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Abstract

We present results from our analysis of double white dwarf (DWD) binary star systems

in the inspiraling and mass-transfer stages of their evolution. Theoretical constraints on

the properties of the white dwarf stars allow us to map out the DWD trajectories in the

gravitational-wave amplitude-frequency domain and to identify population boundaries that

define distinct sub-domains where inspiraling and/or mass-transferring systems will and will

not be found. We identify for what subset of these populations it should be possible to

measure frequency changes and, hence, directly follow orbit evolutions given the anticipated

operational time of the proposed space-based gravitational-wave detector, LISA. We show

how such measurements should permit the determination of binary system parameters, such

as luminosity distances and chirp masses, for mass-transferring as well as inspiraling systems.

We also present results from our efforts to generate gravitational-wave templates for a

subset of mass-transferring DWD systems that fall into one of the above mentioned sub-

domains. Realizing that the templates from a point-mass approximation prove to be inad-

equate when the radii of the stars are comparable to the binary separation, we build an

evolutionary model that includes finite-size effects such as the spin of the stars and tidal and

rotational distortions. In two cases, we compare our model evolution with three-dimensional

hydrodynamical models of mass-transferring binaries to demonstrate the accuracy of our

results. We conclude that the match is good, except during the final phase of the evolution

when the mass transfer rate is rapidly increasing and the mass donating star is severely

distorted.

viii



1. Part I : Introduction

White dwarf stars are thought to be the end products of the evolution of a normal star, such

as our sun (Fowler, 1926; Bessell, 1978). The first white dwarf star, Sirius B, was discovered

in 1844 by an astronomer, Friedrich Bessel, and is a companion to the brightest star in the

sky (Sirius A), which is at a distance of about 8 light years from Earth. He noticed that

the light observed from Sirius A has an oscillatory motion, as though it is being pulled back

and forth by an unseen object. In 1862, Alvan Clark resolved this object for the first time

and found that this unseen object (Sirius B) has a surface temperature of 25,000 Kelvin (the

sun’s surface temperature ≈ 5,800 Kelvin) and is nearly 10,000 times fainter than Sirius A.

To put it in another way, though Sirius B is a very hot star, it appears to be fainter even at

the same distance as Sirius A. This means that Sirius B has to have a much smaller radius

than Sirius A. In addition, from observing the orbital motion of this binary system, it was

later found that Sirius B has a mass roughly the same as our sun packed into a volume that

is roughly the same as the Earth. The implication of these observations is that Sirius B is an

unusually compact object with an average density of about million times greater than our

sun. Since the discovery of Sirius B, astronomers have found many white dwarfs (Liebert,

1980) and discovered that they are common in our Galaxy.

1.1 Formation of White Dwarf Stars

Astronomers frequently represent the properties and evolution of stars in a plot that is

called the Hertzsprung-Russel (H-R) diagram, first proposed in 1910 by Ejnar Hertzsprung

and Henry Norris Russel. Theoretically, it is a plot of luminosity (energy radiated per

second) of a star versus its effective temperature1. In general ordinary stars, such as our

1According to Shu (1982), effective temperature is defined as the surface temperature of a star if it were
a blackbody radiating at its given luminosity.

1



2

sun, begin their life by igniting nuclear fusion of hydrogen into helium in their cores. This

stage of burning hydrogen is the longest period all stars spend in their entire life time and

on the H-R diagram they fall along a diagonal band called the “main-sequence (MS).” On

the main-sequence the distinguishing factor for stars is their individual masses. Some stars

are more massive than others and the more massive ones also are more luminous. It was

Eddington who first noticed that the luminosity of a star is proportional to its mass to the

fourth power (L ∝M 4). This means that a star 10 times more massive than the sun radiates

104 times more energy every second. Because it expends this energy faster, the more massive

star evolves faster than a low mass star.

Let us consider a normal, low mass star such as our sun. Once it starts fusing hydrogen

to helium inside the core, it settles onto the main-sequence and stays there for most of its life.

After exhausting hydrogen in its core, there is no more nuclear energy generation in the core

and the core contracts gravitationally. At the same time, the envelope of the star expands

and its temperature decreases. The star moves to the right of the H-R diagram to what is

referred to as the “sub-giant” branch. This decrease in the temperature of the star causes it

to appear red and after some time the expansion of the star pushes it onto the “red-giant”

branch of the H-R diagram. At the same time the helium core continues to contract and the

electrons in the core are so tightly packed that they become degenerate. This degeneracy

results due to Pauli’s exclusion principle, which states that no two electrons can have the

same quantum state (so that they are placed in consecutive energy levels, starting from the

ground state). The pressure produced can be understood from the Heisenberg uncertainty

relation, which states that the position and momentum of a particle cannot be simultaneously

determined. This means that a gas of free electrons exhibits degeneracy pressure (due to

large momentum arising from uncertainty principle) independent of the temperature.

For stars in the red-giant phase, eventually the outer envelope expands and leaves the

star, forming a planetary nebula. The hot (inert) helium core that is unveiled is called a
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“white dwarf”. For stars more massive than the sun, the process of core contraction will

further lead to fusion of helium into carbon and oxygen (CO) and a CO core is formed. This

type of compact star is referred to as a carbon-oxygen white dwarf star. White dwarfs are

located in the low luminosity, high temperature region of the H-R diagram.

1.2 Properties of White Dwarf Stars

For MS stars, the radius is proportional to their mass. So, for example, a 0.1M� star has

roughly 1/10th the radius of our sun. But white dwarfs have a curious relationship that the

mass of a white dwarf is inversely proportional to its radius. So a more massive white dwarf

star has a smaller radius, and vice versa. But there is a limit on how massive a white dwarf

can be. In 1931 Chandrasekhar (Chandrasekhar, 1931) showed that the radius of a white

dwarf decreases to zero at a mass of 1.2M� (called the Chandrasekhar mass Mch; the modern

adopted value is Mch = 1.44M�). In 1983 he was awarded the Noble prize in physics in part

for this discovery. This is the maximum mass a white dwarf can have under degenerate

conditions. To this day, all the observed white dwarfs have been found to have masses at or

below this limit.

1.3 Formation of Double White Dwarf Stars

Normal MS stars can form as binary (or higher multiple) systems during their birth and

each star in such system will evolve off the main-sequence during the course of its evolution.

If both the stars in the system are low mass stars, it is reasonable to expect over time the

system will naturally evolve into a double white dwarf (DWD) pair. The possible formation

mechanism is as follows (Evans et al., 1987): In a binary system with MS stars, the more

massive component first evolves off the MS as the hydrogen in its core is exhausted due

to conversion into helium. At the same time, by expanding its envelope, the star starts to
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fill its Roche lobe2 and transfers mass to its companion (the yet unevolved main-sequence

star). This companion then fills its Roche surface with the new material it acquired and a

common envelope is formed. Due to drag forces (as the stars are orbiting each other in a

common envelope), the heat generated is utilized in shedding the envelope. But this energy

has to come from the binding energy of the orbit, so the binary shrinks. At this point, the

system has a degenerate helium core and a main-sequence star in a closer orbit than before.

Eventually, the remaining main-sequence star also evolves as it uses up hydrogen in the core

and expands. But it expands to a smaller radius to fill its Roche lobe than the previous

one, as the stars are closer to each other (the Roche lobe is now smaller for this second

star). A second common envelope phase ensues, shrinking the orbit even further and drives

off the envelope. What remains now is a system with two degenerate (helium) cores in a

tighter orbit. The same scenario can be applied to understand the formation of short period

carbon-oxygen (CO) or carbon-helium (CO + He) binary white dwarfs if the initial MS stars

are more massive.

1.4 Evolution of Double White Dwarf Stars

Once a binary star system reaches the stage where two degenerate cores are orbiting one

other, it appears that no other (stellar) evolutionary mechanism will influence the orbit of

the binary and it may live forever in a detached state. But, of course, the universe is not

boring and a completely different type of evolution enters the scene. In fact, this “new” type

of evolution existed all the while in the background, but we had to wait until the final stages

of stellar evolution to notice the effects.

In 1905, Einstein proposed the general theory of relativity3 which stated that (1) gravity

2A Roche lobe is an equipotential surface around a star within which the material is bound to that star.
A more detailed description is given in Chapter 2. Also, see Frank et al. (2001) for more information.

3A graduate course introduction to relativity I found useful is the online course by Sean Carroll.
http://pancake.uchicago.edu/ carroll/notes/
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is a manifestation of space-time (four dimensional world = three space co-ordinates + one

time co-ordinate) curvature and (2) there is a relation between matter and the curvature of

space-time. Newtonian gravity is a subset of this theory in the limit of weak curvature. If

the curvature is disturbed or oscillates due to motion of the matter, the resulting ripples are

the gravitational waves.

Gravitational waves travel with the speed of light and they carry away angular momentum

from any system that experiences sufficiently asymmetric matter oscillations. Binary stars

are examples of such systems. The orbital angular momentum Jorb for a binary system in

circular orbit may be written as

Jorb = M1M2

(

G a

Mtot

)1/2

, (1.1)

where M1 and M2 are the masses of the components in the binary, Mtot = M1 +M2 is the

total mass in the system, a is the separation between the components and G is the universal

gravitational constant. If there is no change in the masses of the individual components,

then Mtot is constant. So, as Jorb decreases the separation also decreases. Hence, for the

detached DWD binary discussed above, gravitational radiation provides a means to evolve

the system further.

In the case of binary neutron stars (or pulsars, which are even more compact than white

dwarfs), of course, gravitational radiation also serves as a driving mechanism for binary

evolution to smaller and smaller orbits. The most famous example is the Hulse-Taylor

pulsar (Hulse & Taylor, 1975), discovered by Russell Hulse and Joseph Taylor in 1975. After

many years of observations they proved that the binary orbit is decaying through a loss of

angular momentum in accordance with the rate predicted by general relativity. For this

discovery they were awarded the Nobel prize in physics in 1993.

In the quadrupole approximation to the General theory of relativity (Peters & Mathews,

1963; Thorne, 1987; Finn & Chernoff, 1993), the time-dependent gravitational-wave strain
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(amplitude), h(t), generated by a point-mass binary system in circular orbit has two polar-

ization states. The plus (+)and cross (×) polarizations of h(t) generically take the respective

forms,4,5

h+ = hnorm cos[φ(t)] and h× = hnorm sin[φ(t)] , (1.2)

where the time-dependent phase angle,

φ(t) = φ0 + 2π
∫

f(t)dt , (1.3)

where φ0 is the phase at time t = 0, f = Ωorb/π is the frequency of the gravitational wave

measured in Hz, Ωorb is the angular velocity of the binary orbit given in radians per second,

and the characteristic amplitude of the wave,

hnorm =
G

rc4
4Ω2

orbM1M2a
2

(M1 +M2)

=
4

rc4

(

G5

Mtot

)1/3

M1M2π
2/3f 2/3 (1.4)

where c is the speed of light and r is the distance to the source. If the principal parameters of

the binary system (such as frequency and masses) do not change with time, then f and hnorm

will both be constants and the phase angle φ will vary only linearly in time, so the source

will emit “continuous-wave” radiation. In this case, the gravitational-wave signal from the

binary system is just a sin or cos function, as given in Eq.(1.2) and illustrated in Fig.1.1. If,

however, any of the binary parameters — M1, M2, a, or Ωorb — vary with time, then hnorm

and/or f will also vary with time in accordance with the physical process that causes the

variation.

4Appendix A provides more details on the derivation of these expressions.
5Throughout our discussion when we refer to experimental measurements of h, we will assume that the

binary system is being viewed “face on” so that the measured peak-to-peak amplitudes of the two polarization
states are equal and at their maximum value, given by hnorm. If the orbit is inclined to our line of sight,
the inclination angle can be determined as long as a measurement is obtained of both polarization states as
shown, for example, by Finn & Chernoff (1993). Because our discussion focuses on Galactic DWD binaries,
we will also assume that the effects of cosmological expansion on measured signal strengths is negligible.
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Figure 1.1: Gravitational-wave signal from a non-inspiralling system.

In a detached binary system, the orbital angular momentum is carried away by gravita-

tional waves and so the stars inspiral toward each other as a function of time. This loss in

angular momentum causes the separation between the stars to slowly decrease (increasing

frequency) with time. Since the individual masses are not changing, we can deduce from

Eq.(1.4) that hnorm ∝ f 2/3. Hence an inspiralling binary system produces an ever increasing

amplitude and frequency of gravitational waves. This characteristic feature of increasing

frequency and amplitude is called a “chirp signal” as illustrated here in Fig.1.2. In the case

of binary neutron stars, this chirping is most prominent in the high frequency range (10

Hz - 10 kHz) of the gravitational-wave spectrum and eventually the two stars collide and

merge. DWD binaries also undergo the chirping phase (the orbit keeps shrinking) but the

corresponding gravitational-wave radiation is most prominent in the lower frequency (10−4

Hz - 1 Hz) end of the spectrum. Once the two stars are close enough to one another, the

lower mass white dwarf star (the donor) fills its Roche lobe6 (this is because it has the larger

radius) and starts transferring mass to its companion (accretor). This system is now called

6A more detailed description of Roche lobe is given in §2.1.
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a “semi-detached” system. If both the stars are filling their Roche lobes, then it is called a

“contact binary”. At the Roche lobe contact stage for DWD systems, the mass ratio deter-

-60

-40

-20

 0

 20

 40

 60

 0  10  20  30  40  50

A
m

p
li

tu
d
e 

(m
et

er
s)

time (seconds)

Figure 1.2: Gravitational-wave signal from an inspiralling system.

mines the fate of the binary. If the mass ratio is greater than a critical value, qcrit, then the

mass transfer becomes unstable7 and the system will likely merge. If the mass ratio is less

than qcrit, the system may survive and reverse its evolution to longer periods (increasing sep-

aration) with stable mass transfer. It should be noted that we already have a handle on the

size of the galactic population of DWD binaries from optical, UV, and x-ray observations. In

the immediate solar neighborhood, there are 18 systems8 (Nelemans, 2005; Anderson, 2005;

Roelofs, 2005) known to be undergoing a phase of stable mass transfer (AM CVn being the

prototype) and the ESO SN Ia Progenitor SurveY (SPY) has detected nearly 100 detached

DWD systems (Napiwotzki et al., 2004b). At present, orbital periods and the component

7Unstable means that the mass loss rate from the donor to the accretor keeps increasing steadily.
8Three models (Cropper et al., 1998; Wu et al., 2002; Marsh & Steeghs, 2002) have been proposed to

determine the nature of two controversial candidate systems (RX J0806+15 and V407 Vul) out of these 18,
which can change the number of known AM CVn systems between 16 and 18.
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masses for 24 detached DWD systems have been determined (see Table 3 of Nelemans et al.

(2005) and references therein), five of which come from the SPY survey.

1.5 Significance of Detecting Gravitational Waves

• The most important contribution of gravitational waves comes from the fact that they

can be used to find the sources which are not possible to detect through electromagnetic

detection methods. For instance, sources like binary neutron stars or binary black

holes are very hard to detect directly through conventional detection methods. Also

electromagnetic observations are hampered by dust absorption between the source

and the detector, whereas gravitational waves can pass through dust without any

absorption. This will significantly increase the number of sources that can be detected

compared with electromagnetic observations.

Various instruments are either already operational, such as the ground-based gravitational-

wave observatory LIGO9 (Abbott et al., 2005) operating in the high-frequency range or

planned, such as the space-based observatory, LISA10 (Faller & Bender, 1984; Evans et

al., 1987; Bender, 1998) operating in the low frequency band. In this dissertation we are

concentrating on DWD systems, which are prominent in the low frequency band of the

gravitational-wave spectrum and, hence, they are one of the most promising sources for

LISA. If, as has been predicted (Iben & Tutukov, 1984, 1986), close DWD pairs are the

end product of the thermonuclear evolution of a sizeable fraction of all binary systems, then

DWD binaries must be quite common in our Galaxy and the gravitational waves (GW)

emitted from these systems may be a dominant source of background noise for LISA in its

lower frequency band, f ∼< 3 × 10−3 Hz (Hils et al., 1990; Cornish & Larson, 2003). DWD

binaries are also believed to be (one of the likely) progenitors of Type Ia supernovae (Iben

9http://www.ligo.caltech.edu
10http://lisa.nasa.gov
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& Tutukov, 1984; Branch et al. , 1995; Tout, 2005) in situations where the accreting white

dwarf exceeds the Chandrasekhar mass limit, collapses toward nuclear densities, then ex-

plodes. Because its instruments will have sufficient sensitivity to detect GW radiation from

close DWD binaries throughout the volume of our Galaxy, LISA will provide us with an

unprecedented opportunity to study this important tracer of stellar populations and it will

provide us with a much better understanding of the formation and evolution of close binary

systems in general. Clearly, a considerable amount of astrophysical insight will be gained

from studying the DWD population as a guaranteed source for LISA.

1.6 Parameterization

In this section we define a variety of physical parameters that will be used throughout

upcoming chapters. Here we will only be considering the evolution of DWD systems in

which the basic system parameters vary on a timescale that is long compared to 1/f .

As mentioned in the previous sections, the less massive star in a DWD binary will always

have the larger radius. Therefore, in a DWD system that is undergoing mass transfer, we

can be certain that the less massive star is the component that is filling its Roche lobe and

is transferring (donating) mass to its companion (the more massive, accretor). With this

in mind, throughout the remainder of our discussion we will identify the two stars by the

subscripts d (for donor) and a (for accretor), rather than by the less descript subscripts

1 and 2, and will always recognize that the subscript d identifies the less massive star in

the DWD system. This notation will be used even during evolutionary phases (such as a

gravitational-wave-driven inspiral phase) when the two stars are detached and therefore no

mass-transfer is taking place. Furthermore, we will frequently refer to the mass ratio of the

system,

q ≡ Md

Ma

, (1.5)
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Table 1.1: rhnorm and f in terms of system parameters.

Specify: Jorb a Ωorb

(1) (2) (3) (4)

rhnorm
4
c4
G3M5

totJ
−2
orbQ

3 4
c4
G2M2

tota
−1Q 4

c4
(GMtot)

5/3Ω
2/3
orbQ

f 1
π
G2M5

totJ
−3
orbQ

3 1
π
(GMtot)

1/2a−3/2 1
π
Ωorb

which will necessarily be confined to the range 0 < q ≤ 1 because Md ≤ Ma. Also, it will

be understood that the limiting mass for either white dwarf is Mch. For the first part of

this dissertation, we will assume that Kepler’s 3rd Law provides a fundamental relationship

between the angular velocity and the separation of DWD binaries, that is,

Ω2
orb =

GMtot

a3
. (1.6)

Relation (1.6) allows us to replace either Ωorb or a in favor of the other parameter in Eq. (1.4).

Furthermore, we will find it useful to interchange one or both of these parameters with the

binary system’s orbital angular momentum as defined by Eq.(1.1) which, via the above

relations, can be expressed in any of the following forms:

Jorb = Mtota
2ΩorbQ = (GM3

tota)
1/2Q =

(

G2M5
tot

Ωorb

)1/3

Q , (1.7)

where,

Q ≡ q

(1 + q)2
, (1.8)

is the ratio of the system’s reduced mass to its total mass.

Table 1.1 summarizes how the frequency f and dimensional amplitude rhnorm of the

gravitational-wave strain can be expressed in terms of Mtot, Q, and either Jorb, a, or Ωorb.

We note as well that the so-called “chirp mass” M of a given system (Finn & Chernoff,

1993) is obtained from Mtot and Q via the relation,

M = MtotQ
3/5 . (1.9)



2. Evolution of DWD Binaries in the
Amplitude-Frequency Domain∗

As described earlier, detached DWD binaries slowly inspiral toward one another as they

lose orbital angular momentum due to gravitational radiation. It is reasonable to assume

that Mtot and the system mass ratio q remain constant during this phase of their evolution.

Therefore, as the expressions given in column 2 of Table 1.1 show, both the frequency

and amplitude of the emitted gravitational-wave signal will increase as the system’s orbital

angular momentum decreases. Combining these expressions in a way that cancels out the

dependence on Jorb, we obtain,

rhnorm =
[

25π2

c2

(

GMch

c2

)5

K5f 2
]1/3

= 5.38 [K5f 2]1/3 meters , (2.1)

where the dimensionless mass parameter,

K ≡ 21/5
( M
Mch

)

= 21/5
(

Mtot

Mch

)

Q3/5 =
(

Ma

Mch

)(

2q3

1 + q

)1/5

, (2.2)

has been defined such that it acquires a maximum value of unity in the limiting case where

Md = Ma = Mch; otherwise, 0 < K < 1. (We note that in the limiting case of K = 1, the

chirp mass of the system is M = 0.871Mch = 1.25M�.) From expression (2.1), we see that the

trajectory of an inspiraling, detached DWD binary in the amplitude-frequency diagram can

be determined without specifying precisely the rate at which angular momentum is lost from

the system. Specifically, because d ln(rhnorm)/d ln f = 2/3, trajectories of inspiraling DWD

binaries will be straight lines with slope 2/3 in a plot of log(rhnorm) versus log f . Example

evolutionary trajectories (lines with arrows pointing to the upper-right) for detached, DWD

binary systems that are undergoing a GR-driven inspiral are displayed in the log(rhnorm) −

log f diagram of Fig.(2.1), where rhnorm is specified in meters and f is specified in Hz. The

∗Reproduced by permission of the AAS

12



13

three trajectories represent systems having dimensionless mass parameters K = 0.813 (green

dashed line), 0.474 (blue dotted line), and 0.271 (pink dot-dashed line); assuming a mass

ratio q = 2/3 for all three systems, this corresponds to total system masses of 2.4, 1.4, and

0.8M�, respectively.
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Figure 2.1: DWD evolutionary trajectories

2.1 Roche-Lobe Contact

Edouard Roche in 19th century discovered that for binary star systems in circular orbits, in

the reference frame that has the same angular frequency as the orbital angular frequency

(so that the stars are at rest, assuming there spins are synchronized) we can define “equipo-

tential surfaces” surrounding the stars provided the potential generated by the two stars is
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equivalent to the potential of two point masses plus a centrifugal term arising due to shift

into co-rotating frame. Near the stars these equipotential surfaces are spheres enclosing the

respective stars at the center of the sphere. As we gradually move away from the stars, these

equipotential surfaces intersect first at a point called the “ Lagrange point (L1 point)” and

if we slice these surfaces along the equatorial plane they look like a figure eight shape, as

shown in Fig.(2.2). The volume enclosed by these equipotential surfaces at the first contact

is called a “Roche lobe”. Material inside the Roche lobe of a star is bound equally to that

respective star but material on the surface of the Roche lobe is bound to both the stars. If

the star overflows its Roche lobe, then it starts transferring mass to the companion through

the L1 point.

Figure 2.2: Equipotential surfaces and Roche lobe
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The detached inspiral phase of the evolution of a DWD binary will terminate when the

binary separation a first becomes small enough that the less massive white dwarf fills its

Roche lobe. From the mass-radius relationship for zero-temperature white dwarfs (Nauen-

berg, 1972; Marsh et al., 2004) we know that the radius of the donor Rd is,

Rd

R�

= 0.0114
[(

Md

Mch

)−2/3

−
(

Md

Mch

)2/3]1/2[

1 + 3.5
(

Md

Mp

)−2/3

+
(

Md

Mp

)−1]−2/3

, (2.3)

where Mp ≡ 0.00057 M�. Furthermore, from Eggleton (1983) we find that the Roche-lobe

radius RL is,

RL ≈ a
[

0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)

]

=
J2

orb

GM3
tot

(1 + q)4

q2

[

0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)

]

. (2.4)

The orbital separation – and the corresponding gravitational-wave amplitude rhnorm and fre-

quency f – at which the inspiral phase terminates can therefore be determined uniquely for

a given donor mass Md and system mass ratio q by setting Rd = RL and combining expres-

sions (2.3) and (2.4) accordingly. The termination points of the three inspiral trajectories

— marked by plus symbols in the top panel of Figure 2.1 — have been calculated in this

manner. The solid red curve connecting the sequence of plus symbols in Figure 2.1 traces

out the locus of points that define the termination points of the detached inspiral phase of

numerous other DWD systems that have mass ratios q = 2/3 but that have values of Mtot

ranging from 2.4 M� to 0.06 M�.

2.2 Evolution to Lower Frequencies Due to Conserva-

tive Mass Transfer (CMT)

After the less massive, donor star fills its Roche lobe and starts transferring mass to its

companion, the evolution of the DWD system in the amplitude-frequency domain will deviate

significantly from the inspiral trajectory. If the system initial mass ratio is less than some

critical value qcrit, it is generally thought that the ensuing mass-transfer phase will be stable
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(Marsh et al., 2004; Gokhale et al., 2007) and that the system will evolve in such a way that

the donor stays in marginal contact with its Roche lobe. As the system evolves, the mass ratio

q will steadily decrease, the binary separation a will steadily increase, and the gravitational-

wave amplitude and frequency will both steadily decrease. Without knowing the precise

rate at which this phase of stable mass transfer proceeds, we can map out the evolutionary

trajectory of various sytems in the log(rhnorm)−log f diagram by again combining expressions

(2.3) and (2.4) via the constraint Rd = RL and by demanding that, as q decreases, the system

mass Mtot remains constant (“conservative mass trasnfer), that is, Md = qMtot/(1 + q). By

way of illustration, the bottom panel of Figure 2.1 shows two such stable, conservative

mass-transfer (CMT) trajectories that have been calculated in this manner: The blue dotted

trajectory is for a system of mass Mtot = 1.4 M�; the pink dotted trajectory is for a system of

mass Mtot = 0.8 M�. As the arrows indicate, along both mass-transfer trajectories evolution

is down and to the left in this amplitude-frequency diagram. We have assumed that both

of these systems began the mass-transfer phase of their evolution with an initial mass ratio

q0 = 2/3. Hence, the starting point of both trajectories lies on the termination boundary for

inspiralling systems having mass ratios of q = 2/3.

If the DWD system mass Mtot < Mch (as is the case for both of the evolutionary trajec-

tories plotted in the bottom panel of Figure 2.1), the CMT phase of the system’s evolution

can in principle proceed uneventfully to a very low value of q, that is, the donor’s mass can

practically shrink to zero. However, if Mtot > Mch, the mass of the accretor will exceed the

Chandrasekhar mass limit when q drops below the value,

qch ≡ Mtot

Mch
− 1 , for Mtot > Mch . (2.5)

With the expectation that something catastrophic (e.g., a Type Ia supernova explosion)

will occur when the accretor’s mass exceeds the Chandrasekhar mass limit, it is reasonable

to assume that mass-transfer trajectories with Mtot > Mch will terminate at a point in
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the amplitude-frequency diagram that is marked by this critical value of the system mass

ratio. The locus of points that is defined by the termination points of these trajectories

defines another interesting astrophysical boundary in the amplitude-frequency diagram. This

termination boundary has been drawn as a thick, (green) dashed curve in the bottom panel

of Figure 2.1.

2.3 Boundaries in the Amplitude-Frequency Domain

The inspiral trajectory drawn for K = 0.813 (Mtot = 2.4 M�) and the curve marking the

termination of various inspiral trajectories in the top panel of Figure 2.1 define boundaries

in the amplitude-frequency domain outside of which no DWD system should exist if it has

a mass ratio q ≤ 2/3. As explained above, DWD evolutionary trajectories are expected

to “bounce” off of the high-frequency “termination” boundary and thereafter move toward

lower frequencies because, at that boundary, mass transfer begins. And to exist above the

K = 0.813 inspiral trajectory, the more massive star would have to have a mass Ma > Mch

if q = 2/3. Analogous domain boundaries can be constructed readily for other values of

the system mass ratio q. (See Figure 4.1 for examples.) For each value of q, the shapes of

the bounding curves are roughly the same as shown in the top panel of Figure 2.1, but for

higher values of q the right-hand termination boundary shifts to higher frequencies and the

limiting inspiral trajectory (set by a higher value of the mass parameter K) shifts to higher

strain amplitudes; for lower values of q the termination boundary shifts to lower frequencies

and the limiting inspiral trajectory shifts to lower strain amplitudes. Given our present

understanding of the structure of white dwarfs, it seems extremely unlikely that any DWD

binary systems can exist outside of the domain that is defined by the bounding curves for

systems with q = 1 (see, for example, the outermost boundaries drawn in Figure 4.1 for

systems at a distance of 10 kpc).
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2.4 Non-uniqueness of Points in the Amplitude -Frequency

Diagram

Specifying the amplitude rhnorm and frequency f of the gravitional-wave radiation that is

being emitted from a DWD system does not, in itself, provide sufficient information to

permit a unique determination of the individual masses of the stars in the system. This

is illustrated by the point marked “A” in Figure 2.1. In both panels of the figure, point

“A” sits at the same position in the amplitude-frequency diagram (rhnorm = 2.25 × 10−2

meters; f = 7.068× 10−3 Hz), but in the top panel it represents one point along the inspiral

trajectory of a detached DWD system that has Mtot = 0.8M� and q = 2/3 (Ma = 0.48M�,

Md = 0.32M�), whereas in the bottom panel it represents one point along the evolutionary

trajectory of a mass-transferring, semi-detached DWD system that has Mtot = 1.4M� and

q = 0.118 (Ma = 1.252M�, Md = 0.148M�). At best, a given point in the amplitude-

frequency diagram provides a determination of the dimensionless mass parameter K, as

defined by Eq. (2.2); at point “A,” for example, K = 0.271. But a DWD system that, from

observations, has been determined to sit at point “A” could have any of a wide variety of

combinations of Mtot and q that satisfy Eq. (2.2) with this value of K. Knowing the value

of K alone does not even permit us to differentiate between a system that is in the inspiral

phase of its evolution or one that is undergoing a phase of mass transfer. As we illustrate

in §4.2, if LISA data analysis efforts are able to detect evolutionary changes in individual

DWD system — measure, for example, the time-rate-of-change of the gravitational-wave

frequency — it may be possible to lift this degeneracy. We note, in particular, that the sign

of the frequency variation may delineate the underlying physical processes that are driving

the system’s evolution.



3. Time-Dependence∗

Up to this point, we have described key features of DWD evolutionary trajectories in the

amplitude-frequency diagram without referring to the rate at which the evolution of any

given system proceeds. Here we investigate the time scales on which significant changes in

various system parameters and, as a consequence, the rate at which measurable changes

in the gravitational-wave signature occur. Drawing on the expressions given in column 2

of Table 1.1, we can write the time-rate of change of the amplitude and frequency of the

gravitational-wave strain as follows:

d lnhnorm

dt
= 5

∂ lnMtot

∂t
− 2

∂ ln Jorb

∂t
+ 3

∂ lnQ

∂t
; (3.1)

d ln f

dt
= 5

∂ lnMtot

∂t
− 3

∂ ln Jorb

∂t
+ 3

∂ lnQ

∂t
. (3.2)

Adopting the assumption that the binary system’s total mass is conserved during either

the GR-driven inspiral phase or a phase of stable CMT, we can drop the first term on the

right-hand-side of both of these equations to obtain,

d ln hnorm

dt
≈ −2

∂ ln Jorb

∂t
+ 3

∂ lnQ

∂t
;

d ln f

dt
≈ −3

∂ ln Jorb

∂t
+ 3

∂ lnQ

∂t
. (3.3)

These expressions can be used to deduce the rate of change of hnorm and f during a phase

of stable mass transfer when the system mass ratio (and, hence, the mass-ratio function

Q) is steadily changing and, simultaneously, the system is losing angular momentum due

to the radiation of gravitational waves. On the other hand, during a phase of GR-driven

inspiral, both stars in the DWD binary are detached from their respective Roche lobes so,

although orbital angular momentum is being steadily lost from the system, q (hence, Q) is

not changing and the following, even simpler expressions apply:

d lnhnorm

dt
≈ −2

∂ ln Jorb

∂t
;

d ln f

dt
≈ −3

∂ ln Jorb

∂t
. (3.4)

∗Reproduced by permission of the AAS
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3.1 GR-Driven Inspiral

During the inspiral phase of the evolution of DWD binaries, the evolution is driven entirely

by the loss of angular momentum due to gravitational radiation. According to Peters &

Mathews (1963) (see also Misner et al. (1973)), starting at time t = 0 from any orbital

separation a0 – and corresponding orbital angular momentum J0, strain amplitude h0, and

strain frequency f0 – to a high degree of precision the time-dependent behavior of Jorb is

described by the relation,

Jorb(t) = J0(1 − t/τchirp)
1/8 , (3.5)

where the inspiral evolutionary time scale is,

τchirp ≡ 5

256

c5a4
0

G3M3
tot

[

(1 + q)2

q

]

=
5

64π2

(

c

rh0f
2
0

)

. (3.6)

Conveniently, according to the last expression in Eq. (3.6), the evolutionary time scale τchirp

for a given DWD system is completely specified once the position of the system in the

log(rhnorm) − log f diagram is known. In fact, in this amplitude-frequency diagram, curves

of constant τchirp are straight lines of slope minus two. For reference, several different “chirp

isochrones” have been drawn as dotted lines of slope −2 in both panels of Figure 2.1; they

identify systems for which τchirp = 108, 106, 104 and 102 years. We note in particular that for

the point labeled “A” in Figure 2.1, τchirp = 6.7 × 104 years.

Clearly, for the typical properties that are associated with DWD binaries, only very

small changes will occur in the orbital parameters of any given system during a single year

of observation. Hence, a reasonably accurate expression for Jorb(t) can be obtained by

expanding Eq. (3.5) in powers of t/τchirp and keeping only the leading order, time-dependent

term, that is,

Jorb(t) ≈ J0

[

1 − 1

8

(

t

τchirp

)]

, (3.7)
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or,

∂ ln Jorb

∂t
≈ − 1

8τchirp
. (3.8)

Therefore, from Eq. (3.4) we deduce,

d lnhnorm

dt
≈ +

1

4τchirp
(inspiral phase) ; (3.9)

d ln f

dt
≈ +

3

8τchirp
(inspiral phase) . (3.10)

By way of illustration, based on this result the arrow pointing up and to the right in Figure

3.1 illustrates how far a system initially located at the point marked “A” in Figure 2.1 will

move in the amplitude-frequency diagram in 10,000 years if it is evolving through point “A”

along an inspiral trajectory.
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Figure 3.1: Magnified view of point A

3.2 Conservative Mass Transfer

If a DWD system with initial mass ratio q0 is undergoing mass transfer at a constant rate,

µ ≡ −Ṁd , (3.11)
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where Ṁd ≡ dMd/dt is understood to be intrinsically negative, but otherwise the system

conserves its total mass (i.e., Ṁa = −Ṁd = µ), then the system mass ratio will vary with

time according to the relation,

q(t) =
q0 − t/τmt

1 + t/τmt

, (3.12)

where,

τmt ≡
Mtot

µ

(

1

1 + q0

)

. (3.13)

Hence, from Eq. (1.8), the time-dependent behavior of the ratio of the system’s reduced mass

to its total mass,

Q(t) = Q0

[

1 −
(

1 − q0
q0

)

t

τmt
− 1

q0

(

t

τmt

)2]

. (3.14)

From the work of Webbink & Iben (1987) and Marsh et al. (2004), we deduce that the

timescale governing the evolution of semi-detached DWD binaries that are undergoing a

phase of stable mass transfer is,

τmt ≈
(

4∆ζ

q0

)

τchirp , (3.15)

where ∆ζ is a parameter that is of order unity for the majority of systems that are of interest

to us here (see Appendix B for the definition of ∆ζ and a derivation of Eq. 3.15. It should

be emphasized that a phase of stable CMT can occur only if ∆ζ is positive and, hence,

only if q < qcrit. Representative values of qcrit are given in Table B.1 of Appendix B). It is

significant, although not surprising, that the timescale on which DWD systems evolve during

a phase of stable CMT is roughly the same as the timescale on which they evolve during

the inspiral phase. Ultimately, both evolutionary phases are driven by the loss of angular

momentum due to gravitational radiation. It is for this reason that we have drawn various

“chirp isochrones” in the bottom panel as well as the top panel of Figure 2.1.

Combining Eq. (3.15) with Eq. (3.14), we find that,

Q(t) ≈ Q0

[

1 −
(

1 − q0
4∆ζ

)

t

τchirp
− q0

16(∆ζ)2

(

t

τchirp

)2]

, (3.16)



23

which implies,

∂ lnQ

∂t
≈ −

(

1 − q0
4∆ζ

)

1

τchirp
. (3.17)

Inserting this expression along with expression (3.8) into Eq. (3.3) we therefore deduce that,

d ln hnorm

dt
≈ 1

4τchirp

[

1 − 3
(1 − q0)

∆ζ

]

(mass-transfer phase); (3.18)

d ln f

dt
≈ 3

8τchirp

[

1 − 2
(1 − q0)

∆ζ

]

(mass-transfer phase). (3.19)

We see from Figure B.1 in Appendix B that all DWD binary systems have values of ∆ζ <

(∆ζ)B ≡ 2(1 − q). Hence, the second term inside the square brackets on the right-hand-

side of both Eq. (3.18) and Eq. (3.19) is larger in magnitude than unity, so d ln f/dt and

d lnhnorm/dt are both negative. This supports in a quantitative way our earlier qualitative

conclusion that, in contrast to the inspiral phase, during a phase of stable mass transfer

the frequency and amplitude of the gravitational-wave signal will decrease with time. In an

effort to illustrate this point explicitly, the arrow pointing down and to the left in Figure 3.1

shows how far a system with Mtot = 1.4M� that is initially located at point “A” will move

in the amplitude-frequency diagram in 10,000 years if it is evolving through point “A” along

a stable CMT trajectory.



4. Detectability of DWD Systems∗

Whether or not a given DWD system will be detectable by LISA will depend on the level

of noise in the detector as well as on the strength and the stability of the DWD system’s

gravitational-wave signal. In order to aid in our discussion of the detectability of such sys-

tems, therefore, we have combined in Figure 4.1 the theoretically derived domain boundaries

displayed in Figure 2.1 with a LISA noise curve. This noise curve is generated using an

online sensitivity curve generator9 with the standard LISA observatory parameters (assum-

ing a one year of signal integration and the signal-to-noise ratio (SNR) is set to one). In

transferring the theoretical curves to Figure 4.1, in which the vertical scale is h instead of

(rh), we have adopted a distance to all sources of 10 kpc. Also, in addition to displaying the

domain boundaries for DWD systems that have a mass ratio q = 2/3 (long dashed curves),

Figure 4.1 contains analogous domain boundaries calculated for systems with q = 1 (short

dashed curves) and q = 1/5 (dotted curves). For reference purposes, the point marked “A”

in Figure 2.1 has been transferred to Figure 4.1 as well.

In order to estimate the SNR that a given source will exhibit in the LISA data after one

full year of signal integration, it is tempting to simply measure the distance ∆ log h between

the amplitude hsource of the source in the strain-frequency diagram and the level hnoise of

the LISA noise curve at the same frequency. For example, a DWD system represented by

point “A” in Figure 4.1 would be estimated to have a SNRYR = hsource/hnoise = 10∆log h ≈

101.6 ≈ 40. Using this method of estimating the signal-to-noise ratio, the top curve in the

bottom panel of Figure 4.2 shows what SNRYR would be for DWD systems that fall along

the locus of inspiral termination points (curved line) for q = 2/3 displayed in Figure 4.1. At

the high-frequency end of this inspiral termination boundary, the estimated SNRYR climbs

∗Reproduced by permission of the AAS
9http://www.srl.caltech.edu/%7Eshane/sensitivity/
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Figure 4.1: DWD boundaries in LISA’s noise spectrum

well above 100, which would seem to bode well for detection by LISA. However, this estimate

will be valid only if these sources emit a signal that exhibits a high degree of phase coherence

throughout one full year of observation. If a loss of phase coherence limits the integration

time to less than one year, then this curve provides an overly optimistic estimate of the

system’s SNR.

For the remainder of our discussion, we will assume that a sufficient degree of phase

coherence is maintained if the observed phase φO minus the theoretically computed phase

φC does not differ by more than π/2 radians.10 For various DWD systems and assumed

gravitational-wave templates we will calculate the amount of time tO−C required for the “O-

C” phase difference to reach π/2 and, if tO−C < 1 yr, we will scale the LISA one-year noise

curve to the shorter time before estimating the SNR of that system. Specifically, relative to

the signal-to-noise ratio derived from the one-year LISA noise curve, SNRYR, the signal-to-

10This assumes that LISA will be able to determine to an accuracy ∆N of one quarter of one orbit precisely
how many orbits N an individual DWD system completes over the time period of LISA’s observations; in
one year, for example, DWD systems with f ∼ 10−3 − 10−2Hz, will complete ∼ 104 − 105 orbits. This
value of the phase shift is somewhat arbitrary, but based on other discussions (e.g., Stroeer et al. (2005)) it
represents a conservative estimate of LISA’s capabilities.
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noise ratio expected for an integration time of tO−C will be provided by the expression (Seto,

2002),

SNR = SNRYR

(

tO−C

1 yr

)1/2

. (4.1)

4.1 Systems With Non-negligible Frequency Variations

As we have discussed, the physical processes that drive the evolution of DWD binaries operate

on a “chirp” timescale, and τchirp is typically much longer than one year. Hence, the time-

variation of a given system’s gravitational-wave frequency f(t) can be well approximated by

a truncated Taylor series expansion in time and, using Eq. (1.3), the observed phase of the

gravitational-wave signal φO can be written in the form (Stroeer et al., 2005),

φO(t) = φ0 + 2πf0t+ 2π
kmax
∑

k=1

tk+1

(k + 1)!
f (k) , (4.2)

where f0 is the signal frequency at time t = 0, and the “spin-down parameters” f (k) ≡

dkf/dtk(k = 1, . . . , kmax). If, for example, the Taylor series can be truncated at kmax = 1

and this observed signal is compared to a computed template that assumes a continuous-wave

signal and therefore has a phase that increases only linearly with time, φC(t) = (φ0 +2πf0t),

the amount of time for the O-C phase difference to reach π/2 will be,

tO−C = (2 |f (1)|)−1/2 . (4.3)

From Eqs. (3.10) and (3.19) we see that, for both the inspiral and CMT phases of DWD

evolutions, the first time-derivative of the frequency can be written in the form,

f (1) ≈ 3f0

8τchirp

[

1 − 2g
]

, (4.4)

where, respectively,

g = 0 (inspiral phase); (4.5)

g =
(1 − q0)

∆ζ
(mass-transfer phase). (4.6)



27

Hence, we can write,

tO−C =
(

4τchirp

3|1 − 2g|f0

)1/2

=
[

5

48π2|1 − 2g|

(

c

rh0f 3
0

)]1/2

. (4.7)

As an illustration, in the top panel of Figure 4.2 we have plotted the function tO−C(f)

for DWD binaries that lie along the segment joining inspiral termination points (q = 2/3)

shown in Figure 4.1. Over this entire range of frequencies, tO−C ≤ 1 year; indeed, at the

highest frequencies tO−C drops well below one week. Combining this calculation of tO−C

with expression (4.1) produces the lower (red) curve in the bottom panel of Figure 4.2. This

curve provides a more realistic estimate of the SNR that DWD systems of this type (that

lie at a distance of 10 kpc) will exhibit in LISA data if they are assumed to be continuous-

wave sources. In the frequency range of 10−1 - 10−2 Hz, they will have roughly an order

of magnitude lower SNR than one would estimate from a simple measurement of ∆ log h in

Figure 4.1. For these systems, the higher SNR depicted by the upper (green) curve in the

bottom panel of Figure 4.2 will be realized only if a proper inspiral template is used during

data analysis to ensure that phase coherence of the signal is maintained over a full year of

signal integration.

If the function g in Eq. (4.7) is independent of h and f — as is the case for the inspiral

phase of DWD evolutions — then curves of constant tO−C in the amplitude-frequency dia-

gram will be straight lines having a slope of −3. In Figure 4.1 we have drawn a line segment

of slope −3 that identifies which inspiral systems have tO−C = 1 year. Inspiral systems that

lie below and to the left of this line segment have tO−C > 1 year, while systems that lie

above and to the right have tO−C < 1 year. Hence, any inspiral system that lies inside of

the triangular regions identified in Figure 4.1 will lose phase coherence in less than one year

of observation if one assumes that they emit continuous-wave radiation. An analogous one-

year demarcation boundary can be drawn for DWD binaries that are undergoing a phase of

stable CMT by evaluating Eq. (4.7) using the function g(q,Mtot) given by expression (4.6).
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Because this function generally is of order unity, however, the one-year demarcation bound-

ary for mass-transferring systems is generally well-approximated by the line segment that

marks the one-year demarcation boundary for inspiral systems. We conclude, therefore, that

if LISA is to achieve its optimal source detection performance throughout the triangular-

shaped regions of the strain-frequency domain shown in Figure 4.1, the LISA data will need

to be analyzed with a proper bank of frequency-varying strain templates.
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4.2 Determination of Distance and Chirp Mass

An analysis of a one-year-long LISA data stream that utilizes a proper set of frequency-

varying strain templates should be able to determine the rate at which the strain frequency

and, hence, the orbital frequency is changing in DWD binaries that are identified as sources in

the triangular regions of the parameter space shown in Figure 4.1. When used in conjunction

with the measurement of h0 and f0, an accurate measurement of f (1) for any source will
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permit a determination of the distance to the source r and the binary system’s chirp mass

M or the individual component masses of the binary system, as follows.

Equation (2.1) provides a relation between the three unknown binary system parameters

r,Mtot and q, and the experimentally measurable parameters f and hnorm, namely,

M5
tot

r3

[

q

(1 + q)2

]3

=
M5

r3
=

c12

26π2G5

[

h3
norm

f 2

]

. (4.8)

A second relation between the unknown astrophysical parameters and measurable ones is

provided by combining the derived expression for f (1) in Eq. (4.4) with the definition of τchirp

given in Eq. (3.6). Specifically, we obtain,

r(1 − 2g) =
5c

24π2

[

f (1)

hnormf 3

]

, (4.9)

where, in general, g is a nontrivial function of Mtot and q. With only two equations, of

course, it is not possible to uniquely determine all three of the binary’s primary system

parameters. During the inspiral phase of a DWD evolution, however, g = 0, so a fortunate

situation arises. Equation (4.9) drops its explicit dependence on the system mass to give a

clean determination of r. But once r has been determined, Eq. (4.8) gives only the chirp

mass M, rather than giving Mtot and q separately. This is a familiar result (Schutz, 1986).

During the CMT phase of an evolution, the function g(Mtot, q) is nonzero so Eq. (4.9)

does not provide an explicit determination of r. However, the requirement that Rd = RL

provides an important additional physical relationship between the unknown astrophysical

parameters and measurable ones. Specifically, by setting Rd from Eq. (2.3) equal to RL from

Eq. (2.4) and using Kepler’s law to write a in terms of f , we obtain,
[

R3
�

GM�

]1/2

f =
[

π2(0.0114)3Mch

M�

]−1/2Mtot

M�

(

q

1 + q

)

H(Md, q) , (4.10)

where,

H(Md, q) ≡
(

1 + q

q

)1/2[ 0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)

]3/2[

1 −
(

Md

Mch

)4/3]−3/4

×
[

1 + 3.5
(

Md

Mp

)−2/3

+
(

Md

Mp

)−1]

. (4.11)
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Hence, taken together, Eqs. (4.8)-(4.10) can be used to determine all three primary system

parameters – r, Mtot, and q – from the three measured quantities, hnorm, f , and f (1). (We

stress that this method of determining the values of the primary system parameters is only

valid in situations where q < qcrit(Mtot), as explained in Appendix A.)
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Figure 4.3: Determination of mass parameters from f and ḟ

We are unable to solve this set of equations analytically due to the complexity of the

functions g(Mtot, q) and H(Md, q). However, the formulae that Paczyński (1967) adopted

for Rd(Md) and RL(q) (see Appendix E) lead to much simpler expressions for both of these

functions, namely, g = [ 3
2
(1 − q)/(2 − 3q)] and H = 1. As is shown in Appendix E, in

this case Eqs. (4.8)-(4.10) can be combined to give Eq. (E.17), which provides the following

analytic expression for the mass ratio q in terms of f and f (1):

q2(1 + q)
(

1 − 3

2
q
)3

=
[

21233π8α5

53c15

]

f 16

[−f (1)]3
, (4.12)

where α ≡ 0.0141(GM�R
3
�)1/2. Once q is known, r can be obtained using Eq. (4.9) in con-

junction with Paczyński’s g(q) relation; then Mtot can be obtained from Eq. (4.8). Specifi-
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cally, from relations (E.14) and (E.16) we obtain, respectively,

r =
5c

24π2

[ −f (1)

hnormf 3

]

(2 − 3q) ; (4.13)

Mtot =
[

53c15

215 · 33π8G5

]1/5{(1 + q)6(2 − 3q)3

q3
· [−f (1)]3

f 11

}1/5

. (4.14)

For any Mtot ≤ 2Mch, these three equations are valid for mass ratios over the range 0 < q <

2/3 because, for Paczyński’s model, qcrit = 2/3 independent of Mtot (see Appendix A).

The solid curves in Figure 4.3 illustrate results obtained numerically from a self-consistent

solution of Eqs. (4.8)-(4.10); the dashed curves illustrate results obtained analytically from

expressions (4.12) and (4.14). Across the parameter domain defined by the two observables

log(f) and log(Γ) — where

Γ ≡ {[−f (1)]3/f 16}1/10 (4.15)

is measured in seconds — each curve traces a constant Mtot “trajectory” with the system

mass ratio q varying along each curve, as indicated. At high frequencies, each curve begins

at a value of q that is slightly below qcrit; at low frequencies, the curves have been extended

down to q = 0.05, unless Mtot > Mch, in which case the curve has been terminated at the

value q = qch, as given by Eq. (2.5). The general behavior of these curves can best be

understood by analyzing analytic expression (4.12). Over the relevant range of mass ratios

0 ≤ q ≤ qcrit = 2/3, the analytic function,

Γanal = 0.0521
[

q2(1 + q)
(

1 − 3

2
q
)3]−1/10

seconds , (4.16)

reaches a minimum value (Γmin = 0.077 seconds) when q = qextreme, where

qextreme ≡
1

12
(
√

41 − 3) = 0.2836 . (4.17)

Moving from high frequency to low frequency along each Mtot “trajectory,” the function Γ

steadily drops until q = qextreme and Γ = Γmin. (This behavior holds for the solid curves
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as well as the dashed curves, although the precise values of Γmin and qextreme are different

for each solid curve.) When q drops below qextreme [based on the function qch, this will only

happen along curves for which Mtot < (1 + qextreme)Mch = 1.85M�], each curve climbs back

above Γmin, reflecting the fact that Eq. (4.12) admits two solutions over the relevant range

of mass ratios. This, in turn, implies that for mass-transferring DWD systems that have

log(f) < −1.74, a measurement of f (1) will generate two possible solutions – rather than a

unique solution – for the pair of key physical parameters (Mtot, q).

Once LISA has measured f (1) as well as f for a given DWD system, Figure 4.3 provides

a graphical means of determining the values of Mtot and q for the system, assuming it

is undergoing a phase of stable CMT. We do not expect that LISA will probe the entire

parameter space depicted in this figure, however. As discussed above, we expect that LISA

will only be able to detect frequency changes in systems for which tO−C ∼< 1 yr. Using

expression (4.3), this means that LISA will only be able to measure f (1) for systems that

have,

Γ ∼> 2.57 × 10−5f−8/5 seconds . (4.18)

The dashed black line in Figure 4.3 with a slope of −8/5 that is labeled “tO−C = 1 year”

shows this boundary; the parameter regime that can be effectively probed by LISA lies above

and to the right of this line.



5. Bounds on the Existence of DWD
Populations in the Amplitude-Frequency

Domain∗

The previous sections have considered evolving DWD systems with specific system param-

eters to illustrate population boundaries in LISA’s amplitude-frequency domain. We can

now extend this to a broader DWD population and apply the same arguments for placing

boundaries even on their possible descendents such as Type Ia supernovae. As shown in the

top panel of Fig.(5.1), the amplitude-frequency domain for the DWD population is mainly

bounded by two curves that are already familiar to us from the previous section. The top

boundary (red solid line with positive slope) represents the highest allowable inspiral tran-

jectory for a q = 1 DWD system. It also becomes the limiting inspiralling trajectory for all

DWD systems because as mentioned in §1.6, q ≤ 1. According to Eq. (2.1), this boundary

is defined by the expression,

log(rhnorm) = 0.731 +
2

3
log f (5.1)

The curved boundary to the right (solid red line) represents the locus of inspiral ter-

mination points for a q = 1 system where the donor just fills its Roche lobe and where it

is expected that further evolution of the system guides it to lower frequencies due to mass

transfer. Again, this curve is the limiting inspiral termination boundary for all DWD sys-

tems. In fact, the termination boundaries for lower q systems lie to the left of this curve, as

was illustrated in Fig.(4.1). This bounding curve is given approximately by the expression,

log(rhnorm) ≈ 0.703 + 0.637 log f − 0.017 (log f)2

+ 0.298 (log f)3 + 0.061 (log f)4 (5.2)

∗Reproduced by permission of the AAS

33



34

At low frequencies we can import the tO−C = 1 year boundary from Fig.(4.1) whose expres-

sion is given in Eq.(4.7). With these three boundaries we can restrict the region occupied

by DWD systems that have measurable ḟ by LISA in the amplitude-frequency domain.

We can further sub-divide this space to identify specifically the regions that are allowable

for DWD systems at different evolutionary stages. We have already recognized the boundary

for DWD’s in inspiralling stage. For mass-transferring systems, the accretor’s limiting mass

(the Chandrasekhar mass) allows us to draw a boundary above which no mass-transferring

DWD systems can exist. This is represented by the dashed (green) line (Ma = Mch) in the

top panel of Fig.(5.1) and is given approximately by the expression,

log(rhnorm) ≈ 0.761 + 1.005 log f + 0.700(log f)2 + 0.700(log f)3

+ 0.214(log f)4 + 0.023(log f)5 (5.3)

This curve divides the DWD space into two regions.

• Region I : If LISA observations place a DWD system in this region, then it must be

evolving due to gravitational-wave driven inspiral and the evolution is such that the

frequency change as a function of time should be measurable within one year. This

region is forbidden for mass-transferring systems because they would have to exceed

Chandrasekhar’s mass limit to exist.

• Region II : DWD binaries in this region can either be inspiralling or mass-transferring

systems, but all will show a measurable frequency change within one year. The mass

transfer can be stable or unstable depending upon q and Mtot. For example, as men-

tioned in the introduction, AM CVn systems undergo stable mass transfer and can

exist in this region. It is possible that some of the known AM CVn systems may lie at

the lower frequency end of the diagram. The trajectories of systems undergoing stable

mass transfer will originate at their respective inspiral termination boundary, similar

to q = 1, and will asymptotically reach the dashed (green) curve.
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Unstable systems may not survive to reach this dashed (green) curve because they evolve

on a dynamical time scale, which is much smaller than a chirp time scale, and may face a

catastrophic ending. It is useful, then, to further sub-divide region II in order to separate

stable systems from unstable ones. However, we need to first define the stable and unstable

conditions. This actually depends on how the radius of the star and the Roche lobe are

reacting to changes in the mass of the donor. This can be represented by the parameters ζd

and ζL, where

ζd ≡ ∂ lnRd

∂ lnMd
, (5.4)

which specifies how the radius of the donor changes as it loses mass to its companion.

Similarly, from Eq. (2.4) one can determine,

ζL ≡ ∂ lnRL

∂ lnMd

= (1 + q)
∂ lnRL

∂ ln q
, (5.5)

which measures how the Roche lobe radius changes as the mass of the donor varies, assuming

Mtot and Jorb are held fixed.

Based on these expressions, we can define ∆ζ as,

∆ζ ≡ (ζd − ζL) . (5.6)

Fig.(B.1) in Appendix B shows a plot of ∆ζ versus q for different values of Mtot. Systems

which have ∆ζ > 0 are considered to have stable mass transfer and for systems with ∆ζ < 0

the mass transfer is considered unstable. If we take the locus of all the points which have

∆ζ = 0, then it is possible to draw another boundary on Fig.(5.1) which we call as “stability

curve”.

• Region III : The bottom panel of Fig(5.1) shows this boundary identified as the

(blue) dotted line originating from the dashed line (green). Systems to the right of

stability curve undergo unstable mass transfer and the end result probably is a violent

phenomena. Systems to the left of the stability curve undergo stable mass transfer and
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will continue to evolve to lower frequencies with steady flow of matter from the donor

to the accretor. It can be approximated by the expression:

log(rhnorm) ≈ 2.141 + 1.686(log f)

− 0.141(log f)2 + 0.007(log f)3 (5.7)

• Region IV : For stable mass-transferring systems with Mtot ≥ Mch, the accretor’s

mass will exceed the Chandrasekhar mass limit and this will likely result in a Type Ia

supernova explosion. We can confine the progenitors of these systems by identifying

the (q, Mtot) pair for which Mtot = Mch along the stability curve. The evolutionary

trajectory for this system is shown in the bottom panel of Fig.(5.1) and is indicated by

an arrow pointed towards the dashed (green) line. All the systems that have Mtot ≥

Mch are considered to be progenitors of Type Ia supernovae will lie on or above the

region bounded by this trajectory, Ma = Mch curve and the stability curve. The

expression for this trajectory can be written as:

log(rhnorm) ≈ − 1.381 − 2.108(log f)

− 1.394(log f)2 − 0.167(log f)3 (5.8)
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Figure 5.1: DWD population boundaries.



6. Summary

From our current understanding of the structural properties of white dwarfs, it is possible

to constrain the space that DWD systems can occupy in the amplitude-frequency domain of

LISA. Within this space, DWD’s have two types of evolutionary mechanisms : (1) Inspiralling

systems which evolve through loss of angular momentum due to gravitational radiation

(increasing frequency and amplitude) and (2) mass-transfering binaries where one star fills

the Roche lobe and transfers mass to its companion (generally decreasing frequency and

amplitude). There is a degeneracy in identifying a system in this amplitude-frequency space,

if only f and hnorm are specified. A measure of the rate of change of frequency (ḟ) along with

the amplitude and frequency of the source will allow us to determine the system’s “chirp

mass” (M), distance to the source (r)and mainly the physical mechanism governing the

evolution. If ḟ is positive then the system is inspiralling but if ḟ is negative, then the system

is in the mass transfer phase. In §4.2, we have outlined how the system parameters like q,

Mtot and r can be determined in the mass transfer case. These results can also be found in

Kopparapu & Tohline (2006).

We also realized that there are both advantages and disadvantages if a non-zero ḟ can

be measured. The advantage is that (i) the physical mechanism governing the evolution

(inspiral or mass transfer) will be known and (ii) it is possible to find the distance r to the

source and its chirp mass. The disadvantage is that we need more accurate templates than

continous wave templates (constant frequency) to follow the evolution of the system if we

want to maintain phase coherence. As shown in Eq.(3.10) and Eq.(3.19), a non-zero ḟ can be

taken into account with these equations and phase coherence can be maintained for longer

time than continous wave templates.
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7. Part II : Introduction

The preceding discussion of DWD systems considered in detail the bounds on the population

of these systems within the LISA amplitude-frequency domain. In the following sections, we

will concentrate more on generating gravitational-wave templates from DWD systems during

the mass-transferring phase of their evolution. Especially, we will focus on the systems which

are in Region III of Fig.(5.1) and undergo unstable mass transfer. Here, only direct impact

systems with comparable masses are studied, meaning the stars are so close to each other

that the stream from the donor impacts the accretor directly without forming a disk.

Accurate three-dimensional hydrodynamical simulations are available to predict the strength

of the gravitational waves from mass-transferring binaries of this type (D’Souza et al., 2006)

but the simulations are inflexible if one wants to generate templates by scaling them to

different models of binary systems. It would take a considerable amount of computational

time if the parameters of the binary system (for example: masses or initial separation) are

changed to simulate a large number of different systems. Moreover, due to constraints on

the computational grid, the onset of mass transfer cannot be properly simulated, which is an

important piece of information if one wants to depict an entire evolution of mass-transferring

binaries. Here we develop a better model than a point mass approximation, but also one

which is not as complex as a full non linear hydrodynamical simulation. The objective is to

try and reproduce the results of hydrodynamic simulations as accurately as possible without

consuming considerable computation time. Also it is worth mentioning that the applicability

of our newly developed model is not restricted to systems in Region III of Fig.(5.1); it can

also be applied to systems in Region II & IV that are in the stable mass transfer phase.

In Part I of this dissertation, we have used the zero-temperature mass-radius relation for

a white dwarf (Eq.(2.3)) which is a close approximation to real white dwarfs. From here
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onwards, to simplify things, we will consider that the white dwarf is a “polytrope” and has

a simpler equation of state (EOS) (See Appendix C for a review of structural properties

of polytropic stars). But we note that a more general or correct treatment is possible by

extending the model we have developed. A polytropic relation has pressure proportional to

some power of the density of the star. It can be written as

P = Kργ = Kρ1+ 1

n (7.1)

where K is the polytropic constant11, γ is the polytropic exponent, ρ is the density of the

star and n is the polytropic index. For low-mass white dwarf stars, n = 3/2, P = Kρ5/3.

We adopt this value of n throughout our discussion.

The treatment in this part of the dissertation is illustrative, meaning that we are trying

to set the stage for generating banks of templates; additional work will be required to use

our model as a tool for template-bank generation. The templates that we present here are

based on the familiar expression for the time-dependent gravitational-wave strain h(t) that

is produced by a point mass binary system in circular orbit that we introduced earlier in

Chapter 1. For point-mass binaries in circular orbit, the total angular momentum Jtot = Jorb,

so column 2 of Table 1.1 provides the desired prescription for the functions (rhnorm) and f

in terms of three binary system parameters; Mtot, q, and Jtot. However, as will be discussed

in Chapter 8, the relationship between Jtot and Jorb becomes much more complex when the

spin of the two stars and related “finite-size” effects are taken into account. As a result,

it generally will not be possible to find closed-form algebraic expressions for the functions

rhnorm and f in terms of Mtot, q, and Jtot.

As a demonstration, we are going to compare our model results with two specific binary

evolutions from hydrodynamic simulations. The initial binary system parameters for these

two models are given in Table 7.1. The values in the table are generated using a three-

11This K is different than the one defined in Eq.(2.2) which is a combination of chirp mass and Chan-
drasekhar’s mass.
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dimensional self-consistent-field (SCF) technique first developed by Hachisu (1986) (see also

Hachisu et al., 1986) and adapted by Motl et al. (2002) to generate synchronously rotating

binaries in the rotating frame of the system, so that the binaries are at rest in this frame. We

will refer to these models as “Q0.744” and “Q0.409” so that the respective label uniquely

identifies that particular binary with the corresponding system parameters given in Table

7.1.

Table 7.1: Initial model parameters from SCF code.
Parameters Q0.744 Q0.409

q 0.744 0.409
Mtot 0.0419 0.0239
Jtot 2.285 × 10−3 7.793 × 10−4

Ra 0.3543 0.3070
Rd 0.3319 0.2453
a 0.9638 0.8169

Ωorb 0.2179 0.2112
Jorb 2.075 × 10−3 6.964 × 10−4

Ja 1.182 × 10−4 0.640 × 10−4

Jd 9.179 × 10−5 0.189 × 10−4

k2
a 0.179 0.189
k2

d 0.213 0.214
Ia 5.427 × 10−4 3.031 × 10−4

Id 4.213 × 10−4 8.969 × 10−5



8. Finite-Size Effects

Mathematical expressions derived using the point mass approximation will provide reason-

ably accurate gravitational-wave templates only when the radii Rd and Ra of the donor and

the accretor, respectively, are both small compared to the separation, that is, only when

Rd/a � 1 and Ra/a � 1. When the stars come close to one another in the sense that

the radius of at least one of the stars is no longer small compared to a, the time-dependent

behavior of various orbital parameters and, in turn, accurate gravitational-wave templates

can be determined only by taking into account various “finite-size” effects. These include:

The nonradial nature of the gravitational fields of both stars, which arises from the tidal and

rotational distortions of their mass distributions; mass-transfer, which begins when one star

(the donor) fills its Roche lobe, that is, when Rd ≥ RL; angular momentum that is stored

in the spin of the two stars, Jd and Ja, and that may be transferred between the orbit and

these spins as the system evolves; and the change in the radii (and the associated moments

of inertia) of both stars that occurs in response to mass-transfer.

Here we discuss how the point-mass expression for Kepler’s third law, Eq.(1.6), and the

system’s orbital angular momentum, Eq.(1.7) can be modified to account for such finite-size

effects.

8.1 Correction to Kepler’s Third Law

In general, we define a function F(q, gi, n) such that,

F(q, gi, n) =
Ω2

orba
3

GMtot
, (8.1)

where, in addition to q and n, the argument gi is the Roche filling factor of a star and can

be expressed as

gi =
Ri

RL
(8.2)
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with i = a, d for the accretor and donor, respectively, The deviation from the Kepler’s law

should be reflected in this function through variations in the values of q, gi and n. The

filling factor gi can range from gi = 0 (when the star is considered as a point mass) to

gi = 1 (when the star fills its Roche lobe with RL = Ri). For instance, if both the stars are

considered as point masses, then for all n and q, F(q, ga = 0, gd = 0, n) should be equal to

1 and Eq.(8.1) simply becomes the familiar Kepler’s law. But F(q, gi, n) becomes a more

complicated function if either of the gi values deviates from unity. In the case of n, though

it can take any value from 0 to ∞, throughout the remainder of our discussion we consider

that the stars follow an n = 3/2 polytropic equation of state.

It would be helpful if we could find an analytic expression for F(q, gi, n) which can readily

be substituted into Eq.(8.1) to obtain corrected orbital angular velocity. To achieve this, as

a first step we draw from the work of Motl (2001), where a three-dimensional SCF model

was built assuming the accretor as a point mass object and the donor as an extended star

filling its Roche lobe. This means12 ga = 0 and gd = 1. A plot of the function F(q, gi, n)

versus q generated from Motl (2001) data is shown in Fig.(8.1).

If the stars are considered as point masses, the resulting curve would be just a straight

line parallel to the x-axis at F = 1. But since one of the stars is considered as an extended

object, this function deviates from Kepler’s law and the amount of deviation depends upon

the mass ratio q.

We can fit a curve to this plot and obtain a functional dependence of F on mass ratio q.

Using the least squared method, we get

F(q, 0, 1, 3/2) = A + C qB (8.3)

where A = 0.990, B = 0.151 and C = 0.021.

Since our emphasis here is on mass-transferring binaries, henceforth we will use Eq.(8.3)

12The more complicated case of when both ga and gd are simultaneously different from zero is not consid-
ered in the present discussion.
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as the correction factor affecting Kepler’s law. For convenience, we will drop the arguments

gi and n for the function F because we assume that both of them have fixed values. Also,

as we discuss systems with different q in the following sections, we explicitly indicate that

F is a function of q.

least square fit
SCF

q

F

109876543210

1.022

1.02

1.018

1.016

1.014

1.012

1.01

1.008

1.006
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1.002

1

Figure 8.1: Plot of corrected Kepler’s law

8.2 Correction to Orbital Angular Momentum

It naturally follows from the above discussion that the orbital angular momentum equation

also needs to be corrected because Jorb depends on Ωorb. The approximate generalization of

Eq.(1.7)

Jorb ≡Mtota
2ΩorbQ = (GM3

tota)
1/2F(q)1/2Q =

(

G2M5
tot

Ωorb

)1/3

F(q)2/3Q (8.4)

Consequently, both the functions (rhnorm) and f , as given in Table 1.1 should reflect a

dependence on F(q). Table 8.1 shows these functional dependencies.
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Table 8.1: Expressions for rhnorm and f after Kepler correction.

Specify: Jorb a Ωorb

(1) (2) (3) (4)

rhnorm
4
c4
G3M5

totJ
−2
orbQ

3F(q)2 4
c4
G2M2

tota
−1QF(q) 4

c4
(GMtot)

5/3

(

FΩorb

)2/3

Q

f 1
π
G2M5

totJ
−3
orbQ

3F(q)2 1
π
(GMtot)

1/2a−3/2F(q)1/2 1
π
Ωorb



9. Accounting for the Spin of Both Stars

In accounting for the spin of both stars, we must first generalize the expression for the total

angular momentum of the binary system to include Ja and Jd. Henceforth, we will adopt an

expression for Jtot of the form,

Jtot = Jorb + Ja + Jd , (9.1)

where Eq. (8.4) continues to provide the definition of Jorb in terms of the global system

parameters [Mtot, q, and a (or Ωorb)] and, for either one of the stars (i = a, d),

Ji ≡ Iiωi = k2
iMiR

2
iωi , (9.2)

where Ii is the star’s moment of inertia about its spin axis, ωi is the characteristic spin

angular velocity of the star, and ki is the radius of gyration of the star (Claret & Gimenez,

1989).

The appearance of Ri in the expression for Ji most clearly reflects the manner in which

the finite size of both stars effects the relationship between Jtot and Jorb. The radius of

gyration is a coefficient of order unity whose value is largely dependent on the equation of

state of the stellar material and is insensitive to variations in the mass or radius of the star

(see Appendix C for details). For the models being developed here, special care will be taken

to determine the values of kd and ka for each initial binary state taking into account the

effects of rotational flattening and tidal elongation, but we will assume that these coefficients

are independent of time, even during mass-transfer events.

Obviously, the specification of ωi is also critical to the determination of Ji and, hence,

to the determination of the relationship between Jtot and Jorb. However, in many realistic

astrophysical situations — and in all of the evolutionary models under consideration here —

the initial value of ωi, as well as its variation with time, will be fully determined once the
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primary binary system parameters have been specified and a physical scenario for the evolu-

tion has been prescribed. For all of the systems we will be considering in this investigation,

for example, we will assume that the stars are initially synchronously rotating, that is, at

time t = 0,

ωd = ωa = Ωorb . (9.3)

It then becomes advantageous to rewrite Eq. (9.1) in the form (with Kepler correction),

Jtot = Mtot

{[

(GMtot)
2/3F(q)2/3Q

]

Ω
−1/3
orb +

[

k2
dR

2
d q + k2

aR
2
a

1 + q

]

Ωorb

}

, (9.4)

which provides a unique specification of the orbital frequency in terms of the five primary

system parameters [Mtot, q, Jtot, Rd, Ra]. Once Ωorb has been determined numerically

from this expression, its value can be used in conjunction with the values of Mtot and Q

to determine the amplitude (rhnorm) and frequency f of the gravitational-wave template

via the algebraic expressions listed in column 4 of Table 8.1. The orbital separation and

orbital angular momentum also can be determined from Ωorb, via expressions (8.1) and

(8.4), respectively.

Alternatively, using modified Kepler’s law, we can explicitly replace Ωorb with a in

Eq. (9.4) to obtain an expression representing synchronous rotation of the form,

Jtot = (GM3
totaF(q))1/2

{

Q+
[

k2
dR

2
d q + k2

aR
2
a

a2(1 + q)

]}

. (9.5)

While it is less obvious how this expression directly relates to the constraint of synchronous

rotation because it does not explicitly contain the orbital frequency or the spin frequencies

of the stars, in later discussions we will find this expression to be a more advantageous

mathematical prescription than Eq. (9.4). We lose nothing by choosing expression (9.5)

over Eq. (9.4) because they are mathematically equivalent. Equation (9.5) provides a unique

specification of the orbital separation in terms of the five primary system parameters [Mtot, q,
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Jtot, Rd, Ra], and once a has been determined numerically from the expression, its value can

be used in conjunction with the values ofMtot and Q to determine the amplitude (rhnorm) and

frequency f of the gravitational-wave template via the algebraic expressions listed in column

3 of Table 8.1. The orbital angular velocity (that otherwise would have been determined

directly from Eq. 9.4) and orbital angular momentum also can be determined from a, via

expressions (8.1) and (8.4), respectively.

In an effort to realistically model the time-evolutionary behavior of Ωorb, we will consider

two different possible physical scenarios:

• Case I: The stars remain synchronously locked with the (time-varying) orbital angular

velocity throughout the evolution.

• Case II: The donor retains its original angular momentum but the accretor robs angular

momentum from the orbit as a result of the direct impact of the mass accretion stream

on its surface.

Case I is generally thought to apply during the long phase of an inspiral evolution preceding a

mass-transfer event when the stars are detached from their Roche lobes; but it may continue

to apply throughout a phase of mass transfer if the mass-transfer timescale is sufficiently

long. As has been shown by D’Souza et al. (2006), the Case II scenario is reasonable in

situations where the rate of mass transfer is high and the accretion stream directly impacts

the surface of the accretor.

9.1 Case I Evolutions

For Case I evolutions, Eq. (9.5) serves to define the instantaneous value of the orbital sepa-

ration at all times, regardless of whether the principal system parameter that is decreasing

with time is Jtot (due to gravitational radiation) or q (due to mass transfer from the donor
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to the accretor). (Alternatively, Eq. 9.4 serves to define the instantaneous value of the or-

bital frequency at all times.) The initial orbital separation a0 is determined by evaluating

expression (9.5) at time t = 0 for a given set of the five primary system parameters [Mtot,

q, Jtot, Rd, Ra]. Then, if the system evolves because it loses angular momentum via grav-

itational radiation but the other four primary system parameters remain unchanged, the

function a(t) can be determined by letting Jtot vary with time as prescribed by Eq. (3.5)

and solving Eq. (9.5) numerically for a at various times. If the system evolves because the

mass-ratio is dropping from its initial value q0 as a result of mass transfer, but the other four

primary system parameters remain unchanged, the function a(q) will be determined from an

expression derived from Eq. (9.5) of the form,

(

a

a0

)[

Q +
k2

dR
2
d q + k2

aR
2
a

a2(1 + q)

]2

F(q) =
J2

tot

GM3
tota0

. (9.6)

When used in conjunction with the template formulae given in column 3 of Table 8.1, this

expression for a(q) will specify the trajectory of Case I evolutions in the amplitude-frequency

domain. Then, if the time-dependent behavior of q is prescribed the time-dependent behavior

of the amplitude and frequency of the gravitational-wave signal can be determined as well.

9.2 Case II Evolutions

In Case II evolutions, we assume that the stars are initially synchronously rotating so, again,

the initial orbital separation a0 is determined by evaluating expression (9.5) at time t = 0

for a given set of the five primary system parameters [Mtot, q, Jtot, Rd, Ra]. The system’s

initial orbital angular momentum Jorb,0 is then determined by evaluating Eq. (8.4) based on

this value of a0, that is,

Jorb,0 = Jorb(t = 0) = (GM 3
tota0)

1/2
[

Q0F(q)1/2
]

. (9.7)

Thereafter, the task is to determine how Jorb varies with time as the mass-transfer stream

extracts angular momentum from the orbit and deposits it onto the accretor. Recalling that
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in Case II evolutions both Jtot and Jd are assumed to be independent of time, an expression

for angular momentum conservation that can be drawn from Eq. (9.1) is, simply,

Jorb + Ja = constant . (9.8)

This, in turn, implies that,

J̇orb = − J̇a , (9.9)

where J̇a is the (generally time-varying) rate at which angular momentum is being deposited

onto the accretor by the mass stream.

While a precise determination of J̇a(t) may not be possible unless detailed hydrodynamic

simulations of mass-transfer events are carried out, a reasonable approximation to the func-

tion can be constructed by drawing on the work of Verbunt & Rappaport (1988). As matter

moves from the L1 Lagrange point toward the accretor, it experiences a torque from the

binary system that increases its specific angular momentum (at the expense of the orbit) to

a value,

jh ≈ (GMaRh)
1/2 , (9.10)

where Rh is the so-called “circularization radius.” According to Verbunt & Rappaport (1988),

the ratio of Rh to the binary separation a is only a function of the system mass ratio, q;

specifically13,

rh ≡ Rh

a
≈ 0.0883 − 0.04858 log(q) + 0.11489 log2(q) + 0.020475 log3(q) . (9.11)

Roughly speaking, “direct impact” systems (on which we will be focusing here) arise when

Ra ≥ Rh. As the accretion stream strikes the accretor it deposits material onto the accretor

13The sign on two terms in this series expression is different from the expression given by Verbunt &
Rappaport (1988) because our definition of q is the inverse of theirs.
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that carries with it a specific angular momentum given by jh. Hence,

J̇a = Ṁa jh ≈ −Ṁd(GMtota)
1/2

[

rh

(1 + q)

]1/2

= −Jorb

[

rh

q2(1 + q)F(q)

]1/2

q̇ , (9.12)

which, via Eq. (9.9), implies,

d lnJorb

dt
=

[

rh

q2(1 + q)

]1/2 dq

dt
. (9.13)

Once the (generally time-varying) mass-transfer rate and, hence, q̇(t) is known, Eq. (9.13) can

be integrated numerically to give Jorb(t). The time-variation of the amplitude (rhnorm) and

frequency (f) of the corresponding gravitational-wave template can then also be determined

through the expressions given in column 2 of Table 8.1.

It is interesting to note that, once again, the trajectory of these evolutions in the

amplitude-frequency domain can be determined without having to specify the mass-transfer

rate. Because time does not appear explicitly on either side of Eq. (9.13) except in the

differential operators, the equation can be integrated once to give Jorb as a function of q.

Specifically,

ln
[

Jorb(q)

Jorb,0

]

=

q
∫

q0

[

rh

q2(1 + q)

]1/2

dq . (9.14)



10. Accounting for the Stellar Mass-Radius
Relationship

Up to this point in the discussion, we have included the effect of the finite radius of each star

in the expression for the star’s spin angular momentum. Through the respective moments

of inertia of the two stars, the initial choice of Ra and Rd (in combination with a choice

of the other three primary system parameters, Mtot, q, and Jtot) effect the self-consistent

determination of the initial orbital separation through Eq. (9.5). In Case I mass-transfer

evolutions, the stellar radii continue to play a direct role in the determination of a(q) through

expression (9.6). What we have not previously pointed out, however, is that, in general, the

stellar radii will not remain constant during a mass-transfer evolution. As mass is removed

from (donor) or added to (accretor) the star, the star will adjust its internal structure on

a dynamical time-scale to find a new equilibrium structure which, in general, will have a

new equilibrium radius. The time-dependent behavior of the stellar radii must be taken into

account when using Eq. (9.6) to solve for the time-dependent orbital separation.

Fortunately, once the equation of state of the stellar material has been specified, it is

straightforward to determine how the equilibrium radius of each star will vary with the

star’s mass. This, in turn, allows the ratio the stellar radii Ra and Rd to their initial values,

Ra,0 ≡ Ra(t = 0) and Rd,0 ≡ Rd(t = 0), to be expressed as a known function of the system

mass ratio q. For example, a polytrope of index n obeys a mass-radius relationship of the

form14,

R = Cn(K)M (1−n)/(3−n) . (10.1)

(See Appendix C for a review of the structural properties of polytropic stars.)

14It is worth noticing that with this simple mass-radius relationship, the parameter ζd defined in Eq.(5.4)
is just the exponent (1 − n)/(3 − n). Also, the quantity ζ∗ mentioned in Appendix C is exactly the same
that can be derived from this mass-radius relation.
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Then, if both the donor and accretor are taken to be n = 3/2 polytropes,

we know that,

Rd

Rd,0
=

(

Md

Md,0

)−1/3

=
[

q0
(1 + q0)

(1 + q)

q

]1/3

; (10.2)

Ra

Ra,0
=

(

Ma

Ma,0

)−1/3

=
[

1 + q

1 + q0

]1/3

. (10.3)

With these relations in hand, Eq. (9.6) can be rewritten in the form,

(

a

a0

){

Q + k2
d

(

a

a0

)−2 (

Rd,0

a0

)2[ q

(1 + q)

]1/3[ q0
(1 + q0)

]2/3

+ k2
a

(

a

a0

)−2 (

Ra,0

a0

)2[ 1

(1 + q)

]1/3[ 1

1 + q0

]2/3}2

(10.4)

F(q) (10.5)

=
J2

tot

GM3
tota0

, (10.6)

where the explicit dependence of the binary separation a on the two (time-varying) stellar

radii has been replaced by a more complex dependence on the single time-varying parameter,

q(t). For Case I evolutions, this equation can be solved numerically to give a(q) for any choice

of the five primary system parameters

[Mtot, q0, Jtot, Rd,0, Ra,0].

10.1 Illustration: Synchronously Rotating, Spherical

Polytropes

Consider the case where both stars are assumed to be spherical, n = 3/2 polytropes — in

which case, the radii of gyration, kd = ka = 0.452 (see Appendix C) — and where the fluid

in both stars has the same specific entropy, i.e., Kd = Ka, so the ratio of the initial radii of

the stars is fixed by the initial mass ratio q0 via the expression,

Ra,0

Rd,0
=

(

Ma,0

Md,0

)−1/3

= q
+1/3
0 . (10.7)
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If the binary system follows a Case I evolution, that is, if the stars remain in synchronous

rotation with the orbit throughout the evolution, then Eq. (10.4) takes the simpler form,

(

a

a0

)[

Q+ A2 1 + q1/3

(1 + q)1/3

(

a

a0

)−2 ]2

F(q) = B , (10.8)

where,

A ≡ 0.452
[

q0
1 + q0

]1/3(Rd,0

a0

)

, (10.9)

B ≡ J2
tot

GM3
tota0

. (10.10)

In the limit A � 1 — usually this means (Rd,0/a0) � 1 — Eq. (10.8) reduces to the

point mass relation for a(q) that is derivable from Eq. (8.4) with F = 1, namely,

a Q2 =
J2

tot

GM3
tot

, (10.11)

and it becomes clear how a can be replaced in the template formulae given in column 3

of Table 8.1 to give analytical expressions for rhnorm and f that are entirely in terms of

only three principal parameters of the binary system [Mtot, q, Jtot ≈ Jorb]. More generally,

however, the initial radius of the donor15 Rd,0 must be included among the specified system

parameters and Eq. (10.8) has to be solved numerically in order to determine the binary

separation initially (because a0 is in the definition of both A and B), as well as at any later

point in time or, equivalently, for all other q < q0.

Realistically, mass-transfer will not begin unless the radius of the donor is initially a

sizeable fraction of the binary separation and fills its Roche lobe. That is to say, Rd,0 should

not be specified independently of a0. Conveniently, Eggleton (1983) has demonstrated that

the value of the ratioRd/a at which the donor marginally fills its Roche lobe is only a function

of the mass ratio q. See our earlier Eq.(2.4) Hence, the constants A and B in Eq. (10.8) are

15Because we have specified that the polytropic constant in both stars is the same, the initial radius of the
accretor is not an independent system parameter. It necessarily has the value given by Eq. (10.7), namely,

Ra,0 = q
1/3

0
Rd,0.
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both fully determined once the initial mass ratio is specified, as follows:

A = 0.452
[

q0
1 + q0

]1/3[ 0.49 q
2/3
0

0.6 q
2/3
0 + ln(1 + q

1/3
0 )

]

, (10.12)

B =
[

Q2
0 + A2 1 + q

1/3
0

(1 + q0)1/3

]2

. (10.13)

Via these two expressions and Eq. (10.8), therefore, the functional dependence of the ratio

a/a0 on q is also fully determined once q0 is specified. In conjunction with the template

formulae given in column 3 of Table 8.1, this is sufficient information to predict the system’s

evolutionary trajectory in the amplitude-frequency domain.



11. Accounting for Rotational and Tidal
Distortions

In binary star systems that undergo mass-transfer, the donor star is, by definition, tidally

elongated because it is filling its Roche lobe. If the donor is in synchronous rotation with the

orbit, it also will be noticeably rotationally flattened. The accretor may also be noticeably

distorted from a sphere if the ratio Ra/a is not small. In our treatment of finite-size effects,

these rotational and/or tidal distortions will influence our modelling principally through the

effect they have on each star’s moment of inertia. Most importantly, they can cause the

star’s radius of gyration to differ from the value that is readily derived for spherical stars

(see Appendix C).

In the model comparisons that we make in chapter 13, for each choice of the initial mass

ratio q0 we rely upon a SCF technique to generate an accurate model of the donor as it fills its

Roche lobe (at time t = 0). We then draw from this SCF model the initial effective radius

of the donor, Rd,0, as well as the donor’s radius of gyration, k2
d. Because Rd/a ≈ RL/a

and, as we discussed earlier, RL/a is only a function of q, the effect that rotational and

tidal distortions have on k2
d should only have to be determined once, for each choice of the

parameter q. For a given system mass ratio, q, however, the accretor can assume a wide

range of initial radii. The ratio Ra/a can be assigned an initial ratio anywhere from near

zero (the point mass limit) to of order unity, in which case the accretor also may nearly fill

its Roche lobe. For the purposes of generating gravitational-wave templates that span a wide

range of the parameter Ra/a, we have developed a numerical tool that can readily determine

the radius of gyration of the accretor k2
a for arbitrarily specified values of the primary binary

system parameters [Mtot, q, Jtot, Rd, Ra].
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11.1 Formulation

Generally, an accretor that is both tidally and rotationally distorted will exhibit an equilib-

rium mass-density distribution ρ(x) that is distorted in a nontrivial way from the spherical

shape that it would otherwise assume in the absence of such distortions. As Chandrasekhar

(1933a) has pointed out, however, if the accretor has a polytropic equation of state (as we

are assuming here), the distortions can be well-approximated through a perturbation of the

density distribution ρsph(r) that is derived for spherical polytropes from the solution θn(ξ)

of the Lane-Emden equation (see Appendix C). Specifically,

ρsph(r) = ρc[θn(ξ)]n , (11.1)

where ρc is the central density of the accretor,

ξ ≡ r

αn

, (11.2)

and the characteristic length scale for the polytrope,

αn ≡
[

(n + 1)K

8πG
ρ1/n−1

c

]1/2

. (11.3)

where K is the polytropic constant.

At the center of a spherical polytrope, θn(0) = 1; and its surface is defined by the

dimensionless radius ξ1 at which the function θn first drops to zero16. The numerical value

of ξ1 along with other properties of spherical polytropes are given in Appendix C for a range

of values of the polytropic index, n.

Following Chandrasekhar (1933c), in the presence of rotational and tidal distortions we

define a more general polytropic function,

Θn(ξ, θ, φ) ≡
[

ρ(r, θ, φ)

ρc

]1/n

, (11.4)

16The polytropic function θn has its first zero at ξ1, but mathematically the function continues on beyond
this radius. In order to determine the more general, “perturbed” polytropic function Θn shown in Eq. (11.5),
θn must be evaluated on beyond the surface of the unperturbed configuration to radial locations ξ > ξ1,
where θn becomes negative. In this region we use Taylor expansion to evaluate θn near its first zero.
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whose dependence on the spherical coordinates (ξ, θ, φ) can be written as a sum of the

spherically symmetric polytropic function θn (not to be confused with the spherical polar

coordinate, θ) and a three-component, “perturbation” of the form17,

Θn(ξ, θ, φ) = θn(ξ) + 2(1 + q)F(q)
(

αnξ1
a

)3 |θ′1|
ξ1

·
{

ψ0(ξ) −
5

6

ξ2
1P2(cos θ) ψ2(ξ)

[3 ψ2(ξ1) + ξ1 ψ′
2(ξ1)]

+
q

(1 + q)

4
∑

j=2

(

j +
1

2

)(

αnxi1
a

)j−2

·

ξ2
1Pj(sin θ cosφ) ψj(ξ)

[(j + 1) ψj(ξ1) + ξ1 ψ′
j(ξ1)]

}

. (11.5)

Here the center of the spherical coordinate system is aligned with the center of the accretor,

the polar axis (θ = 0) is aligned with the accretor’s spin axis, and the radial coordinate line

whose orientation is (θ, φ) = (π/2, 0) points toward the donor along the line adjoining the

centers of the two stars. In expression (11.5), Pi are Legendre polynomials; the four radial

functions,18 ψ0, ψ2, ψ3 and ψ4, have been derived by Chandrasekhar (1933a,b) to provide

solutions to the distorted equilibrium force-balance equations; ψ ′
j ≡ dψj/dξ; and θ′1 = dθ/dξ,

evaluated at ξ1.

In our present analysis, we have focused on n = 3/2 polytropes for which the characteristic

scale length becomes,

αn = α3/2 ≡
[

5K

8πG
ρ−1/3

c

]1/2

. (11.6)

With this in hand, a determination of Θ3/2(ξ, θ, φ) and the three-dimensional, distorted

density distribution ρ(r, θ, φ) is straightforward if the mass ratio q and the separation a of

the binary system are specified along with the polytropic constant K and central density ρc

of the accretor.
17We have written this polytropic function with a Kepler correction. The original expression given in

Chandrasekhar (1933c) can easily be obtained by substituting F(q) = 1.
18Chandrasekhar, in his published analysis, does not include the higher order terms. Here we have derived

additional higher-order terms to match the values listed in the appendices of Chandrasekhar (1933a,b). The
expanded radial functions with the higher order terms are given in Appendix D of this dissertation.
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The radius of gyration for the tidally and rotationally distorted polytrope is also then

straightforwardly determined as follows. The mass and the relevant moment of inertia are

obtained via the volume integrals,

MΘ = ρc α
3
3/2

∫

(Θ3/2)
3/2ξ2dξ sin(θ)dθdφ , (11.7)

and,

IΘ = ρc α
5
3/2

∫

(Θ3/2)
3/2ξ4dξ sin(θ) dθ dφ , (11.8)

where it is understood that, for each angular direction (θ, φ), the integral over ξ is carried

from the center of the star (ξ = 0) out to the location of the first zero of the function Θ3/2.

The radial location ξeq at which ρ(ξ, π/2, 0) first goes to zero defines the equatorial radius

of the distorted object via the expression,

RΘ = α3/2ξeq . (11.9)

Then the radius of gyration is,

k2
Θ ≡ IΘ

MΘR2
Θ

=

∫

(Θ3/2)
3/2ξ4dξ sin(θ) dθ dφ

ξ2
eq

∫

(Θ3/2)3/2ξ2dξ sin(θ)dθdφ
. (11.10)

11.2 Iterative Solution

The formulation that has just been outlined can only be used to determine k2
a in our initial

binary model if we specify the initial separation a0 of the binary system. But because a0 is

constrained by the expression,

a0

[

Q0 +
k2

dR
2
d q0 + k2

aR
2
a

a2
0(1 + q0)

]2

F(q) =
J2

tot

GM3
tot

, (11.11)

which has been obtained by evaluating Eq. (9.6) at time t = 0, the value of a0 is not known

until the accretor’s radius of gyration k2
a has been specified. We have therefore found it

necessary to iterate between a solution of Eq. (11.11) and an evaluation of Eq. (11.5) in
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order to determine k2
a and a0 simultaneously, in a self-consistent fashion. At the same time,

it has been necessary to develop a method by which the characteristic polytropic length scale

α3/2 that appears explicitly in Eq. (11.5) can be specified in terms of our preferred system

parameters [Mtot, q0, Ra] instead of in terms of the initial central density ρc and the polytropic

constant Ka of the accretor, as indicated by expression (11.6). The iterative procedure that

has been developed goes as follows:

• The set of five primary system parameters [Mtot, q0, Jtot, Rd, Ra] is specified and the

values of these parameters remain fixed throughout the iteration.

• The radius of gyration k2
d is obtained for the Roche-lobe-filling donor from a solution

of the self-consistent-field equations; its value is held fixed throughout the iteration.

• For the first step of the iteration (i = 1): A “guess” for k2
a is obtained from the value

of the radius of gyration for a spherically symmetric, n = 3/2 polytrope; and ρc, K,

and α3/2 are set to the values they would have for a spherical polytrope of radius Ra

and mass Ma = Mtot/(1 + q). That is (see Appendix C),

k2
a|i=1 = 0.204 , (11.12)

ρc|i=1 =
ξ3
1

4πm3/2

[

Mtot

(1 + q)R3
a

]

, (11.13)

Ka|i=1 =
8πG

5ξ1
(4πm3/2)

−1/3
[

M
1/3
tot Ra

(1 + q)1/3

]

, (11.14)

α3/2|i=1 =
Ra

ξ1
. (11.15)

• Begin Outer Loop: Given k2
a|i for the ith iteration step, a0|i is determined from a

solution of Eq. (11.11).

• Begin Inner Loop: Given a0|i and α3/2|i for the ith iteration step, Θ3/2|i and the

location of its first zero in the equatorial plane ξeq|i are determined from a solution of

Eq. (11.5).
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• Given α3/2|i and ξeq|i, RΘ|i is determined from Eq. (11.9).

• If |1 − (RΘ|i/Ra)| > εR — that is, if RΘ|i 6= Ra to within a specified tolerance εR —

the characteristic scale length of the polytrope is adjusted to a value,

α3/2|i+1 = α3/2|i
Ra

RΘ|i
,

in an effort to bring the solution in line with the desired radius Ra and the “inner loop”

is repeated.

ElseIf |1 − (RΘ|i/Ra)| ≤ εR, Exit Inner Loop.

• Given Θ3/2|i and ξeq|i from the converged “inner loop” iteration, k2
Θ|i is determined

from Eq. (11.10).

• If |1 − (k2
Θ|i/k2

a|i)| > εk — that is, if k2
Θ|i is significantly different from the the value

of k2
a that was “guessed” for this iteration step — we set k2

a|i+1 = k2
Θ|i and the “outer

loop” is repeated.

ElseIf |1 − (k2
Θ|i/k2

a|i)| ≤ εk, Exit Outer Loop.

At the end of this double-looped iteration, k2
a and a0 have been determined in a self-consistent

manner for the specified set of initial binary system parameters [Mtot, q0, Jtot, Rd, Ra].

Simultaneously, the three-dimensional, dimensionless density profile (Θ3/2)
3/2 and the char-

acteristic scale length α3/2 for the distorted polytropic accretor have been self-consistently

determined. With this information in hand, the central density of the distorted accretor can

be determined from Eq. (11.7) by demanding that MΘ = Ma = Mtot/(1 + q), that is,

ρc =
Mtot

(1 + q) α3
3/2

∫

(Θ3/2)3/2ξ2dξ sin(θ)dθdφ
, (11.16)

and the polytropic constant Ka for the distorted accretor can be determined from Eq. (11.6),

that is,

Ka =
8πG

5
α2

3/2 ρ
1/3
c . (11.17)
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The distorted density distribution ρ(r, θ, φ) is shown as a function of radius in the top

and bottom of Fig.(11.1) for models Q0.744 & Q0.409 respectively. The density distribution

for a spherical n = 3/2 polytrope is also shown for comparison.
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Figure 11.1: Perturbed densities from Chandra’s model.

11.3 Results from the Iterative Solution

Tables 11.1 and 11.2 show our converged results for model Q0.744 before and after we

implement Kepler correction. Similarly, Tables 11.3 and 11.4 show the converged results for

model Q0.409 before and after the Kepler correction. All the values are in code units as

described in Table.(7.1). The first column in each table represents the model parameters

that we are comparing. The second column contains the results obtained from our converged

model and the values in third column are obtained from the SCF code. The fourth column

represents the percentage difference between the converged model and SCF. The data in

the fifth column is obtained when the accretor is considered as a spherical polytrope. The

percentage differences in the last column are calculated by comparing the converged model
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in the second column with the spherical polytrope model. The errors are significant if

the accretor is assumed as a spherical polytrope. But when compared with SCF model

on average the differences are in the range of about two or three percent and this might

seem not signifcant in terms of comparing the structure of the stars. Since we assume the

gravitational waveforms from hydro models as signal from the source, any deviation from

these initial values of hydro model will propagate and effects the template accuracy. In other

words, phase incoherence between our model and hydro model will arise due to these errors.

Table 11.1: Initial model results for Q0.744 before Kepler Correction.
Converged model SCF % Spherical %

ρc 0.977 1.000 2.2 0.772 26.5
K 3.93 × 10−2 3.92 × 10−2 0.3 4.33 × 10−2 9.2
Ia 5.44 × 10−4 5.42 × 10−4 0.3 9.25 × 10−4 41.1
k2

a 0.1804 0.1799 0.33 0.204 11.5
a0 0.9864 0.9638 2.3 0.9660 2.1

Ωorb 0.2089 0.2179 4.1 0.2155 3.0
Jorb 2.083 × 10−3 2.075 × 10−3 0.3 2.061 × 10−3 1.0

Table 11.2: Initial model results for Q0.744 after Kepler correction.
Converged model SCF % Spherical %

ρc 0.990 1.000 0.9 0.772 28.2
K 3.91 × 10−2 3.92 × 10−2 0.1 4.33 × 10−2 9.6
Ia 5.40 × 10−4 5.42 × 10−4 0.3 9.25 × 10−4 41.6
k2

a 0.1792 0.1799 0.34 0.204 12.1
a0 0.9718 0.9638 0.83 0.9496 2.3

Ωorb 0.2147 0.2179 1.4 0.2223 3.4
Jorb 2.078 × 10−3 2.075 × 10−3 0.1 2.004 × 10−3 3.6
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Table 11.3: Initial model results for Q0.409 before Kepler correction
Converged model SCF % Spherical % difference

ρc 0.981 1.000 1.8 0.838 17.0
K 3.12 × 10−2 3.12 × 10−2 0.08 3.34 × 10−2 6.5
Ia 3.07 × 10−4 3.03 × 10−4 1.3 4.91 × 10−4 37.4
k2

a 0.188 0.189 0.5 0.204 7.8
a0 0.8411 0.8169 2.9 0.8225 2.2

Ωorb 0.2003 0.2112 5.1 0.2072 3.3
Jorb 6.977 × 10−4 6.964 × 10−4 0.1 6.901 × 10−4 1.1

Table 11.4: Initial model results for Q0.409 after Kepler correction.
Converged model SCF % Spherical % difference

ρc 0.989 1.000 1.0 0.838 18.0
K 3.11 × 10−2 3.12 × 10−2 0.2 3.34 × 10−2 6.8
Ia 3.00 × 10−4 3.03 × 10−4 0.9 4.91 × 10−4 38.9
k2

a 0.188 0.189 0.5 0.204 7.8
a0 0.8297 0.8169 1.5 0.8098 2.4

Ωorb 0.2054 0.2112 2.7 0.2130 3.5
Jorb 6.962 × 10−4 6.964 × 10−4 <0.1 6.877 × 10−4 1.2



12. Analytical Expression for Mass Transfer
Rate Ṁd(t)

In Part I, to obtain the time dependent behavior of the system’s mass ratio in mass-

transferring systems, we assumed that the mass-transfer rate Ṁd was constant throughout

the evolution. In real systems, Ṁd will vary with time in a complex way and the gravitational

waveform will reflect this complex time-variation. Here we draw upon the research of others

who have extensively studied mass-transfer events in semi-detached binary systems in order

to construct a realistic mathematical prescription for the function Ṁd(t).

12.1 Derivation

The rate Ṁd at which mass is transferred from the donor to the accretor in a semi-detached

binary system is, in a very generic sense, governed by the degree to which the radius of the

donor star Rd exceeds the Roche lobe radius RL. As has been discussed in detail by others

(Webbink, 1984; Frank et al., 2001), in stars with polytropic atmospheres the mass-transfer

rate is expected to be proportional to the fractional radial overflow, ∆R/Rd ≡ (Rd−RL)/Rd,

raised to the (n+ 3/2) power, that is,

Ṁd ∝
[

∆R

Rd

]n+3/2

= −Ṁ0

[

1 − RL

Rd

]n+3/2

, (12.1)

where the intrinsically positive proportionality constant Ṁ0 sets an overall scale for the rate

of mass transfer in a particular system. As is described more fully below in §12.2, Ṁ0 depends

on other properties of the binary system that do not vary — or vary only slowly — with

time as long as ∆R/Rd � 1. Hence, we only need to know how the radius of the donor

star and the radius of Roche lobe vary with time in order to obtain a reasonably accurate

description of the time-variation of the mass-transfer rate Ṁd(t). It is customary to express

65
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the time-variation of either one of these two characteristic radii (denoted by the subscripts

i = d or i = L) in the following form:

d

dt
Ri(t,Md(t)) =

∂Ri

∂t
+
∂Ri

∂Md
Ṁd

= Ri

[

∂ lnRi

∂t
+
∂ lnRi

∂ lnMd

Ṁd

Md

]

= Ri

[

νi + ζi
Ṁd

Md

]

, (12.2)

where it is recognized that in addition to any physical processes that might directly cause

either radius Ri to change with time, the radii must both change in response to an exchange

of mass between the two stars. The latter effect is customarily parameterized in terms of the

two dimensionless coefficients, ζd and ζL defined in Eq.s (5.4) & (5.5), while direct processes

are customarily parameterized in terms of the coefficients,

νi ≡
∂ lnRi

∂t
, (12.3)

which have units of inverse time. The numerical values of these four coefficients — νd, ζd, νL,

and ζL — that are appropriate for the models that are of interest to us in this investigation

are derived below in §12.2. If we differentiate Eq. (12.1) with respect to time and replace the

time derivatives of Ri by the parameterized expressions just derived, we obtain the following

first-order, ordinary differential equation that describes the time-variation of Ṁd:

Ṁ
−1/(n+3/2)
0

d

dt
(−Ṁd)

1/(n+3/2) =
RL

Rd

[

d lnRd

dt
− d lnRL

dt

]

≈ (νd − νL) + (ζd − ζL)
Ṁd

Md
. (12.4)

The final line of this expression has been obtained by setting RL/Rd ≈ 1, which follows

from the constraint that ∆R/Rd � 1. As Webbink (1984) and Webbink & Iben (1987) have

illustrated, for certain values of the polytropic index, Eq. (12.4) is analytically integrable

if one assumes that the various parameters (other than Ṁd) are independent of time. (As
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discussed by Gokhale et al. (2007), this assumption is likely to be valid until the mass ratio

of the binary system q has changed significantly from its initial value.) To simplify the

derivation, from this point on we will adopt an n = 3/2 polytropic index. Then, by defining,

y ≡
[

−Ṁd

µ

]1/3

, (12.5)

µ ≡ Md

(

νd − νL

ζd − ζL

)

, (12.6)

and,

τ ≡ 1

3

[

Ṁ0

Md
(ζd − ζL)(νd − νL)2

]−1/3

, (12.7)

Eq. (12.4) may be written as,

1

1 − y3

dy

dt
=

1

3τ
, (12.8)

and integrated to give,

t

τ
= −1

2
ln

[

(1 − y)3

1 − y3

]

+
√

3
[

tan−1
(

2y + 1√
3

)

− π

6

]

. (12.9)
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Figure 12.1: Webbink mass transfer rate.

(The term π/6 inside the last set of brackets is the integration constant required to set

Ṁd = 0 at time t = 0.) As Fig. 12.1 illustrates, this expression admits two solutions that
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depend on the sign of y, which in turn reflects the sign of the parameter µ. The time t is

measured from the onset of mass transfer. For ζd < ζL, the mass transfer is dynamically

unstable where Ṁ → ∞ as the time t → −2πτ/
√

3. This is represented by the dotted line.

The solid line is for stable mass transfer (ζd > ζL) where Ṁ approaches −µ as t→ ∞.

It should be noted that the scaling parameters µ and τ depend upon νd, νL, ζd and ζL.

Since the mass ratio and angular momentum loss due to gravitational-wave radiation (GWR)

change from system to system , ζL (which depends on mass ratio) and νL (which depends on

an GWR loss) also change. Consequently µ and τ change from system to system. But this

does not affect the shape of the curves shown in Fig(12.1), only the scale on the axes change.

In the following sections, we will derive some analytical expressions to find the values of the

four quantities influencing µ and τ .

12.2 Evaluation of Time-Independent Parameters

According to Paczynski & Sienkiewicz (1972), if the donor star is a polytrope of index

n = 3/2, the proportionality constant in Eq. (12.1) is,

Ṁ0 = 0.215
G2W (q)M2

tot

K3/2
, (12.10)

where K is the proportionality constant in the polytropic equation of state,

W (q) ≡ q1/2(1 + q)−2(1 + q1/2)−4r−3
L , (12.11)

and,

rL ≡ RL

a
(12.12)

where RL is defined in Eq.(2.4). For spherically symmetric, n = 3/2 polytropes, however,

we also know that (Chandrasekhar, 1958),

G2Md

K3/2
= 3.026(Gρc)

1/2 , (12.13)
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where ρc is the central density of the star. Hence, Eq. (12.10) may be re-written in the form,

Ṁ0 = 0.6506
(1 + q)

q
W (q)Mtot(Gρc)

1/2 , (12.14)

which can be readily evaluated in terms of the principal parameters of our modelled binary

system.

In the case of the four quantities νd, ζd, νL, and ζL, we assume that they are not changing

with time and some of them are fixed for all values of q because of the equation of state we

are assuming for both the stars. To be more specific, depending upon the rate of expansion

or contraction of the radius of the donor star, νd can be determined for different systems.

From the mass-radius relation of a polytrope given in eq.(10.1), it can easily be shown that

ζd = −1/3 for polytropes with index n = 3/2. From the definition of ζL in Eq.(5.5) and

Eq.(12.12) above , we can write

ζL =
∂ lnRL

∂ lnM2
=

∂ ln a

∂ lnM2
+

∂ ln rL
∂ lnM2

(12.15)

The second term in the above expression can be calculated by differentiating Eq.(2.4) (Marsh

et al. (2004) also provides this expression which is exactly the same as ours). Also, the change

in the separation (first term) depends on the amount of angular momentum transferred from

the stream to the surroundings of the accretor. According to Verbunt & Rappaport (1988),

this first term can be written as

d ln a

d lnM2
= −2

[

1 − q −
(

(1 + q)rh

)1/2]

(12.16)

where rh is defined in Eq.(9.11). Combining both terms ζL becomes

ζL =
(1 + q)

3

2 ln(1 + q1/3) − q1/3/(1 + q1/3)

0.6q2/3 + ln(1 + q1/3)
+ 2((1 + q)rh)

1/2 − 2(1 − q) (12.17)

which is only a function of q.

In case of νL, it can be written as

νL =
∂ lnRL

∂t
=
∂ ln a

∂t
+
∂ ln rL

∂t
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from Eq.(12.12) and is true in the absence of mass transfer. Hence, the second term doesnot

contribute as it depends only q. Also, from the definition of orbital angular momentum, we

can write the change in the separation in terms of Jorb as follows

J̇orb

Jorb
=

1

2

ȧ

a

Therefore, if we know the angular momentum loss rate from the system, then

νL = 2
J̇orb

Jorb
. (12.18)



13. Discussion and Results

In Chapter 8-11, we have discussed in detail various finite size effects that come into play to

modify the orbital parameters and hence, gravitational-wave signal in DWD binaries; and

rotational effects; and in chapter 12 an analytical model was proposed to give the mass

transfer rate as a function of various system parameters. In order to generate a template, we

have identified that the functions rhnorm and f can be determined using the above effects,

once we know the initial values of five system parameters [Mtot, q, Jorb, Rd, Ra]. In this

chapter we will illustrate the templates that are generated using the techniques discussed in

previous sections by comparing with the results from the hydrodynamic simulations of the

two models Q0.744 and Q0.409. In the hydrodynamic models that we are considering, the

system is driven by artificially removing angular momentum at a certain rate throughout

the evolution to mimic the loss of angular momentum from the system due to gravitational

radiation. The adapted rate is different for the two different models. In the following

sub-section, we compare the results from our model to hydro simulations and discuss the

limitations of our technique.

13.1 Templates for Different Models

As mentioned in Chapter 7, we consider here two models of binary systems : Q0.744 and

Q0.409. System parameters that are needed initially to generate the gravitational waveforms

have been summarized in Table 7.1. The numerical values of the coefficients νd, νL, ζd and

ζL that are suitable for the models we are considering are given in Table 13.1. We set the

coefficient νd = 0 The artificial removal of angular momentum from the system, i.e the

imposed ‘drag’, mentioned above can be incorporated into our models through Eq.(12.18).

In the two hydrodynamic models that we have considered, the drag is at a rate of 2% per
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orbit (q = 0.744) and 1% per orbit (q = 0.409). The values of νL are then determined by

dividing this rate of drag by orbital period for the appropriate model. Also, as explained

in §3.2, ζd = −1/3 because we are assuming the stars are polytropes of index n = 3/2 and

for a given mass ratio, Eq.(12.17) gives the value of ζL. With these values we get ζd < ζL

indicating that the mass transfer is dynamically unstable.

Table 13.1: Numerical values of the coefficients.
q νd νL ζd ζL νd − νL ζd − ζL Porb drag

0.744 0 -0.001367 -0.333 0.724 0.001367 -1.057 29.26 2%
0.409 0 -0.000653 -0.333 0.0144 0.000653 -0.3474 30.58 1%

These four coefficients are used to determine µ and τ given in Eq.(12.6) and Eq.(12.7)

which are used as scaling parameters for the analytical expression describing the mass transfer

rate. Since we are attempting to compare our templates with the waveforms from hydrody-

namic simulations and since the amplitude and frequency of a gravitational wave depends

upon how q is changing with time, it is important that the mass transfer rate predicted from

our model closely match with the hydro model. Fig.(13.1) shows the mass tranfer rate as a

function of time for the two q values we considered.

The initial part of the hydro evolution looks noisy because of some mass sporadically

transferring from the donor to the accretor and due to constraints in the grid resolution, it

cannot be resolved. At the time when the hydro model starts evolving (time t = 0), there is

very little mass transfer between the stars. In the case of the model that we developed, the

time t = 0 is at the onset of mass transfer. The values of initial mass-transfer rates from these

two models donot match because one of them (hydro) has a resolution problem and cannot

have an arbitrarily low mass transfer rate and the other one (our model) is a semi-analytical

model through which it is possible to have a very low rate of mass transfer when the system

first comes into contact. To overcome this problem, we wait until there is appreciable amount

of mass transfer in the hydro simulation and match it with the corresponding value of the
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mass transfer rate from our model. We assume that the mass transfer rate before this period

is so low that the mass ratio q remains constant. Fig.(13.2) shows q as a function of time; we

see that the assumption that q remains constant for a while works very well for both models.

Eq.(12.9) shows how the mass transfer rate changes as a function of time. We integrate

the mass transfer rate that is given in this equation (the quantity y) to evolve the system

and to find q(t). Now that we know the change in q, we substitute it into Eq.(9.14) to find

how Jorb changes as a function of q(t). These two functions, i.e, q(t) and Jorb(q(t)), can be

used to obtain the gravitational wave amplitude (rhnorm) and frequency f through column

2 in Table 8.1. Fig’s. 13.2, 13.3 and 13.4 show how q, Jorb and h+ (defined in Eq.[1.2]) vary

as a function time. The horizontal axis in all the plots is time in the units of initial orbital

period of the respective model (given in Table 13.1), so t∗ = t/Porb.

We can determine the extent to which our model templates are valid by calculating the

number of cycles that were in-phase with the waveforms generated from the hydro model.

The phase difference ∆φ, as discussed in chapter 4, is chosen as π/2 between the models but
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Figure 13.1: Model comparisons of mass transfer rate.
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this is arbitrary and one can choose any value for the phase incoherence depending upon the

need for accuracy. The phase for the hydro model is calculated by tracking the motion of

the center of mass of one of the stars, counting the number of zero-crossings and multiplying

it by 2π. For the two illustrative models considered here, Q0.744 and Q0.409 , we find

that the number of cycles nmodel that can be matched before there is a phase difference of

π/2 is nmodel = 8.4 for Q0.744 and nmodel = 8 for Q0.409. In the hydro model, the stage at

which the donor star is severely disrupted is indicated through the significant reduction in

the amplitude. If we disregard this stage and count the number of cycles until this instant,

we get nhydro = 9 for q = 0.744 and nhydro = 13 for q = 0.409. This means that our model

matches the hydro model 93% of the time for Q0.744 and 61% of the time in 0.409.

If we guage the success or accuracy of our model with the above method of counting

number of cycles that are in phase, then of course it is not reasonable to expect that it

matches exactly with the hydro model until the end of the evolution. One reason can be

determined by looking at the values in Table 13.1. The fact that the coefficients νd, νL, ζd and

ζL listed in Table (13.1) are only estimates based on analytical expressions from §12 and that

they are kept constant throughout the evolution indicates one limit on our model. During

the end phase of the evolution where the donor is more distorted and high mass transfer

rates are occurring, these coefficients change rapidly from their original values. Since they

also determine the scaling factors µ and τ (Eq’s 12.6 and 12.7) which in turn affect both

the rate of mass transfer and the time at which the system goes unstable (thus affecting the

amplitude of the gravitational wave, hnorm), we see a mismatch during the end phase of the

evolution.

Incidentally, it is interesting to note that the scaling parameters µ and τ depend on

the difference between the coefficients ζd, ζL and νd, νL rather than the individual values

themselves. Therefore, we can reach an estimate of what the values should have been, by
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Figure 13.4: Model comparisons of gravitational-wave amplitude.

changing the coefficients, in order to obtain a better mass transfer rate and hence better

templates.



14. Conclusions

Double White Dwarf (DWD) systems are considered to be common in our Galaxy as they are

believed to be the end products of low-to-intermediate mass main-sequence binary systems,

which are quite abundant. They are also guaranteed sources for the proposed space-based

gravitational-wave observatory LISA, which is sensitive in the low frequency region of the

gravitational wave spectrum. In fact, DWD systems are so numerous that they are expected

to form a noise background in the low frequency band of LISA. The path that they traverse

across LISA’s gravitational-wave “amplitude-frequency” domain is governed by two kinds

of evolutions: (1) Inspiralling stage, where the two white dwarfs are detached and inspiral

toward each other through loss of angular momentum due to gravitational radiation. During

this phase the frequency and amplitude of the emitted gravitational waves keeps increasing

(“chirping”). (2) Mass-transfer stage, where they come close enough due to inspiral and the

low mass star fills its Roche lobe and starts transferring mass to its companion. During this

stage, the stars slowly separate from one another contrary to the case of inspiral, where they

approach. This dissertation study was divided into two parts:

Based on the theoretical constraints on the properties of white dwarf stars and their

evolution in binary systems, our work for the first time puts restrictions or boundaries on the

region of parameter space occupied by the DWD population in LISA’s amplitude-frequency

domain. From these boundaries, it is possible to identify distinct sub-domains where DWD

systems in different evolutionary stages (such as inspiralling, mass transferring) will reside.

It is even possible to identify and confine the area of parameter space where progenitors

of Type Ia supernova and AM CVn systems can exist. The frequency (and amplitude)

of gravitational waves from DWD systems increases slowly when they are in the detached

(widely separated) phase and to the first order one can assume them as monochromatic
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(constant frequency). When they are close enough, this assumption is no longer valid because

the frequency evolution becomes appreciable and higher order terms become important.

Based on the operational time for LISA (assumed one year here) another boundary can be

set within which a measurement of this frequency evolution should be possible. In fact, it

is possible that our conservative assumption of one year time may increase to three or five

years, thereby increasing the number of systems that fall within this boundary. It is known

that for detached, inspiraling systems, a measurement of the first order change in frequency

(f (1)) yields binary system parameters such as “chirp mass” (which depends on the masses of

the two stars) and distance to the source. Our work shows that for mass-transferring systems

a measurement of f (1), hnorm and f may reveal the individual components of the masses of

DWD binary systems, as well as the distance to each source, but it is more complicated than

in the inspiral case.

The boundary plot that confines the DWD population discussed above has a sub-domain

(Region III) for mass-transferring systems where the mass transfer between the stars is unsta-

ble. The second part of this dissertation has concentrated on generating gravitational-wave

templates for the systems which encounter this unstable mass transfer phase. Specifically,

direct impact systems (where the stream from the donor directly hits the accretor rather than

forming an accretion disk) are considered for which three-dimensional hydrodynamic simu-

lations are available. The goal is to develop a model based on approximations to the orbital

dynamics of the DWD systems and physics of mass transfer and accurately reproduce the

waveforms generated by the hydro dynamical model in considerably less computational time.

In this segment of our investigation, white dwarfs are assumed to be n = 3/2 polytropes in

both hydrodynamic simulations and our model.

Since we are dealing with systems in which the components of the binary system are

very close to each other, it becomes necessary to include finite-size of the stars in designing

our model. Once the size (radius) of the star is considered, the total angular momentum
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equation now must include spin angular momentum of both stars along with the system’s

orbital angular momentum. However, even orbital angular momentum is affected due to

finite-size effects and a correction is applied through a ‘modified’ Kepler’s law. Because the

stars are spinning, rotational distortion changes their moment of inertia from the spherical

approximation. Tidal effects on each other become important at this stage and this is

implemented to generate a better initial model for the system.

To evolve the system from this initial model, we have adopted an analytical mass trans-

fer mechanism from the literature and modified the parameters to be consistent with our

present discussion. Two systems were considered here, with q = 0.744 and q = 0.409, We

have generated waveforms for gravitational radiation from these systems and compared with

waveforms generated from hydrodynamical simulations. The end result is that our model

can match 93% of the evolution for q = 0.744 and 61% for q = 0.409. During the final stages

of the evolution, the donor star is severely distorted in the hydro simulations and the limit

on the approximations utilized in our model (finite size of the star, mass transfer rate) is

reached at this stage and hence there is a mismatch. The determination of the parameters

from the semi-analytical mass transfer model, discussed in Chapter 12, are also partly the

reason for this deviation.

What was not discussed in this dissertation is that our model can not only be used

during the (stable or unstable) mass transfer regime, but it fits perfectly well to describe

the evolution of the system even during the pre-mass-transfer phase, when the systems are

detached or just coming into contact. This implies that our model, if carried further, can

be used as a tool which can describe the complete evolution of a binary system from its

pre-mass-transfer phase to post-mass-transfer period. Of course, as mentioned in Chapter 7,

the model developed is only illustrative, setting a stage for the generation of template banks.

To acheive this, a more comprehensive parameter space (such as the inclination angle and

location of the source in the sky) needs to be taken into account. Also, we have confined
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ourselves to a simple equation of state (polytrope) to illustrate the technique developed here.

But we can follow the same discussion even for a more realistic white dwarf equation of state.

In other words, it is possible to incorporate in our model the mass-radius relationship given

in Eq.(2.3) without changing anything significantly.



Bibliography

Anderson, S. F., Haggard, D., Homer, L., Joshi, N. R., Margon, B., Silvestri, N. M., Szkody,
P., Wolfe, M. A., Agol, E., Becker, A. C., Henden, A., Hall, P. B., Knapp, G. R., Richmond,
M. W., Schneider, D. P., Stinson, G., Barentine, J. C., Brewington, H. J., Brinkman, J.,
Harvanek, M., Kleinman, S. J., Krzesinski, J., Long, D., Neilsen, E. H. Jr., Nitta, A., &
Snedden, S. A. 2005, Astronomical Journal, 130, 2230

Abbott B., et al. 2005, Phys. Rev. D, 72, 8.

Andronov, I. L. & Yavorskij, Yu. B. 1990, Contr. Astron. Obs. Skalnate Pleso, 20, 155.

Bender P. L. et al., LISA Pre-Phase A Report, 1998.
http://lisa.gsfc.nasa.gov/Documentation/ppa2.08.pdf

Bessell, M. S. 1978, Proc. Astron. Soc. Aust., 3, 220

Branch, D., Tammann, G.A. 1992, Ann. Rev. Astron. Astrophys., 30, 359

Branch, D., Livio, M., Yungelson, L.R., Boffi, F.R., Baron, E. 1995, PASP, 107,1019

Chandrasekhar, S. 1931, ApJ, 74, 81

Chandrasekhar, S. 1933a, MNRAS, 93, 390.

Chandrasekhar, S. 1933b, MNRAS, 93, 449.

Chandrasekhar, S. 1933c, MNRAS, 93, 462.

Chandrasekhar, S. 1958, An Introduction to the Study of Stellar Structure (New York; Dover
Publications)

Claret, A. & Giminez, A. 1989, Astronomy and Astrophysics Supplement Series, 81, 37.

Cornish N.J. & Larson S.L. 2003, Phys. Rev. D, 10, 103001

Cropper, M., Harrop-Allin, M, K., Mason, K. O., Mittaz, J. P. D., Potter, S. B.,& Ramsay,
G. 1998, MNRAS, 293, L57

D’Souza, M., Motl, P., Tohline, J. & Frank, J. 2006, ApJ, 643, 381

D’Souza, M., 2006, Ph.D Dissertation, Louisiana State University, in progress.

Eggleton, P. P. 1983, ApJ, 268, 368

Evans, C. R., Iben, I. Jr. and Smarr, L. 1987, ApJ, 323, 129

Faller, J. E., & Bender, P. L. 1984, in Precision Measurement and Fundamental Constants
II, ed. B. N. Taylor & W. D. Phillips (NBS Spec. Pub. 617)

81



82

Finn, L.S., & Chernoff, D.E. 1993, Phys. Rev. D, 47, 2198

Fowler, R. H. 1926, MNRAS, 87, 114

Frank, J., King, A. R., & Raine, D. J. 2002, Accretion Power in Astrophysics (3rd ed;
Cambridge: Cambridge Univ. Press)

Gokhale, V., Peng, X., & Frank, J. 2006, ApJ, in press

Hachisu, I. 1986, ApJS, 62, 461

Hachisu, I., Eriguchi, Y., & Nomoto, K. 1986, ApJ, 311, 214

Hils, D., Bender, P.L., & Webbink, R.F. 1990, ApJ, 360, 75

Hulse, R. A., Taylor, J. H. 1975, ApJ, 195L, 51

Iben, I., Jr., Tutukov, A. V. 1984, ApJS, 54, 335

Iben, I., Jr., & Tutukov, A. V. 1986, ApJ, 311, 753

Kopparapu, R. K., & Tohline, J. E. 2007, ApJ, in press

Liebert, J. 1980, Ann. Rev. Astron. Astrophys., 18, 363

Marsh T. R., Nelemans, G. & Steeghs, D. 2004, MNRAS, 350, 113

Misner, iC. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (San Francisco; Freeman
& Co.,)

Motl, P. M. 2001, Ph.D. Dissertation, Louisiana State University.

Motl, P. M., Tohline, J. E., & Frank, J. 2002, ApJS, 138, 121

Marsh, T. R., & Steeghs, D. 2002, MNRAS, 331, L7

Napiwotzki, R., Yungelson, L., Nelemans, G., Marsh, T. R., Leibundgut, B., Renzini, R.,
Homeier, D., Koester, D., Moehler, S., Christlieb, N., Reimers, D., Drechsel, H., Heber,
U., Karl, C., & Pauli, E.-M. 2004, ASPC, 318, 402

Nauenberg, M. 1972, ApJ, 175, 417

Nelemans, G., Verbunt, F., Yungelson, L. R. & Portegies-Zwart, S. F. 2000, A& A, 360, 1011

Nelemans, G., Portegies-Zwart, S. F., Verbunt, F. & Yungelson, L. R. 2001 A& A, 368, 939N

Nelemans, G. 2005, PASP, 330, 27

Nelemans, G., Napiwotzki, R., Karl, C., Marsh, T. R., Voss, B., Roelofs, G., Izzard, R. G.,
Montgomery, M., Reerink, T., Christlieb, N., & Reimers, D. 2005, A&A, 440, 1087

New, K., Centrella, J. & Tohline, J. E. 2000, Phys. Rev. D, 62, 6.
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Appendix A

Expressions for Gravitational Wave
Strain.

In general, in the weak field approximation, the plus polarization h+ of the gravitational
wave strain for an observer looking down the z = x3 axis of an Euclidean coordinate system,
is given by the expression (New et al. (2000))

h+ =
G

rc4
(=̈xx − =̈yy) , (A.1)

where =ij is the reduced quadrupole moment tensor (Misner et al., 1973) given by

=ij = Iij −
1

3
δij

3
∑

k=1

Ik
k , (A.2)

and, by definition, the second moment of mass distribution is,

Iij ≡
∫

ρ(r)xixj . (A.3)

For a point mass binary system in circular orbit that is oriented such that its orbital angular
momentum vector aligns with the z-axis of the coordinate system,

=xx =
M1M2a

2

(M1 +M2)
sin2 φ , (A.4)

and,

=yy =
M1M2a

2

(M1 +M2)
cos2 φ , (A.5)

where, φ ≡ tan−1(y/x).
So

h+ =
G

rc4
4φ̇2M1M2a

2

(M1 +M2)
cos 2φ̇t (A.6)

where φ̇ = Ωorb is the angular frequency of the circular orbit.
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Appendix B

Determining the ∆ζ Parameter
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Figure B.1: ∆ζ as a function of q.

To obtain a quantitative expression for the mass-transfer rate µ introduced in Eq. (3.11)
and, hence, the mass-transfer timescale τmt, we turn to the discussions of mass-transferring
binary systems presented by Webbink & Iben (1987) and Marsh et al. (2004). As these
authors have explained, in semi-detached binary systems the mass-transfer rate is determined
by the extent to which the radius of the donor star, Rd, exceeds its Roche lobe radius, RL, and
on the degree to which these two radii vary as mass is exchanged between the two stars and
as angular momentum is simultaneously lost from the system due to gravitational radiation.
Mathematical expressions for all of the relevant parameter variations can be obtained from
physical relations that have been presented earlier, in the main body of this dissertation.
Directly from the mass-radius relationship for white dwarfs given in Eq. (2.3), for example,
one can determine ζd and ζL from Eq.s (5.4) and (5.5). Finally, from a combination of
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Table B.1: Selected values of qcrit(Mtot)
Mtot qcrit
0.6 0.61
1.0 0.58
1.4 0.54
1.8 0.50
2.0 0.47

Eq. (2.4) and Eq. (3.8), one can deduce that,

∂ lnRL

∂t
=

(

∂ lnRL

∂ ln Jorb

)

∂ ln Jorb

∂t
= − 1

4τchirp
. (B.1)

In the case of stable CMT, Webbink & Iben (1987) show that µ can be written in a form
that depends on variations in Rd and RL as follows,

µ = −Md

(

∂ lnRL

∂t

)

1

(ζd − ζL)
=

q0
(1 + q0)

Mtot

[

1

4τchirp∆ζ

]

, (B.2)

As Figure B.1 shows, ∆ζ is positive and |∆ζ| ∼ 1 for DWD binaries having a wide
range of Mtot and q. (The implications of a negative ∆ζ are discussed in Chapter 5 of
this dissertation.) Combining this expression with Eq. (3.13), we deduce that the timescale
governing the evolution of semi-detached DWD binaries that are undergoing a phase of stable
CMT is,

τmt ≈
(

4∆ζ

q0

)

τchirp . (B.3)

If ∆ζ is negative, however, the system will enter a phase of unstable mass transfer and a
significant amount of mass will be transferred from the donor to the accretor on a dynamical
time scale. Employing the Eq. (2.3) mass-radius relationship and the RL(q) relationship
defined by Eq. (2.4), Figure B.1 shows how ∆ζ behaves as a function of q for various values
of Mtot. If we define qcrit as the value of the system mass ratio at which ∆ζ crosses zero, we
see that qcrit is a function of Mtot. Table B.1 lists the values of qcrit that correspond to the five
separate values of Mtot used in Figure B.1. (As can be deduced from Eq. E.8 in Appendix
E, the somewhat simpler model used by Paczyński (1967) gives qcrit = 2/3, independent of
Mtot.)



Appendix C

Properties of Spherical Polytropes

At each radial location,
r ≡ αnξ , (C.1)

within a spherically symmetric polytrope, the “polytropic temperature”

θ(ξ) ≡ (ρ/ρc)
1/n , (C.2)

is determined by solving the second-order, ordinary differential equation referred to as the
Lane-Emden equation, namely,

1

ξ2

d

dξ

[

ξ2dθ

dξ

]

= −θn , (C.3)

where,

αn ≡
[

(n+ 1)K

4πG
ρ(1−n)/n

c

]1/2

, (C.4)

and ρc is the star’s central density, subject to the boundary conditions θ = 1 and dθ/dξ = 0
at ξ = 0. The run of density through the star can then be determined by inverting Eq. (C.2),
that is,

ρ(ξ) = ρc[θ(ξ)]
n , (C.5)

and the radius of the star R = ξ1αn is determined by the value of ξ = ξ1 at which the
function θ(ξ) first goes to zero. Two key global parameters of interest to us here are the
star’s mass,

M∗ = 4πρcα
3
n

∫ ξ1

0
θnξ2dξ = 4πρcα

3
nmn , (C.6)

and the star’s principal moment of inertia,

I∗ =
8π

3
ρcα

5
n

∫ ξ1

0
θnξ4dξ, . (C.7)

From these expressions, in turn, we find the following mass-radius relationship for spherical
polytropic stars,

R(3−n)
∗ = CnM

(1−n)
∗ , (C.8)
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where,

Cn ≡ (4πmn)n−1ξ3−n
1

[

(n+ 1)K

4πG

]n

, (C.9)

that is,

ζ∗ ≡
∂ lnR∗

∂ lnM∗

∣

∣

∣

∣

K
=

(1 − n)

(3 − n)
. (C.10)

We also find that the radius of gyration1 is,

k2
∗ ≡ I∗

M∗R2
∗

=
2

3ξ2
1

∫ ξ1
0 θnξ4dξ

∫ ξ1
0 θnξ2dξ

. (C.11)

Table C.1 shows numerical values of various quantities for different polytropic indices. Here
ζ∗ is actually ζd and is defined in Eq.5.4.

Table C.1: Numerical values of different polytropic models.
n ξ1 ρc/ρmean mn ζ∗ k2

∗

0 2.4494 1.0 4.8987 0.3333 0.40
0.5 2.7527 1.8351 3.7879 0.2 0.3259
1.0 3.1416 3.2898 3.1410 0 0.2613
1.5 3.6538 5.9908 2.7136 -0.3333 0.2045
2.0 4.3530 11.403 2.4106 -1.0 0.1548
2.5 5.3555 23.409 2.1868 -3.0 0.1117
3.0 6.8973 54.194 2.0179 -∞ 0.0753
3.5 9.5367 152.93 1.8903 5 0.04554
4.0 14.973 622.70 1.7970 3 0.02257
4.5 31.846 6195.54 1.7376 2.3333 0.006892

1For a non-rotating spherical polytrope of polytropic index n = 1.5, the factor k2 has the value 0.204
(Andronov & Yavorskij (1990)). This cited paper gives the factors for various polytropic indices.



Appendix D

Chandrasekhar’s Radial Functions
with Higher Order Terms

We have derived higher order terms for the four radial functions describing Chandrasekhar’s
distorted density distribution. These functions are written in a concise power series format
and the individual terms for each function are tabulated below them. In general, the series
can be summed to infinity but we have truncated the series at ten terms (j = 10). The big
table has the coefficients of each power of ξ and the small table has the denominator values,
di, for the respective functions.

ψ0 =
1

6
ξ2 +

∞
∑

j=2

nξ2j

∑j−2
i=0 cin

i

d2j

(D.1)

= ξ2
(

1

6
+

∞
∑

j=2

nξ2(j−1)

∑j−2
i=0 cin

i

d2j

)

(D.2)

ψ2 = ξ2
(

1 +
∞
∑

j=2

nξ2(j−1)

∑j−2
i=0 cin

i

d2j

)

(D.3)

ψ3 = ξ3
(

1 +
∞
∑

j=2

nξ2(j−1)

∑j−2
i=0 cin

i

d2j+1

)

(D.4)

ψ4 = ξ4
(

1 +
∞
∑

j=2

nξ2(j−1)

∑j−2
i=0 cin

i

d2(j+1)

)

(D.5)
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Table D.1: Coefficients ci for ψ0

i ξ4 ξ6 ξ8 ξ10 ξ12 × 106 ξ14 × 108 ξ16 × 1010 ξ18 × 1012 ξ20 × 1014

0 1 -10 70 -4200 0.693 -1.2612 0.4414 -1.8010 0.5133
1 - 13 -157 12730 -2.5881 0.5531 -2.2079 10.0716 -31.6350
2 - - 90 -13193 3.7224 -9.9673 4.7237 -24.7606 87.4285
3 - - - 4678 -2.4439 9.2224 -5.5331 34.6929 141.5288
4 - - - - 0.6168 -4.3750 3.7375 29.8888 146.6579
5 - - - - - 0.8492 -1.3777 15.8071 99.4816
6 - - - - - - 0.2160 4.7426 43.0666
7 - - - - - - - 0.6214 10.8598
8 - - - - - - - - 1.2191

Table D.2: Denominator values for ψ0

j d2j

2 -120
3 15120
4 -1.0886 ×106

5 5.9875 ×108

6 -84.0647 ×1010

7 12.3575 ×1014

8 -33.6124 ×1016

9 10.3459 ×1020

10 -217.2642 ×1022

Table D.3: Coefficients ci for ψ2

i ξ4 ξ6 ξ8 ξ10 ξ12 × 107 ξ14 × 109 ξ16 × 1011 ξ18 × 1013

0 1 -7 210 - 2310 1.2612 -0.3153 0.3216 -2.1387
1 - 10 -503 7371 -4.9161 1.4348 -1.6619 12.3150
2 - - 308 -8038 7.3732 -2.6798 0.3669 -31.1440
3 - - - 2992 -5.0382 2.5657 -4.4292 44.8276
4 - - - - 1.3203 -1.2570 3.0780 -39.6157
5 - - - - - 0.2515 -1.1653 21.4601
6 - - - - - - 0.1874 -6.5860
7 - - - - - - - 0.8817
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Table D.4: Denominator values for ψ2

j d2j

2 -14
3 1512
4 -4.9896 ×105

5 5.1891 ×107

6 -2.4518 ×1012

7 5.0018 ×1014

8 -3.9914 ×1017

9 2.0117 ×1021

10 -2.7483 ×1025

Table D.5: Coefficients ci for ψ3

ci ξ5 ξ7 ξ9 ξ11 ξ13 × 106 ξ15 × 108 ξ17 × 1012 ξ19 × 1014

0 1 -3 330 -30030 1.8018 -4.5945 0.1222 -3.2937
1 - 4 -749 91633 -6.7578 20.2103 -0.6125 18.4475
2 - - 434 - 95450 9.7438 -36.4592 1.3112 -45.3577
3 - - - 33952 - 6.4022 33.7213 -1.5344 63.4744
4 - - - - 1.6147 -15.9690 1.0342 -54.5558
5 - - - - - 3.0912 -0.3800 28.7585
6 - - - - - - 0.0593 -8.5943
7 - - - - - - - 1.1212

Table D.6: Denominator values for ψ3

j d2j+1

2 -18
3 792
4 -9.2664 ×105

5 7.7837 ×108

6 -3.9697 ×1011

7 8.1458 ×1014

8 -1.6764 ×1018

9 3.3930 ×1022

10 -1.3741 ×1026
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Table D.7: Coefficients ci for ψ4

ci ξ6 ξ8 ξ10 ξ12 ξ14 × 107 ξ16 × 109 ξ18 × 1011 ξ20 × 1015

0 1 -11 1430 -50050 3.0630 -2.9099 13.4437 -1.0822
1 - 14 -3129 148125 -11.1889 12.5047 -65.9860 5.9469
2 - - 1744 -149386 15.6900 -22.0120 138.1769 -14.3338
3 - - - 51416 - 10.0202 19.8547 -158.1027 19.6544
4 - - - - 2.4563 -9.1685 104.1801 -16.5491
5 - - - - - 1.7310 -37.4303 85.4659
6 - - - - - - 5.7182 -2.5027
7 - - - - - - - 0.3200

Table D.8: Denominator values for ψ4

j d2(j+1)

2 -22
3 3432
4 -4.6332 ×106

5 1.4702 ×109

6 -7.5424 ×1012

7 5.7021 ×1015

8 -2.0196 ×1019

9 1.2118 ×1023

10 6.8906 ×1027



Appendix E

The Paczyński Presentation

In his early discussion of the effects of gravitational radiation on the evolution of close bina-
ries, Paczyński (1967) demonstrated an appreciation of many of the concepts that have been
discussed in the body of this paper, although at the time his analysis was directed primarily
to WZ Sge, a cataclysmic variable with an orbital period P = 81.6 minutes (gravitational-
wave frequency, f = 4.1 × 10−4 Hz). The following brief review of Paczyński’s (1967) work
illustrates the connection between his derivations and ours, and is presented in an effort to
properly credit his early insights into this problem.

In connection with the detached inspiral phase of a binary system’s evolution, equation
(7) of Paczyński (1967) identifies an evolutionary timescale T0 that is precisely the same as
the quantity, τchirp, that is defined by our Eq. (3.6). His expression (5) for the time-rate-of-
change of the system’s orbital angular momentum is also equivalent to our Eq. (3.8), that
is,

dJorb

dt
= − J0

8τchirp
= −

[

32

5

(2πG)7/3

c5

]

M
10/3
tot Q2P−7/3 , (E.1)

where,

P ≡ 2π

Ωorb
=

2

f
. (E.2)

In discussing how the cumulative effect of such a loss of angular momentum might be de-
tectable with ground-based optical telescopes, Paczyński (1967) points out that a shift in
orbital phase of an eclipsing binary system (such as WZ Sge) could be observed as an
“(O−C)” deviation of the observed time of the eclipse. If the observed “(O−C)” time that
appears in Paczyński’s expression (10) is set equal to P/8 = 1/(4f) in order to represent
a phase difference of π/2 radians in the corresponding gravitational-wave signal, then it is
easy to show that the quantity labeled ∆T in his expression (10) is precisely the same as the
time that we have referred to as tO−C in our Eq. (4.7).

In his discussion of the CMT phase of the evolution of a semi-detached binary system,
Paczyński (1967) appreciated that the system would evolve in such a way that the radius of
the donor remains in marginal contact with its Roche lobe (i.e., Rd = RL). This assumption
also provides the foundation of our discussion in §2.1 and §2.2. However, Paczyński utilized
expressions for the white dwarf mass-radius relationship and for the function RL(q) that are
somewhat simpler than the ones we have adopted. Specifically, instead of our Eq. (2.4),
Paczyński used (see his expression 13, but note that there is a typographical error in the
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numerator of his formula: M1 should have been M2 = Md),

RL

a
=

2

34/3

(

Md

Mtot

)1/3

=
2

34/3

(

q

1 + q

)1/3

, (E.3)

and instead of our Eq. (2.3), he used (see his expression 12),

Rd

R�

= 1.26 × 10−2(1 +X)5/3
(

Md

M�

)−1/3

, (E.4)

where X is the star’s hydrogen mass-fraction. Paczyński constructed the former expression
empirically from Kopal’s (1959) tabular data; and an equivalent form of the latter expression
can be derived from our more general mass-radius relationship (2.3) by assuming Mp �
Md �Mch. Setting Rd = RL and using Eqs. (1.6) and (E.2) to express a in terms of P , we
obtain Paczyński’s expression (14),

Md

M�

=
18π

P

(

0.0126

2

)3/2( R3
�

GM�

)1/2

(1 +X)5/2 =
45.3

Psec
(1 +X)5/2 , (E.5)

where Psec is the orbital period expressed in seconds.
From expression (E.4), we immediately deduce that,

ζd =
∂ lnRd

∂ lnMd
= −1

3
. (E.6)

Rewriting the orbital separation a in terms of Jorb, Q, and Mtot in Eq. (E.3),

RL =
2

34/3

[

J2
orb

GM3
tot

]

q5/3(1 + q)−11/3 , (E.7)

we also deduce that,

ζL =
∂ lnRL

∂ lnMd
= (1 + q)

∂ lnRL

∂ ln q
= 2q − 5

3
. (E.8)

Hence, for Paczyński’s model of a mass-transferring binary system,

(∆ζ)Pac = ζd − ζL =
2

3
(2 − 3q) , (E.9)

which in combination with Eq. (3.19) leads to the predicted evolutionary behavior,
[

d ln f

dt

]

Pac
≈ − 3

16τchirp

(

1 − 3

2
q
)−1

. (E.10)

Realizing that d lnP/dt = −d ln f/dt, this expression in combination with relations (3.6),
(1.6), and (E.2) gives,

[

dP

dt

]

Pac
≈

[

48(2π)8/3(GM�)5/3

5c5

](

Mtot

M�

)−1/3(MaMd

M2
�

)(

1 − 3

2
q
)−1

P−5/3 (E.11)

= 1.85 × 10−6
(

Mtot

M�

)−1/3(Ma

M�

)(

Md

M�

)(

1 − 3

2
q
)−1

P−5/3
sec . (E.12)
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Then, using expression (E.5) to express (Md/M�) in terms of P gives,

[

dP

dt

]

Pac
≈ 8.38 × 10−5(1 +X)5/2

(

Mtot

M�

)−1/3(Ma

M�

)(

1 − 3

2
q
)−1

P−8/3
sec . (E.13)

Paczyński’s (1967) expression (25) is an application of this general formula to the specific
system, WZ Sge, for which he took Psec = 4.9 × 103 and assumed q � 1, hence also,
Mtot ≈ Ma. From expression (E.5), Paczyński realized that d lnMd/dt = −d lnP/dt; hence,
he was also able to derive an expression for WZ Sge’s mass-transfer rate. He realized as well
that, for q � 1, the rate of period (and frequency) change would be a factor of (−2) larger if
there were no mass transfer, that is, if WZ Sge was a detached system undergoing inspiral.
Here, this is clear from a comparison of our Eq. (3.10) with expression (E.10).

Adopting the above expressions, we can gather together a set of three algebraic relations
that can be used to decipher the distance r to a DWD system, as well as the system mass
Mtot and mass ratio q, given observational measurements of hnorm, f , and f (1). Combining
Eq. (E.10) with Eq. (3.6), we can write

rhnorm =
5c

12π2

[−f (1)

f 3

](

1 − 3

2
q
)

. (E.14)

Because the donor in a DWD system can be safely assumed to have a hydrogen mass-fraction
X = 0, Eq. (E.5) takes the form,

GMtot = α
(

1 + q

q

)

f , (E.15)

where, α ≡ 0.0141(GM�R
3
�)1/2. Finally, from Eq. (2.1) we can write,

(GMtot)
5 =

1

64π2

[

(rhnorm)3c12

Q3f 2

]

. (E.16)

Combining these three expressions gives q in terms of f and f (1) through the nonlinear
relation,

q2(1 + q)
(

1 − 3

2
q
)3

=
[

21233π8α5

53c15

]

f 16

[−f (1)]3
. (E.17)

Once q has been determined, the calculation of Mtot and r is straightforward.
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