revealed by our previous work (Hou et al. 2022a), as marked in the gray ellipse in Fig. 2. In this study, new data and 
new parameters are introduced. Therefore, the input features are first optimized to verify the U-shaped correlation and then fit the SFPR 
based on newly collected data, as illustrated in Supplementary Material, Tables S-3 and S-4 and Figs. S-1 through S-4.

This study adopts the definitions but improves the usage of the key indices. For PFI, a new numerical model (considering evolutions 
of the proppant ridge, Eq. S-5, Supplementary Material) is applied to extract the input feature and then improve the algorithm training. 
This model upgrade is also an example of the customizable characteristic of the new strategy, as shown in Fig. 2. Moreover, the ensemble 
learning model (Fig. 2) for PFI is applied for processing field records and updating the PFI curve in real time, compared with the one-time 
prediction for post-fracturing analyses in the previous study (Hou et al. 2023). The successful field trials in this study demonstrate and 
expand the capability of the PFI curve for real-time monitoring, which provides time-sequential histories of underground conditions 
compared with previous discrete sudden events, thus allowing for early warning and then preventative measures. For SFPR, more elabo-
rate sensitivity analyses are performed in this study. The moderating effects of pore pressure, stage length, fluid viscosity, proppant size, 
well/vertical depths, and proppant concentration (Supplementary Material) are presented, compared with the previous brief analysis 
mainly focusing on horizontal stress (Hou et al. 2022a). These in-depth analyses direct the pump rate management for real-time regulation 

Fig. 1—Structure of the data-driven strategy and its application. The *PFI monitoring and **SFPR management are the pivotal 
techniques to prevent and mitigate sand screenout in real time.
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in field pilots, as illustrated in the “Field Trials” section. More importantly, the pump rate adjustments reveal the interconnection between 
pump rate and real-time PFI evolution, which further generates the new stepwise regulation strategy. Above all, the integration of PFI and 
SFPR and their successful applications in field trials is one of the major contributions of this study.

Numerical Model and Feature Extraction. Feature extraction by numerical models is the core technique for data augmentation during 
the preprocessing to improve the performance of trained algorithms (as summarized in the Supplementary Material). The analytical 
models are optimized to manually calculate features in real time based on the fracturing measurements (per second). The extracted 
features are summarized in Table 1, involving Vs/Vf (the volume ratio of injected sand and fluid), H1 (the height of the slurry flowing layer 
in fractures), ƞ (the fluid efficiency in fractures), DPP [the downhole pressure after hole perforation (fracture inlets)], and ΔP/ΔVf (the 
wellhead pressure change in a unit volume of injected fluid). We considered the generation of a proppant ridge when injecting pure fluid 
during the estimation of H1 (Eq. S-5, Supplementary Material) (Hou et al. 2022b), which improves the input features for PFI prediction 
compared with the previous model (Hou et al. 2023). The fluid efficiency (ƞ) is estimated (for the ongoing fracturing operation) using 
the fracture closure time of the neighboring wells, as explained in the Supplementary Material (Eq. S-9). In the case study, the hydraulic 
measurements (pump rate, wellhead pressure, fluid viscosity, proppant diameter, and concentration) are collected and preprocessed (for 
Vs/Vf, H1, and ƞ) in the field after every two or three stages of proppant injection (depending on the stage length that allows enough time 
for data processing). These measurements and extracted features are then applied in the ensemble learning workflow for the real-time 
PFI curve.

Inputs for PFI Inputs for Screenout Probability

Original Features Extracted Features Extracted Features

Well depth; vertical depth;
minimum horizontal stress; pore pressure; stage 

number; stage length
pump rate; wellhead pressure
fluid viscosity; proppant diameter and concentration

Vs/Vf
H1

‍�‍

DPP
Vs/Vf

ΔP/ΔVf

Notes: Vs/Vf = volume ratio of injected sand and fluid; H1 = height of the slurry flowing layer in fractures; ‍�‍ = fluid 
efficiency in fractures; DPP downhole pressure after hole perforation; ΔP/ΔVf = wellhead pressure change in a unit 
volume of injected fluid.

Table 1—Summary of inputs for predicting PFI and screenout probability.

Data and Algorithm. The field measurements of shale gas fracturing wells are collected from the southeast region of the Sichuan Basin, 
China, representing data from 29 fracturing stages (more than 286,000 groups of fracturing records in seconds) from 18 wells. Ten of 
the collected stages (from nine wells) encountered screenout (the fracturing operation is suspended to release pressure), and the rest are 
near-screenout cases (the condition of encountering rapid pressure rise, mandating pump rate reduction, but succeeding in subsequent 
operations). The data set includes geological and hydraulic parameters (the “Original Features,” as summarized in Table 1) based on 
previous studies on proppant transport in subsurface fractures (Hou et al. 2022a, 2022b).

Fig. 2—Pretrained data-driven workflows. New parameters (PFI, SFPR, and screenout probability) are defined based on the 
(i) determining elements hypothesis and the (ii) linear-correlation hypothesis.

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/219747-PA/3388339/spe-219747-pa.pdf/1 by Pennsylvania State U

niversity user on 16 M
ay 2024



2024 SPE Journal4

Two gate recurrent unit (GRU) models with three layers (including the output layer) are built for predicting both screenout probability 
and PFI, using the “ReLu” as the activation function in each layer and based on previous experience (Hou et al. 2022a, 2022b). The Adam 
routine is selected as the optimizer to compile the model, where a callback function is applied to return and automatically update the 
learning rate (Kingma and Ba 2014; Zeiler 2012). The regularization is performed to avoid overfitting by setting a dropout (of 0.2) behind 
the first and hidden layers. All the original field measurements are used as the inputs for model tuning. The hyperparameters, including 
the number of neural nodes in each layer, the batch size, and epochs, are optimized by the Grid search and walk-forward validation 
(Bergstra and Bengio 2012; Hu et al. 1999). The Grid search expects the input in two dimensions. Therefore, we add an extra layer before 
the input layer to temporarily reshape the matrix into three dimensions in the GRU model. The walk-forward validation preserves tempo-
ral components inherent in the time-series problem (Stein 2002), which is suitable for evaluating our model. The process of algorithm 
tuning is presented in the Supplementary Material (Tables S-1 and S-2). The GRU model for predicting screenout probability is tuned with 
screenout cases only, while the model for predicting PFI is tuned with the entire data set. A random forest regression algorithm with 50 
estimators is also built to improve the predictions. The GRU and random forest algorithms are ensembled using a simple average strat-
egy—averaging the predictions of these two algorithms as eventual outcomes.

Results and Discussion
Sensitivity Analyses for SFPR. Sensitivity analyses are performed to define the moderating effects of the optimized parameters 
(including the well and vertical depth, stage length, pore pressure, minimum horizontal stress, fluid viscosity, and proppant concentration 
and diameter) on the U-shaped correlation and to characterize the evolution of the SFPR under various conditions (Figs. 3 and 4, and 
Figs. S-1–S-4, Supplementary Material). The representative results (minimum horizontal stress, stage length, fluid viscosity, and proppant 
diameter) are shown in Figs. 3 and 4. The SFPR migrates rightward under low-stress conditions (mean – 1 standard deviation) and moves 
leftward under high-stress conditions (mean + 1 standard deviation). The variation of the SFPR falls in the range between 5 m3/min and 
10 m3/min (31.45 bbl/min and 62.90 bbl/min) in Fig. 3a. Similar rules are observed in the moderating effects of well and vertical depth 
and pore pressure (Supplementary Material, Figs. S-2 and S-3). In Fig. 3b, a shorter stage length results in a lower probability of screenout 
in the commonly applied range of pump rate between 3 m3/min and 15 m3/min (18.87 bbl/min and 94.35 bbl/min), which may benefit 
from constraining fluid distributions through smaller perforation holes and thus boosting the development of fractures in reservoirs. This 
correlation, however, reverses (longer stage length results in a lower probability) when the pump rate exceeds 15 m3/min (94.35 bbl/
min), which may benefit from the provision of more perforation holes (through the casing) that may lessen the pressure buildup under the 
high-pump-rate condition.

A different method is deployed to analyze the moderating effect of fluid viscosity, proppant concentration, and diameter, due to the 
discrete nature of these data. We test the U-shaped correlation under different fluid and proppant conditions that represent typical values 

Fig. 3—Moderating effects of parameters on the U-shaped correlation between pump rate and screenout probability. The U-shaped 
curves are plotted under low (mean – 1 standard deviation) and high (mean + 1 standard deviation) levels of (a) minimum horizontal 
stress and (b) stage length.

Fig. 4—Moderating effects of parameters on the U-shaped correlation between pump rate and screenout probability. The U-shaped 
curves are plotted under representative values of (a) fluid viscosity and (b) proppant size due to their discrete data characteristics.
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of these parameters based on the collected field data. Increasing fluid viscosity reduces settling rates of the proppant and improves prop-
pant transport along the fracture, thus diminishing the screenout probability (Fig. 4a). The increasing proppant size and concentration 
move the SFPR rightward, approaching 15 m3/min (94.35 bbl/min) and also increasing the probability and the slope (Fig. 4b and Fig. S-4, 
Supplementary Material). The proppant parameters reflect the stage in the fracturing procedure because large-diameter proppants and 
high concentrations are used near the end of the fracturing operation. A higher pump rate is essential to maintain the slurry flow in the 
created fracture and continue the fracturing operation.

To summarize, the suggested SFPR range for the targeted region falls between 5 m3/min and 10 m3/min (31.45 bbl/min and 62.90 bbl/
min). Pump rate regulation (both increasing and decreasing) should be moderated according to the variation in the slope of the probability 
curve. However, the fracturing pressure may still jump dramatically when encountering screenout, leaving limited time to quantify the 
necessary reduction in pump rate. We, therefore, integrate the PFI real-time monitoring with SFPR for field application.

Field Trials. The new strategy, integrating PFI and SFPR, is prepared for field trails in the same region as the sourced data. Four 
representative field applications are summarized in Figs. 5 through 8. The injection parameters and wellhead pressure are fed into the 
pretrained ensemble learning workflow in real time for the prediction of PFI (Fig. 1). This predictive algorithm was applied manually 
using real-time rig data to provide a real-time PFI curve (combined with hydraulic measurements, as listed in Table 1) to allow the field 
engineers to monitor the fracturing operation. The PFI curve keeps growing along with the time when the real-time data accumulates 
and is applied continuously in the ensemble learning workflow, as presented in Figs. 5 through 8. We indexed the imminent risk of sand 
screenout to when the PFI curve grew rapidly or remained high (>80). The field engineers decided whether to take preventive action or 
not based on our suggestion and their experience. Similarly, we suggested the SFPR emergency strategy (gradually reducing the pump 
rate down to 5–10 m3/min according to the sensitivity analyses) with the field operators improvising based on our preplan and their 
observational judgment when encountering the signs of screenout (a sharp increase of wellhead pressure). We present the PFI evolution 
curve at the beginning (t1), in the middle (t2, t3), and at the end (t4) of the fracturing process. The regulation applied to the pump rate, trying 
to manage the screenout, is magnified on the right side of Figs. 5 through 8 to illustrate the regulation strategy.

Fig. 5—PFI monitoring and SFPR management for Case 1 (Well A). The vertical dashed-dotted lines mark the PFI jumps due to the 
proppant injection. The dashed circles (t4) and connected dashed-dotted rectangles represent the pump rate regulation, referring 
to SFPR.
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Fig. 6—PFI monitoring and SFPR management for Case 2 (Well B). The dashed polylines and numbers at time t4 mark the increases 
in pump rate that induce fluctuations in PFI. The dashed circles and connected dashed-dotted rectangles represent the pump rate 
regulation, referring to SFPR.

Fig. 7—PFI monitoring and SFPR management for Case 3 (Well C). The dashed polylines and numbers at time t4 mark the increases 
in pump rate that induce fluctuations in PFI. The dashed circles and connected dashed-dotted rectangles represent the pump rate 
regulation, referring to SFPR.
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Fig. 8—Sand screenout case (Case 4, Well D) failed to follow the instructions of PFI monitoring. The vertical dashed-dotted lines 
mark the PFI jumps due to the proppant injection. The dashed circles (t4) and connected dashed-dotted rectangles represent the 
emergency pump rate regulations.

Case 1 (Well A) is a successful application of our new strategy, as shown in Fig. 5. The proppant was injected near continuously (dis-
crete green curves at the bottom), indicating a low operating difficulty for a shale gas well. However, the PFI reported a sharp increase 
during the second proppant injection slug, at ~5,000 seconds (labeled by the vertical dashed-dotted line in Fig. 5, a-t4). We, therefore, 
reduced the proppant concentration and volume in the following slug of proppant injection, referring to the high sensitivity of screenout 
probability to the proppant parameters (Fig. 4b). The proppant concentration afterward was also reduced, as represented by the flat trend 
of the PFI curve thereafter. The signs of screenout appeared after the proppant injection. We stepwise reduced the pump rate from 18 m3/
min (113.22 bbl/min) down to 8 m3/min (50.32 bbl/min), falling in the recommended range of SFPR (5~10 m3/min). Finally, a pump rate 
of 10 m3/min (62.90 bbl/min) was reestablished to finish this fracturing operation.

Case 2 (Well B) is a fracturing operation in a shallower subdivided formation, thus requiring lower wellhead pressure (Fig. 6). The PFI 
grew smoothly before ~5,500 seconds in this case and then rose sharply after a pump rate increase [from 14 m3/min to 15 m3/min (88.06 
bbl/min to 94.35 bbl/min)] as labeled in Fig. 6 (b-t4). A sharp jump in vertical pressure (a sign of screenout) emerged at the end of the 
fracturing operation. We gradually decreased the pump rate and maintained it at ~11 m3/min (69.19 bbl/min) because of the high proppant 
concentration (15~16% in the end) requiring a relatively high pump rate as suggested by Fig. S-4, Supplementary Material. The pressure 
became controllable at ~11 m3/min until the end of operations when sufficient pure fluid had been injected to clean up the wellbore.

Case 3 (Well C) further exhibited the effect of increasing pump rate on the evolution of PFI, as shown in Fig. 7. The pump rate was 
maintained at 14 m3/min (88.06 bbl/min) initially and then was boosted to 15 m3/min (94.35 bbl/min) and then 16 m3/min (100.64 bbl/
min) at 4,500 seconds and 8,000 seconds, respectively (Fig. 7, c-t4). Dramatic fluctuations in PFI were observed after applying these pump 
rate increases, as well as a reversal in the trend of pressure change from decreasing to increasing at ~8,000 seconds. This feature is indic-
ative of proppant settling within the fracture and depositing a “dune” falling from the injection point (Hou et al. 2022b) and due to density 
differences within the fracturing fluid. The flowing channel above the dune then controls the frictional resistance to flow and the pressure 
variations. The increased pump rate boots the drag force acting on the surface of the dune, eroding and then depositing a proppant ridge 
(as presented in Fig. 8 in the “Discussion” section). The proppant ridge blocked the flowing channel and increased the frictional resistance 
to flow, thus inducing an increase in pressure after ~8,000 seconds in Fig. 7, c-t4. Notably, the pump rate was increased during, or directly 
following, the proppant injections in Fig. 7, which may promote the generation of such a proppant ridge. The evolution of such ridges is 
suggested by previous studies combining experiments, deep learning algorithms, and field measurements (Hou et al. 2022b). A similar 
stepwise relief in pump rate was performed to avoid serious screenout in this case, as shown in Fig. 7.

Sand screenout happens in Case 4 (Well D) at the end of the fracturing operation around 12,000 seconds, as shown in Fig. 8. During 
this operation, the field engineering decided to ignore the warning of the PFI curve because of the declining trend of fracturing pressure. 
The long proppant injection slugs also indicate a well-developed fracture network that may have reduced the risks and difficulties in 
proppant injection. These superficial phenomena have confused the field operators, causing them to stick to the pumping schedule even 
though the PFI curve reported three vertical jumps around 5,000 seconds, 7,000 seconds, and 8,000 seconds (as labeled in Fig. 8, d-t4). 
No prevention measures were performed when the PFI exceeded 80 around 10,000 seconds (Fig. 8, d-t4). Therefore, a festinate pump rate 
cutdown was carried out but failed to reestablish the pump rate due to the vertical increase of wellhead pressure—a typical case of sand 
screenout.

Recommendations to Field Applications. Rapid increases in the PFI prewarn of an impending screenout, even under deceptive 
conditions when the wellhead pressure is constant (Fig. 5) or declining (Figs. 6 and 8). The initial prediction of PFI (at t1 in Figs. 5 
through 8) steps down, by feeding in subsequent new data, with time from t1 to t4, which reflects characteristics in the development of the 
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evolving subsurface fracture network. Several effective measures are summarized as mitigative actions derived from human experience, 
based on Figs. 5 through 8.

Reducing the concentration and volume of proppant in a single slug and increasing the pump rate can be useful to rebalance the prop-
pant injection and fracture propagation (Fig. 5). The monitoring of the PFI curve supports first-time adjustments to the pump schedule 
slug by slug, which is ground-breaking compared with traditional adjustment stage by-stage.

A stepwise pump rate regulation is generated based on the successful prevention of serious screenout in three cases and the sensitivity 
of PFI by pump rate variations (Figs. 5 through 7). Advance warning from the PFI must be sufficient to allow the reaction to reduce pump 
rate and therefore manage against screenout

The pump rate should be increased only slowly to avoid screenout due to the potential for deformation of the proppant dune within the 
fracture, as illustrated in Fig. 9. When the pump rate is increased, the increased frictional drag may re-entrain the settled proppant to form 
a proppant ridge (Fig. 9b). An obstructed flowing channel (from H1 to H1′ in Fig. 9) increases the frictional flow resistance to subsequent 
injections, thereby changing wellhead pressure and inducing sand screenout (Hou et al. 2022b). Figs. 6 and 7 suggest that an increase in 
the pump rate of 1 m3/min (6.29 bbl/min) may induce significant variation in PFI, which agrees with the higher sensitivity of screenout 
probability under high-pump-rate conditions (Fig. 3). Regulation using only half of this increment [0.5 m3/min (3.15 bbl/min)] is recom-
mended, referring to Fig. 5, in which frequent but only small adjustments (between 3,500 seconds and 6,500 seconds) are reflected in only 
slight variations in the PFI curve.

Fig. 9—Schematic of proppant dune evolution by the pump rate increase. (a) H1 represents the height of the flowing channel 
in fractures. (b) This height is eroded (‍H

0
i‍) by the increased pump rate that deforms the proppant dune and generates a ridge. 

Reproduced with permission from Hou et al. (2022b).

Notably, the safety window between fracturing pressure and wellhead capacity should be the most important basis for a decision. An 
emergency shutdown may be mandatory if the safety window is too narrow in order to ensure the safety of both health and the 
environment.

Applicability of the New Strategy. We use machine learning algorithms to extract experiences from previous cases to evaluate and 
manage the risk of ongoing cases—this is the structure and logic of our new strategy. Data labeling (for dependent variables during the 
algorithm training) is the main challenge of this new method because the direct underground detection of proppant injection is currently 
unavailable. The PFI defines the threshold between screenout cases and regular cases, which is the basis for the risk assessment. We 
specifically design the structure of this new method to maximize its applicability.

In particular, the new method requires a relatively small-scale data set to produce satisfactory outcomes (Figs. 5 through 8). Only 18 
wells are involved in the training before application in our field trials. This is an easy data threshold to meet because a regular field usually 
includes thousands of wells. Even in the early stages of development, the available data may be used and augmented as experience builds. 
The method will self-update with the augmented data, even if a successful mitigation strategy has not become apparent—a natural benefit 
of machine learning algorithms (Goodfellow et al. 2016).

The input features and algorithm of the data-driven workflow are customizable according to the experiences of a targeted field and may 
be improved with developments in fundamental research. Additional index parameters (e.g., the elasticity of fracturing fluids) may be 
recorded, as available, and incorporated into the algorithm. The development of more advanced numerical models (e.g., the new Eq. S-5 
for H1 in the Supplementary Material) and more perceptive machine learning algorithms will boost the fidelity of the workflows. Moreover, 
the application of this strategy is only recommended in the same region as the sourced data for algorithm training to mitigate the uncer-
tainties in engineering and geological conditions and operators.

We balance the human-machine interaction in this strategy for human intervention because the management of screenout is also highly 
dependent on the judgment and speed of reaction of operators. The sand screenout case (Case 4 in Fig. 8) presents a negative example to 
show the role of the human element. The PFI and SFPR indices are designed as references to aid (rather than replace) humans in making 
decisions and gaining experience (Fig. 1), which is another form of the self-updating characteristics of this method by integrating human 
intelligence and learning.

Limitations and Implications
Certain simplifications (of fracture complexity and ignoring the fracture propagation during proppant injection) are applied only for man-
ually calculating the PFI (by Eq. S-1, Supplementary Material) for the screenout and near-screenout cases. For all other regular cases, the 
PFI is predicted by the ensemble-learning algorithm that is free from any dependence on these simplifications or assumptions. Notably, 

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/219747-PA/3388339/spe-219747-pa.pdf/1 by Pennsylvania State U

niversity user on 16 M
ay 2024



2024 SPE Journal 9

we integrated numerical models into the machine-learning workflow to extract more features (fluid efficiency, proppant settling, etc.) than 
the manual calculation for training the algorithm, which improves the accuracy of the predicted PFI. Other simplifications include the 
constant physical properties of fracturing fluids represented by the viscosity. We ignore the influence of formation temperature, high-
speed injection, and formation water salinity on the fluid properties. Further studies may investigate the real fluid properties under forma-
tion conditions, as well as the varying fluid performances in leakoff and proppant transport.

The factors influencing sand screenout are complex. Previous work on conventional reservoirs suggests that the near-wellbore tortu-
osity of fractures may also play an important role in causing screenout, in addition to fluid leakoff, reactivation of natural fractures or 
faults in shear, issues of fluid quality or surface equipment, and other factors (Aud et al. 1994; Barree and Conway 2001; Daneshy 2007). 
However, for the fracturing of unconventional reservoirs, the acid spearhead and fine (100-mesh) proppant are usually injected to erode, 
straighten, and thereby reduce (improve) the near-wellbore tortuosity. The ultralow permeability of unconventional reservoirs also reduces 
the fluid leakoff. Thus, we posit that the mismatch between proppant injection and fracture propagation (evaluated by the PFI) becomes 
the major mechanism contributing to sand screenout in unconventional reservoirs.

Moreover, the PFI monitoring strategy is designed to aid (rather than replace) humans in managing the screenout. Human intelligence 
is essential during the application of this strategy (as shown in Fig. 1) to synthetically judge the factors promoting a sand screenout event. 
For instance, the pump rate increase during proppant injection induces significant fluctuations in FPI curves, as observed in Cases 2 and 
3 (with an amplitude of 1 m3/min). However, increasing the pump rate slowly with an amplitude of 0.5 m3/min reports minor influences 
on the PFI curve in Case 1, which was summarized as an important human experience for elaborate regulations of pump rate. This is a 
representative example of combining human and artificial intelligence to secure fracturing operations. Other field practices preventing 
sand screenout include the applications of lightweight proppant or higher-viscosity fluids, and injecting a longer pure-fluid pad between 
proppant pads, among others (Biheri and Imqam 2023; Siddhamshetty et al. 2018; Wood et al. 2003).

Conclusions
Sand screenout is a frequent but highly underrated issue for both operational safety and economic loss during hydraulic fracturing for 
shale oil/gas. We propose a self-updating and customizable data-driven strategy to produce a real-time risk assessment (PFI curves) and 
inform the management (SFPR pump rate regulation) of screenout. This compares with previous efforts that predict screenout as discrete 
events a posteriori. Four field applications demonstrate the performance and potential of the new data-driven method for securing hydrau-
lic fracturing operations. This new strategy is designed as a reference to aid (rather than replace) humans in making decisions with the 
help of machine learning (for PFI) and data mining (for SFPR) techniques. Several effective measures are summarized as mitigative 
actions against sand screenout based on field trials:
1.	 Reducing the concentration and volume of proppant in a single slug can be useful when the PFI monitoring curve reports a prewarning 

(rapid increases) of an impending screenout.
2.	 A stepwise pump rate regulation is generated, which can mitigate screenout with the help of advance warning from the PFI curve 

(allowing the reaction to gradually reduce the pump rate).
3.	 Increasing the pump rate should be performed slowly (an increment of 0.5 m3/min is recommended based on case studies) to mitigate 

the deformation of the proppant dune that may obstruct the flow in fractures and cause sand screenout.

Nomenclature
	 H1	=	� height of the slurry flowing layer in fractures
	 Vs/Vf	=	� volume ratio of injected sand and fluid
	ΔP/ΔVf	=	� wellhead pressure change in a unit volume of injected fluid
	 ƞ	=	� fluid efficiency in fractures

Acknowledgments
This research is funded by the National Natural Science Foundation of China under grant 42377138. DE acknowledges support from the 
G. Albert Shoemaker endowment.

References
Aud, W. W., Wright, T. B., Cipolla, C. L. et al. 1994. The Effect of Viscosity on Near-Wellbore Tortuosity and Premature Screenouts. Paper presented at the 

SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 25–28 September. https://doi.org/10.2118/28492-MS.
Barree, R. D. and Conway, M. W. 2001. Proppant Holdup, Bridging, and Screenout Behavior in Naturally Fractured Reservoirs. Paper presented at the SPE 

Production and Operations Symposium, Oklahoma City, Oklahoma, USA, 24–27 March. https://doi.org/10.2118/67298-MS.
Ben, Y., Perrotte, M., Ezzatabadipour, M. et al. 2020. Real-Time Hydraulic Fracturing Pressure Prediction with Machine Learning. Paper presented at the 

SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 4–6 February. https://doi.org/10.2118/199699-MS.
Bergstra, J. and Bengio, Y. 2012. Random Search for Hyper-Parameter Optimization. J Mach Learn Res 13 (2). https://doi.org/https://dl.acm.org/doi/10.​

5555/2188385.2188395.
Biheri, G. and Imqam, A. 2023. In-Depth Laboratory Proppant Transport Study Using HVFRs for Marcellus High TDS Environments. SPE J. 28 (5): 

2130–2147. https://doi.org/10.2118/214692-PA.
Daneshy, A. A. 2007. Pressure Variations Inside the Hydraulic Fracture and Their Impact on Fracture Propagation, Conductivity, and Screenout. SPE Prod 

& Oper 22 (1): 107–111. https://doi.org/10.2118/95355-PA.
Dontsov, E. V. 2022. Analysis of a Constant Height Hydraulic Fracture Driven by a Power-Law Fluid. Rock Mechan Bull 1 (1): 100003. https://doi.org/​

10.1016/j.rockmb.2022.100003.
Geary, M. P., Johnson, D. E., Kogsbøll, H.-H. et al. 1993. Field Implementation of Proppant Slugs to Avoid Premature Screen-Out of Hydraulic Fractures 

with Adequate Proppant Concentration. Paper presented at the Low Permeability Reservoirs Symposium, Denver, Colorado, USA, 26–28 April. https://​
doi.org/10.2118/25892-MS.

Goodfellow, I., Bengio, Y., Courville, A. et al. 2016. Deep Learning. Cambridge, Massachusetts, USA: MIT Press.
Harris, P. C. and Pippin, P. M. 2000. High-Rate Foam Fracturing: Fluid Friction and Perforation Erosion. SPE Prod & Fac 15 (1): 27–32. https://doi.org/​

10.2118/60841-PA.
Hou, L., Cheng, Y., Elsworth, D. et al. 2022a. Prediction of the Continuous Probability of Sand Screenout Based on a Deep Learning Workflow. SPE J. 27 

(3): 1520–1530. https://doi.org/10.2118/209192-PA.

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/219747-PA/3388339/spe-219747-pa.pdf/1 by Pennsylvania State U

niversity user on 16 M
ay 2024

https://doi.org/10.2118/28492-MS
https://doi.org/10.2118/67298-MS
https://doi.org/10.2118/199699-MS
https://doi.org/https://dl.acm.org/doi/10.5555/2188385.2188395
https://doi.org/https://dl.acm.org/doi/10.5555/2188385.2188395
https://doi.org/10.2118/214692-PA
https://doi.org/10.2118/95355-PA
https://doi.org/10.1016/j.rockmb.2022.100003
https://doi.org/10.1016/j.rockmb.2022.100003
https://doi.org/10.2118/25892-MS
https://doi.org/10.2118/25892-MS
https://doi.org/10.2118/60841-PA
https://doi.org/10.2118/60841-PA
https://doi.org/10.2118/209192-PA


2024 SPE Journal10

Hou, L., Cheng, Y., Wang, X. et al. 2022b. Effect of Slickwater-Alternate-Slurry Injection on Proppant Transport at Field Scales: A Hybrid Approach 
Combining Experiments and Deep Learning. Energy 242. https://doi.org/10.1016/j.energy.2021.122987.

Hou, L., Elsworth, D., Zhang, F. et al. 2023. Evaluation of Proppant Injection Based on a Data-Driven Approach Integrating Numerical and Ensemble 
Learning Models. Energy 264. https://doi.org/10.1016/j.energy.2022.126122.

Hu, J., Khan, F., Zhang, L. et al. 2020. Data-Driven Early Warning Model for Screenout Scenarios in Shale Gas Fracturing Operation. Comput Chem Eng 
143: 107116. https://doi.org/10.1016/j.compchemeng.2020.107116.

Hu, M. Y., Zhang, G. (Peter), Jiang, C. X. et al. 1999. A Cross‐Validation Analysis of Neural Network Out‐of‐Sample Performance in Exchange Rate 
Forecasting. Decis Sci 30 (1): 197–216. https://doi.org/10.1111/j.1540-5915.1999.tb01606.x.

Kingma, D. P. and Ba, J. 2014. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (preprint; last revised 30 January 2017). https://doi.org/​
10.48550/arXiv.1412.6980.

Li, L., Tan, J., Wood, D. A. et al. 2019. A Review of the Current Status of Induced Seismicity Monitoring for Hydraulic Fracturing in Unconventional Tight 
Oil and Gas Reservoirs. Fuel 242: 195–210. https://doi.org/10.1016/j.fuel.2019.01.026.

Massaras, L. V. and Massaras, D. V. 2012. Real-Time Advanced Warning of Screenouts With the Inverse Slope Method. Paper presented at the SPE 
International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 15–17 February. https://doi.org/10.2118/150263-​
MS.

Nolte, K. G. 1991. Fracturing-Pressure Analysis for Nonideal Behavior. J Pet Technol 43 (2): 210–218. https://doi.org/10.2118/20704-PA.
Nolte, K. G. and Smith, M. B. 1981. Interpretation of Fracturing Pressures. J Pet Technol 33 (9): 1767–1775. https://doi.org/10.2118/8297-PA.
Roussel, N. P., Manchanda, R., and Sharma, M. M. 2012. Implications of Fracturing Pressure Data Recorded during a Horizontal Completion on Stage 

Spacing Design. Paper presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, 6–8 February. https://doi.org/​
10.2118/152631-MS.

Shoaibi, S., Farsi, S., Suchta, B. et al. 2023. Fluid and Proppant Distribution and Fracture Geometry Calibration Using Permanent Fiber-Optic Sensing 
DAS/DTS – Oman Case Study. Paper presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, 10–12 
October. https://doi.org/10.2118/215487-MS.

Siddhamshetty, P., Narasingam, A., Liu, S. et al. 2018. Feedback Control of Proppant Bank Heights during Hydraulic Fracturing for Enhanced Productivity 
in Shale Formations. In Computer Aided Chemical Engineering, eds. M. R. Eden, M. G. Ierapetritou, and G. P. Towler, Vol. 44, 703–708. Amsterdam, 
Netherlands: Elsevier. https://doi.org/10.1016/B978-0-444-64241-7.50112-9.

Stein, R. M. 2002. Benchmarking Default Prediction Models: Pitfalls and Remedies in Model Validation. New York, USA: Moody’s KMV.
Sun, J. J., Battula, A., Hruby, B. et al. 2020. Application of Both Physics-Based and Data-Driven Techniques for Real-Time Screen-Out Prediction with 

High Frequency Data. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Virtual, 20–22 July. https://doi.org/​
10.15530/urtec-2020-3349.

Tang, H., Killough, J. E., Heidari, Z. et al. 2017. A New Technique To Characterize Fracture Density by Use of Neutron Porosity Logs Enhanced by 
Electrically Transported Contrast Agents. SPE J. 22 (4): 1034–1045. https://doi.org/10.2118/181509-PA.

U.S. Energy Information Administration. 2018. Hydraulically Fractured Horizontal Wells Account for Most New Oil and Natural Gas Wells. https://www.​
eia.gov/todayinenergy/detail.php?id=34732.

Wang, H. and Sharma, M. M. 2023. Uniquely Determine Fracture Dimension and Formation Permeability from Diagnostic Fracture Injection Test. Rock 
Mechan Bull 2 (2): 100040. https://doi.org/10.1016/j.rockmb.2023.100040.

Warpinski, N. R. R., Du, J., and Zimmer, U. 2012. Measurements of Hydraulic-Fracture-Induced Seismicity in Gas Shales. SPE Prod & Oper 27 (3): 
240–252. https://doi.org/10.2118/151597-PA.

Willingham, J. D., Tan, H. C., and Norman, L. R. 1993. Perforation Friction Pressure of Fracturing Fluid Slurries. Paper presented at the Low Permeability 
Reservoirs Symposium, Denver, Colorado, USA, 26–28 April. https://doi.org/10.2118/25891-MS.

Wood, W. D., Brannon, H. D., Rickards, A. R. et al. 2003. Ultra-Lightweight Proppant Development Yields Exciting New Opportunities in Hydraulic 
Fracturing Design. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, 5–8 October. https://doi.org/10.​
2118/84309-MS.

Wu, K., Liu, Y., Jin, G. et al. 2021. Fracture Hits and Hydraulic-Fracture Geometry Characterization Using Low-Frequency Distributed Acoustic Sensing 
Strain Data. J Pet Technol 73 (7): 39–42. https://doi.org/10.2118/0721-0039-JPT.

Yew, C. H. and Weng, X. 2014. Mechanics of Hydraulic Fracturing. Oxford, UK: Gulf Professional Publishing.
Yu, X., Trainor-Guitton, W., and Miskimins, J. 2020. A Data Driven Approach in Screenout Detection for Horizontal Wells. Paper presented at the SPE 

Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 4–6 February. https://doi.org/10.2118/199707-MS.
Zeiler, M. D. 2012. ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701 (preprint; submitted 22 December 2012). https://doi.org/10.​

48550/arXiv.1212.5701.

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/219747-PA/3388339/spe-219747-pa.pdf/1 by Pennsylvania State U

niversity user on 16 M
ay 2024

https://doi.org/10.1016/j.energy.2021.122987
https://doi.org/10.1016/j.energy.2022.126122
https://doi.org/10.1016/j.compchemeng.2020.107116
https://doi.org/10.1111/j.1540-5915.1999.tb01606.x
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.fuel.2019.01.026
https://doi.org/10.2118/150263-MS
https://doi.org/10.2118/150263-MS
https://doi.org/10.2118/20704-PA
https://doi.org/10.2118/8297-PA
https://doi.org/10.2118/152631-MS
https://doi.org/10.2118/152631-MS
https://doi.org/10.2118/215487-MS
https://doi.org/10.1016/B978-0-444-64241-7.50112-9
https://doi.org/10.15530/urtec-2020-3349
https://doi.org/10.15530/urtec-2020-3349
https://doi.org/10.2118/181509-PA
https://www.eia.gov/todayinenergy/detail.php?id=34732
https://www.eia.gov/todayinenergy/detail.php?id=34732
https://doi.org/10.1016/j.rockmb.2023.100040
https://doi.org/10.2118/151597-PA
https://doi.org/10.2118/25891-MS
https://doi.org/10.2118/84309-MS
https://doi.org/10.2118/84309-MS
https://doi.org/10.2118/0721-0039-JPT
https://doi.org/10.2118/199707-MS
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.48550/arXiv.1212.5701

	Integration of Real-­Time Monitoring and Data Analytics to Mitigate Sand Screenouts During Fracturing Operations
	Summary
	Introduction
	Methodology
	Results and Discussion
	Limitations and Implications
	Conclusions
	Nomenclature
	Acknowledgments

	References


