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Pseudoprospective forecasting of failure time
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Power-law precursory acceleration of observable quantities has been accepted as an effective way to predict
time to failure in both materials and structures. However, the form of the power-law exponent is seldom known a
priori and is a key challenge in blind prediction. We report a linear relation with respect to time t of the estimated
failure times t∗ that are calculated step by step using the most recent updates of the monitored quantity. Our
findings indicate that the monitored quantity can be defined as any power of the inverse rate. All projections of
t∗ for any exponent universally intersect with the straight line of t = t∗, with the intersection uniquely defining
the failure time. The method is validated against synthetic data, laboratory experiments (materials failure), and
volcanic eruption data (structural failure). Our work provides the basis for a significant improvement in time to
failure forecasting where the controlling power-law exponent is not known in advance.
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I. INTRODUCTION

The increase in acceleration of measurable quantities such
as deformation or (micro)seismicity preceding the time of
failure of materials and structures is widely observed and
accepted as a proxy for a precursor to failure [1–9]. In the
vicinity of the failure time t f , this acceleration precursor can
be described as a power-law relation [1–3,7–14]

�̇ = C(t f − t )−β (1)

with respect to the time to failure, where � represents a
measurable quantity and the overscripted dot represents the
derivative of � with respect to time. β is the critical power-law
exponent and C is a prefactor. Equation (1) can be deduced
from Voight’s relation [1,2,7–11]

�̇−α�̈ − A = 0 (2)

that describes the behavior of materials in their terminal stage
of failure, with C = [A(α−1)]1/(1−α) and β = 1/(α−1) [1],
where A and α are constants. �̇ tends to infinity as time
approaches the failure time. This power-law behavior has
been confirmed by observations for natural hazards such as
landslides [14,15], volcanic eruption [1–3,5,9], and failure in
laboratory experiments [16–23].

Equation (1) can be rewritten in a linearized form
[10,11,23]

�̇−1/β = C−1/β (t f − t ). (3)

Then the failure time can be determined by linearly extrap-
olating the curve of �̇−1/β with time to its intersection with the
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time axis. This failure forecast method (FFM) [9,10,16,24,25]
has been proven of validity in the retrospective prediction of
failure in laboratory experiments [17,20], landslides [4,26],
volcanic eruptions [1,3–5,27–29], and structural health mon-
itoring [30]. Many attempts have been made to assess and
improve the accuracy of this method for forecasting failure
[13,21,30–34] in real time.

The common application of the FFM always supposes that
the exponent β is unity (β = 1), i.e., α = 2. In this case, the
inverse rate decreases linearly with time. However, laboratory
experiments and field data show that the exponent β does not
always take the value of unity. Thus in the application of blind
prediction for failure in real time, a key difficulty is that the
actual value of β (α) is in fact unknown and shows a large
dispersion immediately prior to failure [2,3,5,11,13,23,25].

We report a method that is unencumbered by this apriori
uncertainty of the exponent β (α) for blind prediction in real
time. In this method, we first calculate the values of any power
χ of the inverse rate. Then a sequence of estimated values t∗
of the failure time can be determined by fitting the recent data
to Eq. (3) step by step. Our findings indicate that the estimated
values t∗ consistently converge to the actual failure time as a
linear tendency with respect to time. These evolving lines of t∗
estimated by different values of χ have a common intersection
point at t∗ = t = t f with the line of t = t∗. Consequently, the
failure time can be predicted as the intersection point in real
time. These results are confirmed by synthetic data, laboratory
experiments, and volcanic eruption data.

II. PREDICTIONS THROUGH THE CLASSIC FFM

For the classic FFM [1–6,9–11,17,24], the exponent β is
assumed to be equal to 1 and the failure time is estimated
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FIG. 1. Key difficulties and errors in the prediction process using the cumulative-time technique. Every fit of the data begins from the same
initial time but ends at every individual current time. Consequently, the number of data points used in fitting increase as time approaches the
failure time. The solid red lines are the fitted results and the intersection point with time axis is the predicted result.

by extending the inverse rate to intersect the time axis. Two
estimation methods named, respectively, the “cumulative” and
“simple moving-time window” techniques [11] can be used to
perform the prediction. For the “cumulative-time technique”
(Fig. 1), every fitting starts from the same initial time but
ends at every individual observation time. For the “simple
moving-time window technique” (Fig. 2), only the most recent
data (within a window) are used and thus the start time varies
as the window moves. This process is equivalent to fitting the
tangent to the function at every individual update with the fail-
ure time identified at the intersection of this projected tangent
with the time axis. In both techniques, the linear fitting is made
stepwise, with the observation time progressing towards the
failure time.

It is apparent that the FFM method produces a biased
prediction, leading to significant errors when β is not close to
1, especially at the earliest stages (Figs. 1 and 2). The failure
times are overestimated when β < 1 (Figs. 1 and 2) since

FIG. 2. Key difficulties and errors in the prediction process in
applying the simple moving-time window technique. During the
process of fitting, only the most recent data (within a window) are
used in the prediction, i.e., the starting and ending time of the data
points used for the prediction vary as the window moves. The solid
red lines are the fitted results and the intersection point t∗ with time
axis is the predicted result. The inset shows a zoomed-in view to the
fit result.

the curve of the inverse rate is upwardly convex. Conversely,
when β > 1 the failure times are underestimated. Only when
the observation time is very close to the failure time will
predictions converge to the true failure time. Considering
the properties of the change in the gradient of the inverse rate
over time, in practical application, the “simple moving-time
window” technique is preferred since the previous data have
little effect on the current prediction and the prediction con-
verges more rapidly to the actual value. Thus, understanding
the tendency of the predicted values t∗ to converge to the true
failure time could present an earlier and more accurate blind
prediction when β is unknown.

III. A LINEAR RELATION FOR THE BLIND
PREDICTION OF FAILURE TIME

In order to reveal the general tendency of the predicted
values t∗ converging to the actual failure time when β is
unknown, let us raise both sides of Eq. (1) to the 1/χ power
to get

�̇−1/χ = C−1/χ (t f − t )β/χ . (4)

Clearly, the function �̇−1/χ versus time is upwardly convex
when χ > β, concave when χ < β (Fig. 3) and linear when
χ = β. In application of the classic FFM [1–6,9–11,17,24],
the inverse rate is used to perform the prediction. This is
equivalent to setting χ = 1.

Straightforwardly, the equation of the tangent to the func-
tion �̇−1/χ versus time at any point (t, �̇−1/χ ) can be
defined as

�̇−1/χ = b + kt, (5)

where k is the slope of the tangent at time t that can be
calculated as

k = −β

χ
C−1/χ (t f − t )β/χ−1 (6)

by the differentiation of Eq. (4) with respect to time. This
defines the parameter b as

b = C−1/χ (t f − t )β/χ − kt . (7)

By substituting �̇−1
f = 0 at the failure time into Eq. (5), the

estimated failure time t∗ is then calculated from

t∗ = −b/k. (8)
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FIG. 3. Two examples illustrate the evolution of �̇−1/χ versus time with χ = 1.0 (inverse rate) and 0.5 (square of the inverse rate). The
strain rates are calculated through Eq. (1) and normalized to the rate of t0. (a) β = 0.7, (b) β = 0.4. A small amount of Gaussian noise with
standard deviation 10−6 is added to represent the effect of measurement errors.

Substituting Eqs. (6) and (7) into Eq. (8) produces

t∗ = χ

β
t f +

(
1 − χ

β

)
t . (9)

Thus, t∗ has a linear relation with respect to t with a nega-
tive slope when χ > β or positive slope when χ < β. t∗ = t f

in the case of χ = β. It is clear that the extrapolated tangents
to Eq. (9) for different values of χ have a common intersection

FIG. 4. Results for synthetic rates given by Eq. (1) when β = 0.4 [(a) and (b)] and β = 0.7 [(c) and (d)]. (b) and (d) are zoomed-in views
of the results in the vicinity of the failure time. Four different results are calculated with 5, 10, 50, then 100 data points, respectively, used in
the fit, for comparison. Three individual lines for χ = 1.0, χ = 0.5, and for t∗ = t intersect at t = t∗ = t f . Dashed vertical and horizontal lines
denote the true failure time t f of 1001 days.
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FIG. 5. Estimated failure time t∗ versus time for three real data sets. Red lines are the linear fit lines. Dashed vertical and horizontal lines
mark the failure time t f , or eruption time te. Estimation method of error bars in t∗ is illustrated in Fig. 6. (a) Creep-relaxation failure experiment,
β = 0.79. (b) Creep failure experiment with β = 0.94. (c) Uniaxial compression failure experiment of volcanic basaltic rock, β = 0.92. (d)
Volcanic results of one-day average tilt data [9] with β = 1.84. The first four values of t∗ are through the most recent prior data points of
every observable time, constituting a total of five data points, with the remaining values close to the failure time calculated through three data
points. The confidence limit (especially the upper limit) is sometimes not convergent for the linear extrapolation of three data points at the 95%
confidence level, because there are insufficient data points and their fluctuation is too large, and thus a 90% confidence level is selected.

point at t = t f with the line t∗ = t . As a consequence, the
failure time can be found by extending the line of Eq. (9)
to the line of t∗ = t , or determined as the intersection of two
extension lines of Eq. (9) for any two values of χ .

IV. VALIDATION OF PREDICTION PERFORMANCE
THROUGH SYNTHETIC AND REAL DATA

Generally, using the inverse rate �̇−1 (χ = 1) and the
square �̇−2 (χ = 0.5) of the inverse rate is convenient in
application. We first evaluate this method by using synthetic
strain sequences where the rate evolves according to Eq. (1)
with a failure time of 1001 days. Gaussian noise is added to
simulate the effect of measurement errors. Figure 4 shows the
results when β = 0.7 and 0.4 as two independent examples.
In these cases, we do not directly calculate the derivatives
of the curves of �̇−1 and �̇−2. Alternatively, for practical
application, we use the “simple moving-time window tech-
nique” [11] to fit the recent data to a linear line to Eq. (5) to
approximate the tangent line (as shown in Fig. 2). Every fit to

determine the two parameters b and k is performed using the
most recent suite of data points, enabling t∗ to be calculated
based on Eq. (8). For both cases of χ = 1 and χ = 0.5, t∗
tends to converge toward the actual failure time, with a linear
relation with time (Fig. 4) that commonly intersects with the
straight line of t = t∗. Although the fluctuations induced by
the noise will increase with a decrease in the number of data
points used in the fit, this does not change the total linear
trend. This demonstrates that this method may indeed yield
an earlier and more accurate blind prediction of the failure
time.

It should be mentioned that in the early stage, the fluctua-
tions induced by noise increase with a decrease in the number
of data points used in the fit. However, these do not affect the
total linear trend of t∗ converging to t f . In the vicinity of t f , an
increase in the number of data points used in the fit will lead
to a deviation, although this is very slight and has little effect
on the total linear trend. Thus, in practical application, more
data points should be used in the fit during the early stage
where the gradient of the inverse rate changes only slowly,

065503-4



PSEUDOPROSPECTIVE FORECASTING OF FAILURE TIME PHYSICAL REVIEW E 111, 065503 (2025)

FIG. 6. Example linear estimations and error bars of t∗ for real volcanic, synthetic, and real experimental data including confidence limits
and the error of extrapolation to t∗. Estimation examples with (a) five real volcanic data points, (b) five synthetic data points, (c) three real
volcanic data points, and (d) five real experimental data points.

then decreasing the number of data points when the gradient
changes rapidly.

Now, let us evaluate this method through the use of data
from laboratory creep-relaxation [35], creep [11,36], and
monotonic loading experiments, and from observations of
deformations (tilt data) approaching sector collapse/volcanic
eruption [9]. In these examples, we calculate the values of
�̇−1 and �̇−2 in the final stages of acceleration. The “simple
moving-time” technique is used to perform a linear fit at every
observable time. Clearly, the estimated values t∗ of the failure
times converge to the actual failure (collapse/eruption) time
with a linear tendency for all three examples where the values
of β are individually close to [Fig. 5(b)], less than [Fig. 5(a)]
and larger than 1.0 [Fig. 5(c)]. This method presents a good
prediction that is very close to the actual value for all three
cases. For these volcanic eruption data [Fig. 5(c)], the three
intersection points do not coincide, but they span a very short
period of less than two days. This demonstrates that this
method is effective in limiting the prediction to a small and
diminishing range as the system progresses to failure.

V. EXPONENT VALUES IMPLYING DIFFERENT
FAILURE MODES

Integration of Eq. (1) gives

� f − � = βC(t f − t )1−β. (10)

This indicates that β > 1 implies that the accumulation
quantity � tends to infinity as time approaches the failure
time. Thus, failure for the case where β > 1 could represent a
different physical mode of failure from that of where β < 1.
Double integration of Eq. (2) gives the same conclusion that �

tends to infinity when α < 2. Thus, β = 1.0 (α = 2) could be
a threshold magnitude implying a transition in failure modes.
Conversely, when β < 0.5, Eq. (10) dictates that the inverse
rate (dt/d�) f = 0 at the failure time and (d2t/d�2) f each
tend to infinity. As a consequence, the curve has an infinite
curvature at the failure point. So, the value of β < 0.5 could
represent another type of failure different from catastrophic
failure—for example, creep. In laboratory creep, relaxation
creep, and monotonic increase displacement catastrophic fail-
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ure experiments [36] of brittle granite and marble rocks, β

usually ranges from 0.5 to 1.0 [23]. For the cases of β ranging
from 0.5 to 1.0, the estimated failure times t∗ recovered before
the catastrophic failure by assuming χ = 0.5 and χ = 1.0
gives the lower and upper bound of the actual failure time
[Fig. 5(a)].

VI. DISCUSSION AND CONCLUSIONS

Our findings show that the estimating time to failure t∗ by
updating and using the most recent data points for any value of
χ linearly converges to the actual failure time. This promises
a robust method for the early, accurate, and blind prediction of
failure time where the power-law exponent β is unknown—as
is the case in all forecasts. The failure time can be determined
by linearly extending the curve of t∗ with respect to time to
the line t = t∗. Alternatively, this may be determined from the
intersection of two extended lines of t∗ versus time, which are
calculated from any two arbitrarily assumed values of χ .

The fluctuations of t∗ that are induced by noise do not in-
fluence the overall tendency of the curve to linearly converge
toward the actual failure time. In practical application, more
data points could be used for every fit at the early stage be-
cause the gradient of the curve of �̇−1/χ changes very slowly
so that the effects of noise can be suppressed. Otherwise, the
random uncertainty induced by the noise in the signal on the
estimations of t∗ may significantly influence the extrapolation
of a linear-fit prediction of t f . For example, in the synthetics,
the ratio of the input-noise amplitude to the true signal in the
data for the early phase is 10−3. But this leads to significant
fluctuations in the estimated t∗ in this stage when the number
of data points used in the fit is small (Fig. 4). Furthermore, er-
ror bars in t∗ are also estimated through the method illustrated
in Fig. 6. In order to compare effects of the noise levels in
the synthetic and real volcanic data on estimation uncertainty,
as an example, Figs. 6(a) and 6(b) plot the estimation results
for five days before the eruption time using both real volcanic
and synthetic data. This shows that the error bars on t∗ for
these two set data are of the same order and comparable.
The error bars in estimated failure time t∗ in Fig. 5 show
that the confidence limits on the forecast failure time at early
time is much larger, before then converging with time (as in
Ref. [10]). It should be stated that the percentage error in the
present results for synthetic data is generally less than that

for the real data. In practical forecasts, there is always the
potential for unconscious bias. With time approaching to the
failure time, the values of rate increase rapidly and the noise
has little effect on the calculated values of t∗. At this stage,
we should decrease the number of data points involved in
every fitting step since, in the vicinity of the actual failure
time, the gradient of the curve of �̇−1/χ changes rapidly.
At this stage, the incorporation of more data points in every
fitting step will result in the calculated results of t∗ deviating
more significantly from the linear tendency [Figs. 3(b) and
4(b)]—although this deviation is slight and does not change
the total trend. Thus, in practical application, more data points
should be captured within the sampling window and used in
the early-stage fitting where the gradient of the inverse rate
changes only slowly. The number of data points may then be
decreased when the gradient changes rapidly.

In application of this method, we can first calculate �̇−1/χ

from any measurable quantity (displacements, strains, RSAM,
AE) � for any convenient magnitude of χ . Then, a sequence
of estimated failure times t∗ can be calculated for every ob-
servable time by using the most recent data points. The curve
of �̇−1/χ versus time is upwardly convex for χ > β and con-
cave for χ < β. Generally, the inverse rate for χ = 1 or square
of inverse rate (χ = 0.5) is recommended in performing the
prediction. In unaxial compression tests on rocks, conducted
by monotonically increasing the loadpoint displacement, the
power exponent β has been found to range from 0.5 to 1.0.
In this case, the estimated values of t∗ based on χ = 1 and
χ = 0.5 constrain the upper and lower bound of the failure
time, respectively.
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