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Abstract 

Bedding-perpendicular joints confined to individual beds in interbedded sedimentary rocks commonly exhibit 
spacings which are proportional to the thickness of the jointed bed, and which vary according to lithology or 
structural position. The mechanical explanation for this relationship is well understood when the joints are driven by 
far-field crack-normal tensile stresses, but poorly understood for cracks driven by elevated fluid pressures, where the 
crack-driving stress is the difference between the crack-normal compression and the fluid pressure in the crack. 
Through a series of finite-element numerical models, we investigate how various parameters influence the 
driving-stress distribution around pressurized cracks in layered media, and thereby identify factors influencing the 
spacing of fluid-driven joints. For the situation we modeled, we observe that: (1) crack-driving stress is reduced in 
the vicinity of pressurized joints, and that the extent of the stress reduction depends on the contrast in elastic 
properties between the layers; and (2) crack-driving stress distribution depends on the ambient pore pressure during 
jointing. These results indicate the spacing of fluid-driven joints should depend on lithology and pore pressure. 

1. Introduct ion 

A b u n d a n t  field observat ions demons t ra te  that  
when  bedding-perpendicu la r  joints are conf ined 
to individual beds in a sequence of  sedimentary  
rocks, the spacing of  the joints is p ropor t iona l  to 
the thickness of  the bed within which they are 
conta ined  (Harris  et al., 1960; Price, 1966; Mc- 
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Quillan, 1973; Ladei ra  and Price, 1981; Huang  
and Angelier ,  1989; Narr  and Suppe,  1991; Gross, 
1993a). For  the case when joints are driven by a 
far-field tensile stress, a variety of  workers  have 
shown that  the correlat ion be tween joint spacing 
and bed thickness is a manifes ta t ion of  the rela- 
t ionship be tween joint height  (i.e., bed thickness) 
and the tensile stress distribution a round  an open  
crack (e.g., Lachenbruch ,  1961; Pollard and Segall, 
1987; Olson, 1993; Gross  et al., in press). A n  
open  joint per turbs  a homogeneous  tensile stress 
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field such that local joint-normal tensile stress 
must be zero at the joint wail, and increases to 
the far-field stress at some distance from the 
joint. The distance from the joint to which the 
far-field stress is per turbed depends on the height 
of the joint (2c), which in bedded sedimentary 
rocks is often equal to bed thickness (t). The 
correlation between joint spacing and bed thick- 
ness occurs because new joints are inhibited from 
forming in the zone of decreased joint-normal 
tensile stress (i.e., stress reduction shadow of 
Gross et al., in press) around existing joints, and 
the size of the stress reduction shadow scales with 
joint height, which in turn corresponds to bed 
thickness. 

Previous work on the relationship between 
joint spacing and bed thickness deals with cracks 
subjected to far-field crack-normal tensile stress 1 
(e.g., Lachenbruch, 1961; Hobbs, 1967; Pollard 
and Segail, 1987; Gross et al., in press). Although 
absolute tensile stresses can occur under some 
geologic circumstances (e.g., above the neutral 
fiber in a buckle fold), the predominant  state of 
stress in the brittle crust is one of triaxial com- 
pression. Under  these conditions, joint propaga-  
tion is believed to occur by fluid-driven jointing 
(e.g., Secor, 1965; Engelder and Lacazette,  1990). 
Although the geological literature is replete with 
theoretical analog, analytical and numerical anal- 
yses of joint set development in bedded rocks 
subjected to far-field tension (e.g., Olson, 1993; 
Rives et al., 1994), there is a lack of such analyses 
for fluid-driven joints. The principal related work 
appears  in Pollard and Segall (1987), in which we 
find an analytical solution for the variation in 
crack-normal stress with distance x away from 
the center of the wall of a pressurized crack in a 
homogeneous,  infinite elastic medium. 

Fig. 1 shows the Pollard and Segall (1987) 
solution for cracks with internal pore pressures 
(Pp) of - 3 5 ,  - 5 0  and - 7 0  MPa subjected to a 
remote crack-normal compressive stress (~r~x) of 

:Throughou t  this paper  we use the term 'crack' when 
discussing mode I fractures in theoretical or numerical mod- 
els. We use the term 'joint '  when discussing natural  mode I 
fractures. 
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Fig. 1. Pollard and Segall (1987) analytical solution for the 
variation in crack-normal stress with distance x along the line 
y = 0 away from the wall of a pressurized crack in a homoge- 
neous, infinite elastic medium. 

20 MPa 2. This solution defines a zone of ele- 
vated crack-normal compressive stress in the 
vicinity of a dilated, pressurized crack. We sug- 
gest that the initiation of new joints is suppressed 
in the region of elevated joint-normal compres- 
sion adjacent to dilated, pressurized joints. We 
further hypothesize that the spacing of pressur- 
ized joints is dependent  on the lateral extent of 
this zone of elevated crack-normal compression. 
Because the width of the zone of elevated crack- 
normal compression scales with crack height, the 
spacing of fluid-driven joints confined within indi- 
vidual beds should also scale with the bed thick- 
ness. 

To test our hypothesis, we first present finite- 
element numerical solutions for the two-dimen- 
sional stress distribution around a pressurized 

2 Note that in their analysis, Pollard and Segall consider the 
case of a uniformly pressurized crack; there is no fluid in the 
surrounding medium. In this situation the fluid pressure im- 
parts a compressive stress on the crack wall and they, there- 
fore, give it a positive sign. In our analyses we assume the 
medium and the crack are permeated with fluid at a constant 
fluid pressure. Throughout  this paper compressive stresses are 
considered positive, whereas fluid pressure is negative. We 
take this approach to emphasize that fluid pressure and 
remote compression act against one another in crack initia- 
tion. 
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crack confined to one layer of a layered elastic 
medium under  far-field crack-normal compres- 
sion. We present these solutions as a first-order 
constraint for future work on the development of 
fluid-driven joint sets. Following the work of 
Gross et al. (in press), we next examine the pa- 
rameters  which might influence the stress distri- 
bution around pressurized, dilated cracks, and 
therefore,  the spacing of fluid-driven joints. In- 
cluded in these parameters  are the elastic proper-  
ties of the local stratigraphy, unjointed bed thick- 
ness, ambient  pore pressure and the fracture 
resistance of the beds. 

2. Problem formulation 

The natural system we are modeling is an 
alternating sequence of bedded sedimentary rocks 
containing a single pressurized joint confined to 
one of the stiffer layers (Fig. 2). Our  models 
assume bedding interfaces are perfectly bonded 
so that there is no interbed slip. We constrain the 
tips of the joint to occur exactly at the layer 
interfaces in all our models; there is no opening 
of the bounding layers; and assume the joint is 
infinitely long in the z-direction (i.e., blade-like; 
Olson, 1993). For this geometry the distribution 
of stress around a crack is identical when viewed 

:< - ,7 , / -  - 
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Fig. 2. G e o m e t r y  of the  p r o b l e m  inves t iga ted  in this  paper .  In  
this  p a p e r  the  y -d imens ion  of the  c rack  is r e fe r red  to  as the 
he ight ,  and  the  z -d imens ion  is the  length .  

on any x-y cross section through the body. All 
our analyses are done on such a cross section. In 
modeling this situation, we do not suggest fluid- 
driven joints initiate first in rocks with high rela- 
tive Young's  moduli, as is the case for joints 
driven by far-field tension (e.g., Hobbs, 1967; 
Gross et al., in press). We use the case of a crack 
confined to a stiffer lithology only as one possible 
reference state. Recent  work by Apotria  et al. 
(1994) and Fischer (1994) analyzes the parame-  
ters controlling the initiation and stratigraphic 
distribution of fluid-driven joints. 

We utilize linear elastic fracture mechanics 
(LEFM; Brock, 1986) to describe the stress and 
displacement distributions in the vicinity of the 
crack. This approach results in a large elastic 
stress concentration at the tips of the crack in our 
analyses; in some cases large enough to suggest 
the crack should propagate  across the bedding 
interface and into the bounding beds. This stress 
concentration is a purely elastic phenomenon,  
unlikely to occur in rocks because high stresses at 
the tips of joints are most likely relieved by local- 
ized inelastic deformation or bedding slip (e.g., 
Achenbach et al., 1979; Keer  and Chen, 1981; 
Watkins, 1992). The presence of crack-tip stress 
concentrations in our models primarily affects the 
distribution of stress in the vicinity of the crack 
tip, particularly in the uncracked layers adjacent 
to a crack tip (e.g., Helgeson and Aydin, 1991); 
the stress distribution in the cracked layers is not 
significantly influenced. For completeness,  we de- 
scribe the perturbat ion of stress in the uncracked 
layers related to the crack tip stress concentra- 
tion, but emphasize that these stress distributions 
only occur in ideal, linear elastic materials with 
perfectly bonded interfaces. 

2.1. Fluid-driuen jointing 

The process of fluid-driven jointing is gov- 
erned by a balance of forces which act to open or 
close a crack. Crack opening is induced by pore 
pressure (Pp) within a crack whereas crack clo- 
sure o c c u r s  u n d e r  a compressive remote  stress 
(o-r). Stress perturbations occur near fluid-filled 
cracks in compressive stress fields over a range of 
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fluid pressures, and are caused by the difference 
between fluid pressure at a crack wall and the 
remote compressive stress. Until the fluid pres- 
sure in a crack exceeds the remote stress, the 
crack will remain closed and there is no stress 
perturbation. The instant the magnitude of the 
fluid pressure exceeds trx~, however, the crack 
dilates and the ambient stress field is perturbed, 
such that the local trxx > err,. In the absence of 
subcritical crack growth (e.g., Atkinson and 
Meredith, 1987a), a pressurized, dilated crack is 
stable (i.e., it will not extend) as long as the mode 
I stress intensity (KI; Broek, 1986) at the tip of 
the crack does not exceed the fracture toughness 
(KIc; Atkinson and Meredith, 1987b) of the ma- 
terial at the crack tip. 

Because field data from a variety of sedimen- 
tary basins indicates horizontal stress magnitude 
is directly related to ambient pore pressure (e.g., 
Salz, 1977; Breckels and van Eekelen, 1982; Bell, 
1990; Teufel et al., 1991; Gaarenstroom et al., 
1993), Fischer and Engelder (1994) noted that 
poroelastic increases in horizontal stress must be 
accounted for in any analysis of fluid-driven joint- 
ing. However, an investigation of jointing in 
poroelastic, interbedded sedimentary rocks is be- 
yond the scope of this paper. As a first step in 
understanding the development of fluid-driven 
joint sets, we instead consider only a static, non- 
poroelastic case: fluid-driven joints are discussed 
only in terms of the fluid pressure and crack-nor- 
mal remote stress acting on the wall of a stable 

(i.e., non-propagating) crack. The details of 
poroelasticity and the initiation of fluid-driven 
joints are discussed in Engelder and Lacazette 
(1990), Kfimpel (1991), Fischer (1994) and En- 
gelder and Fischer (1994). 

3. Numerical modeling procedure 

Finite-element numerical modeling in this 
study was accomplished using the interactive fi- 
nite-element program FRANC (FRacture ANalysis 
Code; Wawrzynek and Ingraffea, 1987) developed 
at Cornell University. FRANC simulates the famil- 
iar r-1/2 singularity in the elastic crack-tip stress 
field, where r is the radial distance away from 
the crack tip (e.g., Lawn and Wilshaw, 1975; 
Broek, 1986), by surrounding the tips of each 
crack with a rosette of eight quadratic, triangular, 
isoparametric, quarter-point elements (Barsoum, 
1976). Other  portions of any mesh are comprised 
of eight-noded quadrilateral or six-noded triangu- 
lar, quadratic, isoparametric elements. The accu- 
racy of FRANC has been proven in numerous 
applications (e.g., Linsbauer et al., 1989; Ingraf- 
lea, 1990; Bittencourt et al., 1992). 

Fig. 3 depicts the finite-element mesh utilized 
throughout most of this study, and the boundary 
conditions we employed in all our models. For 
our primary model, we discretized a 4-m-long by 
2-m-high rectangular region and divided the re- 
gion into three layers. The middle jointing layer 

9 4 m  yT 
interface 

~ x x ~  2m .2m-,91-~x) 

~ - interface 

Fig. 3. Finite-element mesh and boundary conditions utilized in portions of this study. The mesh is identical to that utilized by 
Gross et al. (in press). 
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Table 1 
Model material properties used in this study. Values are 
representative of numerous published values as compiled from 
various sources (e.g., Blair, 1955, 1956; Birch, 1966; Hatheway 
and Kiersch, 1982; Senseny and Pfeifle, 1984; Atkinson and 
Meredith, 1987a) and reported in Fischer (1994). 

Material property Dolostone Shale 

Fracture toughness, Kic (MPa. m 1/2) 1.7 0.9 
Poisson ratio, u 0.26 0.14 
Shear modulus, G (GPa) 22 7 
Young's modulus, E (GPa) 56 16 

cracked and bounding beds on the stress pertur- 
bation around a crack. The first four models 
utilize the mesh depicted in Fig. 3, whereas the 
other four models required uniquely designed 
meshes we describe later. 

4. Model results 

4.1. Dolostone and shale model 

(bed A) is given different elastic properties for 
various individual models, whereas we assigned 
the elastic properties of shale (Table 1) to the 
bounding, unjointed layers (beds B) for all our 
models. In all models the mesh is constrained to 
displace only in the x-direction along the bottom 
edge, and is fixed in both x and y at the mid- 
point of the bottom edge. The top of each model 
is free to move according to the deformations of 
the mesh, but is not a stress-free surface. To 
simulate far-field crack-normal  compressive 
stress, we apply a constant contractional longitu- 
dinal strain (exx) to the entire model prior to the 
introduction of a crack. After the application of a 
constant strain, we introduce a crack to the cen- 
ter of the mesh using FRANC'S automatic crack 
growth and remeshing algorithms. Remeshing is 
done so that discretization in regions near the 
new crack is much finer than the remainder of 
the model mesh (see inset in Fig. 3). After a new, 
cracked model mesh is generated, the crack is 
loaded with a uniform internal pressure. Our 
model is sufficiently large so that edge effects 
(i.e., inaccuracies in the numerical results which 
inherently occur near the edges of discretized 
regions of finite size) do not influence the numer- 
ical solution in the region near the crack. 

We present results from eight different mod- 
els: one model designed to investigate the theo- 
retical stresses and displacements in an ;:aterbed- 
ded dolostone and shale sequence, thr,-e models 
designed to determine the ,~ffects of contrasting 
layer elastic moduli on the stress perturbation 
around a crack, and four models designed to 
assess the impact of the relative thicknesses of 

In this model bounding bed elastic properties 
are those of shale and the cracked bed is assigned 
the elastic properties of dolostone (Table 1). Uni- 
form longitudinal contractional strain (%x) of 
3.571 × 10 - 4  w a s  applied to this model prior to 
the introduction of a crack. The theoretical 
crack-normal stress (~rx~x) resulting from this strain 
is 20 MPa in the dolostone and 5.71 MPa in the 
shale. Edge effects in the model resulted in a 
slight longitudinal variation in o%, where in each 
bed the average difference between 0% calcu- 
lated at any x-position in the model and the 
theoretical value of o'ix was less than 3.0% of the 
theoretical ~rrx. The mean ~r~x is 20.5 MPa in the 
dolostone, and 5.66 MPa in the bounding shale 
beds for this model. These values of O-xx are 
equivalent to the remote crack-normal compres- 
sive stress (~rrx) in the model. A uniform pore 
pressure of - 3 5  MPa was applied to the walls of 
the crack in this model. This combination of 
crack-normal compression and internal fluid 
pressure results in a 15-MPa tensile effective 
stress at the crack wall. 

Perturbation o f  ~rxx upon pressurization o f  the 
crack 

The two-dimensional distribution of crack-nor- 
mal stress (~rx~) throughout a portion of the right 
half of the dolostone and shale model is depicted 
in Fig. 4. In the dolostone, crack-normal stress 
reaches a maximum value equal to Pp at the wall 
of the crack, and decreases to o-r~ with distance x 
away from the crack. In the shale layers, 0% 
decreases close to the crack tips and increases to 
the far-field value away from the crack (Fig. 4). 
Steep stress gradients occur across the layer in- 
terfaces. Near each end of the crack ~rxx de- 
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Fig. 4. Contours  of crack-normal stress (~rxx) in the dolostone 
and shale model. See Table 1 for model material  properties. 
Applied strain, e~x = 3 . 5 7 1 x 1 0  -4. Contours  in MPa, and 
unless labeled, contour interval is 2 MPa. 

creases due to the stress concentrating effect of 
the sharp crack tip. The reduction in stress near 
the crack tips occurs because tensile (i.e., nega- 
tive) crack-tip stresses counteract  the far-field 
compressive stress, resulting in the decrease in 
compressive stress magnitude near  the crack tips. 
The tensile crack-tip stress concentrations per- 
turb the local compressive stress field in the shale 
layers for distances up to ~ 0.4 m from the crack 
(Fig. 4). Beyond ~ 0.4 m from the crack, the 
stress in the shale beds is the same as the pre- 
pressurization stress. 

The shape of stress contours in the dolostone 
beds is concave towards the crack because the 
crack opens with an elliptical profile, and there- 
fore, the greatest  amount  of elastic strain occurs 
by crack opening along the middle of the dolo- 
stone bed. Consequently, the perturbation in trx~ 
caused by fluid in the crack is greatest  and ex- 
tends farthest along the center of the dolostone 
bed. 

Bedding-parallel displacements 
The two-dimensional distribution of bedding- 

parallel displacements (u) that developed in the 
model is shown in Fig. 5. After  formation of a 
crack in the middle bed, longitudinal elastic dis- 
placements throughout the model are not con- 
stant, and the shape of displacement profiles 
taken vertically through the model varies dramat-  
ically with distance from the crack. Near  the 
crack, the elliptical profile of the dilated model 
joint is reflected in the distinct concave-inward 
curvature of the displacement profile in the dolo- 
stone bed, and results in a steep displacement 
gradient between the center of the cracked bed 
and the bedding interface. With increasing hori- 
zontal distance from the crack, this steep dis- 
placement gradient shallows and extends further 
into the shale beds. At horizontal distances 
greater  than ~ 0.8 m, the influence of the crack 
on the bedding-parallel displacement is greatly 
reduced, and the displacement profiles are nearly 
straight. 
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Fig. 5. Vertical displacement profiles (i.e., loose lines) taken 
at different x-positions through the right half of the dolostone 
and shale model. Displacement  of each line is measured  
relative to an originally straight, vertical line. A straight line 
means  there is uniform x-displacement throughout  the model 
at the position of the profile. Displacement along each profile 
is measured  with the inset scale. 
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Fig. 6. Longitudinal displacement along the interfaces of the 
dolostone and shale model resulting from a superposition of 
uniform longitudinal contraction, Exx = 3.571 × 10 4 and uni- 
form fluid pressure, Pp = -35  MPa. Displacement of each 
point is measured relative to the original position. Negative 
displacements occur when material is displaced in the nega- 
tive x-direction. To the left of the crack, negative displace- 
ments occur when material moves away from the crack. To 
the right of the crack, negative displacements result when 
material moves closer to the crack. 

The horizontal variation in displacement that 
developed along the bedding interface of our 
model is shown in Fig. 6. Longitudinal displace- 
ment along the interfaces is symmetric about the 
crack and zero exactly at the crack tip (i.e., x = 0, 
y = _+0.1). Near the crack, dilation due to fluid 
pressure in the crack results in displacement of 
material away from the crack. However, these 
outward displacements occur only near the crack, 
and after increasing linearly to a distance of 

x = 0.02 m, they decay in a non-linear manner 
to a distance of ~0.1  m from the crack. At 
x-distances greater than ~ 0.1 m from the crack, 
longitudinal displacement along the interface is 
not influenced by the crack, and total displace- 
ment varies linearly with increasing distance away 
from the crack (i.e., constant strain). 

Bedding-parallel shear stress 
Fig. 7 depicts the two-dimensional variation in 

bedding-parallel shear stress (~-~y) along several 
vertical profiles through the model. Shear stress 
is zero along the center of the dolostone bed and 

throughout the model at vertical (y)  distances 
greater than ~ 0.5 m from the bedding inter- 
faces. Close to the crack %y is maximum at the 
interface and decreases rapidly to zero away from 
the interface. However, with increasing horizon- 
tal distance from the crack, the maximum %y 
occurs slightly above the interface and bedding- 
parallel shear stresses are developed in the shale 
beds at greater distances from the bedding inter- 
faces. Along the interface, %y increases to a 
maximum near the crack and decreases to a neg- 
ligible value at ~ 1.0 m from the crack (Fig. 8). 

4. 2. Effects of  contrasting elastic moduli 

Hobbs (1967) demonstrated that the x-dis- 
tance to which trxx was perturbed around an 
open joint depends not only on crack height, but 
also on the ratio of the cracked bed Young's 
modulus (E  A) to bounding bed shear modulus 
(GB). His result suggests that in addition to joint 
height (i.e., bed thickness), the spacing of joints 
formed in response to far-field joint-normal ten- 
sion is also dependent on the elastic properties of 
the involved stratigraphy. Although Narr and 
Suppe (1991) question the influence of stratigra- 
phy on joint spacing, field data presented by 
Gross (1993b) exhibit a variation in joint spacing 
with lithology. Results of numerical modeling by 
Gross et al. (in press) likewise confirm Hobbs'  
analytical results, but suggest the extent to which 
trx, is perturbed around an open crack is not as 
strongly dependent on E A / G  ~ as suggested by 
Hobbs (1967). 

To examine the effects of contrasting elastic 
moduli on the trxx distribution around pressur- 
ized cracks in layered media, we use the finite- 
element mesh depicted in Fig. 3, and apply a 
uniform longitudinal contractional strain to each 
of three models prior to pressurization of the 
crack. The bounding bed elastic properties are 
those of shale, cracked bed Poisson ratio is 0.25, 
and the Young's modulus of the cracked bed is 
17.5, 35 and 70 GPa, in each of the three succes- 
sive models. After contracting a model by 2.857 
x 1 0  - 4  ~xx, we pressurize the crack to a uniform 
Pp that is 3 MPa above o-rx in the cracked bed 
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Fig. 7. Variation in bedding-parallel shear  stress (~'xy) along several vertical profiles through the right half of the dolostone and 
shale model. Profiles taken at x-positions of 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0 m. Note that left-lateral shear  is negative and 
right-lateral shear  is positive. Shear stress distribution is symmetric about both the vertical and horizontal axes of the model such 
that left-lateral shear  occurs in the upper  right and lower left quadrants  of the model, and right-lateral shear occurs in the upper 
left and lower right quadrants.  

(i.e., the pre-pressurization ~x~). By designing our 
models in this fashion, we implicitly assume that 
each bed cracks at a constant value of (Pp - cr~). 
This is not likely in reality, but we defer discus- 
sion of the actual behavior until later, presently 
analyzing only the simple case. Although edge 
effects resulted in a longitudinal variation in o-~ 
in each model, the average difference between 
the theoretical ~r~x and the numerically calcu- 
lated ~rxx at any position in the middle bed of 
each model is less than 2.0%. We use the numeri- 
cally determined average O-~x value in the middle 
bed to normalize the results presented below 
(i.e., ~r avg= O'x~x). To eliminate the influence of 

crack height on the size of the perturbed zone 
around a crack, we also normalize horizontal 
distances by the cracked bed thickness (tA). 

Fig. 9 depicts contours of normalized crack- 
normal compressive stress (O'xx/o'rx) throughout 
the jointed bed of the three models we con- 
ducted. This figure reveals that under these spe- 
cific model conditions, the zone of increased 
crack-normal compression adjacent to a pressur- 
ized, dilated crack (i.e., pore pressure shadow of 
Fischer, 1994), decreases in width with increasing 
Young's modulus of the cracked bed (EA). If the 
spacing of fluid-driven joints is influenced by the 
width of the pore pressure shadow around exist- 
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ing  d i l a t e d  jo in ts ,  th is  r e s u l t  sugges t s  t ha t  fo r  

b e d s  o f  e q u a l  th ickness ,  f l u i d - d r i v e n  j o i n t  spac ing  

s h o u l d  a lso  d e p e n d  o n  l i tho logy .  T h i s  r e su l t  is in 

a g r e e m e n t  w i t h  n u m e r i c a l  s o l u t i o n s  a n d  f i e ld  d a t a  
p r e s e n t e d  by G r o s s  e t  al. ( in press) .  

Crack-dr iv ing  stress 

A l t h o u g h  Fig.  9 i l l u s t r a t e s  t h a t  t h e  m e c h a n i c a l  

p r o p e r t i e s  o f  b e d s  a f f ec t  t h e  d i s t r i b u t i o n  o f  

c r a c k - n o r m a l  c o m p r e s s i v e  s t ress  a r o u n d  a p r e s -  

s u r i z e d  crack,  a c l e a r  u n d e r s t a n d i n g  o f  h o w  

l i t ho logy  i n f l u e n c e s  j o i n t  spac ing  r e q u i r e s  in for -  

m a t i o n  on  h o w  s t ress  p e r t u r b a t i o n s  a r o u n d  p res -  

s u r i z e d  c r acks  m i g h t  i n f l u e n c e  t h e  i n i t i a t i on  o f  

n e a r b y  cracks .  F o r  p r e s s u r i z e d  c racks  in c o m p r e s -  

s ive s t ress  f ie lds ,  t h e  p a r a m e t e r  c o n t r o l l i n g  c r a c k  

i n i t i a t i on  is t h e  c r a c k - d r i v i n g  s t ress  (Ao-) ,  a n d  was  

d e f i n e d  by P o l l a r d  a n d  Sega l l  (1987) as: 

Act = I Crx~x I -~ f fx  (1 )  
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Fig. 9. Contours of normalized-crack normal stress (~rxx/trr x) in the cracked bed of three different models after pressurization of a 
crack. Contours are in units of remote crack-normal stress (i.e., n • crrx, where n is the contour value). Remote stresses are 5, 10 and 
20 MPa and pore pressures are approximately 8, 13 and 23 MPa respectively, for the E = 17.5, 35 and 70 GPa models. 
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crack. M a x i m u m  driving s t ress  (Ao'ma x) is 3 MPa  in each  model .  

where ~ c  is the normal stress acting on a crack 
wall and ~rrx is the remote crack-normal stress 3 
For the situation we are modeling, ~r~x =Pp and 
O-x~x is equal to the bedding-parallel compressive 
stress prior to pressurization of the crack in each 
model. Note that Eq. 1 defines the maximum 
driving stress in a model (AO'max) , where o-~ is a 
constant. After  dilation of the crack, local crack- 
driving stress is given by: 

a ~  = I ~ L  I -~x~  (2)  

where O-xx is a function of x and y. Because O-xx 
varies throughout  the cracked bed after pressur- 
ization of the crack, local crack-driving stress 
likewise varies. It is this spatial variation in 
crack-driving stress which influences the initia- 

3 Note  tha t  Po l la rd  and  Segal l  (1987) d e n o t e  pore  p ressu re  

as a posi t ive  quant i ty ,  and  the re fo re  do not  u t i l ize  the  abso-  
lute  va lue  of ~ffx. Use  of  the abso lu te  va lue  of O'fx is necessi-  
t a t ed  by ou r  des igna t ion  of pore  p ressu re  as a nega t ive  

quant i ty .  

tion of new cracks in the vicinity of existing 
dilated cracks. This analysis applies to poroelasti- 
cally-induced changes in O'rx as long as it is 
understood that the stress perturbat ion depends 
on Art and not O-x~x . 

Fig. 10 depicts contours of normalized crack- 
driving stress in the cracked bed of the three 
models shown in Fig. 9. To determine the two-di- 
mensional distribution of driving stress, we as- 
sume the model is permeated  with fluid at a 
uniform Pp, and use Eq. 2 to calculate Ao- 
throughout the model where O-xx is a function of 
x and y as shown in Fig. 9. The maximum driving 
stress in each model (2~O'ma x) is the difference 
between the fluid pressure in the crack, and the 
pre-pressurization Oxx in the center bed of a 
given model (i.e., ~rrx). For each plot, the driving 
stress is normalized by AO'ma x in the model, which 
was arbitrarily set at 3 MPa for all cases. 

It is seen from Fig. 10 that crack-driving stress 
is zero at the wall of the crack, and increases to 
2~rma x with increasing x-distance from the crack. 
Under  our specific model conditions, the width of 
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the zone of decreased driving stress (i.e., driving 
stress shadow of Fischer, 1994) is greater  in beds 
with larger relative Young's  moduli. This suggests 
that pressurized joints in stiffer (i.e., high relative 
E)  lithologies can interact with one another  over 
wider distances than joints in less stiff lithologies. 
Previous work by Hobbs (1967) and Gross et al. 
(in press) established the same relationship be- 
tween E A and the driving-stress shadow around 
cracks in layered elastic media subjected to re- 
mote crack-normal tensile stress. 

4.3. Pore pressure effects 

It  is evident from Fig. 1 that for a given or r, the 
magnitude of normalized crack-normal stress at 
any x-position in the model should depend on 
Pp. The distribution of crack-driving stress around 
a pressurized crack is likewise dependent  on the 
fluid pressure in the crack. I f  the spacing of 
fluid-driven joints is related to the lateral extent 
of  a local driving-stress shadow, then the depend- 
ence of shadow width on Pp suggests the spacing 
of fluid-driven joints may also be related to the 
ambient Pp during joint initiation. 

Fig. 11 depicts the variation in crack-driving 
stress with distance x away from the center of a 
pressurized crack in the middle bed of a model 
where the bounding beds are shale and the mid- 
dle bed is dolostone (Table 1). Longitudinal con- 

70 60 r L ~" ~xx = 10 MPa 
13_ IPpl = 70 MPa 

• ~ 50 

40 a 
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Normal ized Distance from Crack, (X/tA) 

Fig. 11. Variation in crack-driving stress with distance x away 
from the wall of a pressurized crack. Compare x distance at 
which 20 MPa of driving stress is first achieved. 

tractional strain is applied to the model, resulting 
in a remote  crack-normal compressive stress of 10 
MPa in the dolostone bed. The graphs show the 
lateral variation in crack-driving stress away from 
the wall of  a crack pressurized to - 3 5 ,  - 5 0  and 
- 7 0  MPa. It  is seen from Fig. 11 that the x-dis- 
tance at which a given crack-driving stress is first 
exceeded depends on the pore pressure in the 
crack. For any specific set of material  properties,  
a given crack-driving stress is achieved at closer 
x-distances at higher pore  pressures. In other 
words, the width of the driving-stress shadow 
around a pressurized crack decreases with in- 
creasing pore pressure. 

4.4. Effects of bounding bed thickness 

Ladeira  and Price (1981) suggested the spacing 
of joints in competent  beds is affected by the 
thickness of adjacent incompetent  beds. From 
field data collected in Carboniferous flysch ex- 
posed near  Devon and Cornwall, U.K., they ar- 
gue that for jointed beds of equal thickness, joints 
are more closely spaced when the thickness of 
unjointed shale layers bounding the jointed beds 
decreases (Fig. 12). This effect becomes more 
pronounced when the ratio of  adjacent unjointed 
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bed  th ickness  to j o in t ed  bed  th ickness  ( t B / t  A) 
decreases .  

To test  the  inf luence  of  b o u n d i n g  bed  thick- 
ness ( t  B) on  the  po ten t i a l  spacing of  f lu id-dr iven  
joints ,  we examined  the  var ia t ion  in A~r a r o u n d  a 
c rack  for  four  ra t ios  of  t B / t  A. The  four  d i f fe ren t  
f i n i t e - e l emen t  meshes  u t i l ized in this analysis  ex- 
hibi t  t B / t  A ra t ios  of  0.66, 0.33, 0.2 and  0.1, and  
are  shown in Fig. 13. Each  of  these  mode l s  con- 
sists of  severa l  a l t e rna t ing  weak  (low re la t ive  E )  
and  s t rong layers.  T h i n n e r  weak  beds  a re  as- 
s igned the  elast ic  p r o p e r t i e s  of  sha le  (Tab le  1), 
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1 " 3 n  ~ A ~ " = - '  i ' i o r a c k ~ = - i i ' ' ' ' ' ,  : , 1 ,  _ ~ ! ~ - 1 ~ _ ~  0 .3m 
: ; J l  a ~  :::: ::::':':ll!~=l! o.2~ 

J / I r m I i i  i 

4 m  

1.9 m 

I0 .3 m 
0.1m IIo3m 
0.1 m 

O,lm 
riO.3 m 

1 .74  m 

4 m  

4 m  

' 0.3 rn 
i0.03 m 
0.3 m 

0.03 rn 
1 .62  m o.3 m 

0.03 m 
O.3m 

o.o3 m 
O.3m 

Fig. 13. Finite-element meshes utilized in testing the influence 
of unfractured, bounding bed thickness on the stress distribu- 
tion in a cracked bed. Detail of mesh around crack omitted. 
Meshes all comprised of quadratic, six-noded triangular and 
eight-noded quadrilateral isoparametric elements. 
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Fig. 14. Contours of crack-driving stress (A~) in the cracked 
bed of four models, each with different ratios of uncracked 
bed thickness (t B) to cracked bed thickness ( tA) .  

whereas  in the  o t h e r  beds:  E = 35 G P a  and  ~, = 
0.25. The  mode l s  a re  first sub jec ted  to a cont rac-  
t ional  long i tud ina l  s t ra in  (exx) of  2.857 x 10 -4. 
A f t e r  app l i ca t ion  of  compress iona l  s train,  a crack 
in the  stiff layer  is p re s su r i zed  with a un i fo rm 
p res su re  of  - 3 5  MPa.  

Fig. 14 depic t s  con tours  of  crack-dr iv ing stress 
in the  c racked  bed  of  each  of  the  four  models .  It 
is readi ly  a p p a r e n t  f rom this f igure  tha t  for  the  
t B / t  A ra t ios  examined ,  t he re  is no c lear  re la t ion-  
ship be tw e e n  the  la te ra l  ex tent  of  a dr iving-s t ress  
shadow ad jacen t  to a p res su r i zed  crack  and the 
th ickness  of  ad jacen t  unc racked  beds .  W h e n  com- 
p a r e d  at the  22-MPa  Ao- contour ,  dr iving-s t ress  
shadow widths  are  not  d ramat ica l ly  d i f ferent ,  and  
a p p e a r  to first inc rease  with increas ing  tB / tA ,  but  
then  to dec rea se  wi th  increas ing  t B / t  A. Because  
the  obse rved  var ia t ions  are  slight and  nonsys tem-  
atic, we a t t r ibu te  t hem pr imar i ly  to inaccurac ies  
in the  numer ica l  so lu t ion  and  the  con tour ing  al- 
gor i thm.  Consequent ly ,  we conc lude  tha t  when  
beds  are  b o n d e d  toge ther ,  the  th ickness  of  un- 
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fractured beds adjacent to a cracked layer does 
not significantly influence the distribution of driv- 
ing stress in the cracked layer. 

Another  conclusion we draw from our numeri- 
cal results is that in regions where there is a 
variation in joint spacing as a function of bound- 
ing bed thickness (Fig. 12), the boundary condi- 
tions employed in our models may not apply. As 
testament to this we note that Ladeira and Price 
(1981) qualitatively attribute the variation in joint 
density with bounding bed thickness they ob- 
served to differences in cohesion at the bedding 
interfaces, implying interbed slip. Because all our 
models assume perfectly bonded interfaces, we 
cannot resolve affects associated with interbed 
slip. Our results suggest future investigations of 
Ladeira and Price's proposed relation between 
bounding bed thickness and joint density should 
be conducted using models incorporating in- 
terbed slip. 

5. Discussion: fluid-driven joint spacing 

Previous work on joint spacing demonstrates 
that both the positively skewed spacing distribu- 
tion (e.g., Huang and Angelier, 1989), and the 
correlation between bed thickness and median 
joint spacing (e.g., Narr and Suppe, 1991; Gross, 
1993a) commonly observed in bedded sedimen- 
tary rocks result from mechanical crack interac- 
tions during joint set development (e.g., Rives et 
al., 1992). Cracks interact with one another be- 
cause of the local Ao- reduction near a crack. 
New cracks are inhibited from forming in these 
regions of reduced Ao-. As noted by Narr and 
Suppe (1991), Gross et al. (in press) and Fischer 
(1994), the initiation of new cracks is controlled 
by the distribution of Atr, as well as the distribu- 
tion of flaws and flaw sizes in the rocks. This 
relationship serves to enhance the influence of 
lithology on joint spacing. 

Field observations of joint surface morphology 
indicate that joints initiate from a single point, 
often a concretion, bedform, fossil fragment or 
other flaw in the rock (e.g., Engelder,  1987). 
Through the equation: 

Ore= { Kic} { Ysqrt{ Trc} } (3) 

linear elastic fracture mechanics (e.g., Broek, 
1986) relates the stress necessary to initiate a 
macroscopic joint (trf; fracture stress), to the size 
(c) and shape (Y) of an initial flaw, as well as 
intrinsic rock strength (K~c; fracture toughness; 
Atkinson and Meredith, 1987b). A flaw will prop- 
agate and grow into a macroscopic joint when the 
crack-driving stress (Aor) equals the fracture stress 
(orf) for that given flaw. 

The range of flaw sizes present in rocks results 
in a spatially inhomogeneous fracture stress, 
where rock strength depends not only on the size, 
but also on the location of flaws in the rock. As 
noted by Gross et al. (in press), for a given flaw 
size, stiffer (i.e., larger relative E)  lithologies 
generally exhibit larger fracture toughnesses and, 
therefore, require larger fracture stresses. From a 
review of published K~c values, it is evident that 
for penny-shaped flaws with a 3-cm diameter 
(c = radius of penny; Y = 1.77 in Eq. 3), fracture 
stresses in shale (E  ~ 16 GPa; Table 1) are ~ 2 
MPa, whereas in carbonates (E  ~ 56 GPa; Table 
1) orf ~ 4 MPa. This dependence of fracture stress 
on Young's modulus is significant because it mag- 
nifies the influence of elastic properties on the 
driving-stress shadow around a pressurized crack, 
enhancing the influence of lithology on joint spac- 
ing. 

Fig. 15 is a plot of crack-driving stress along 
the line y = 0 for the three models shown in Fig. 
10. If the fracture stress of the beds were inde- 
pendent  of E A, and therefore equal, driving-stress 
shadow width (i.e., the normalized horizontal dis- 
tance at which Aor = orf) is an increasing function 
of E A. However, because fracture stresses are 
known to increase with increasing Young's mod- 
uli, the effect of lithology on driving-stress shadow 
width, and therefore joint spacing, is significantly 
magnified. To illustrate this effect, compare the 
difference in driving-stress shadow widths shown 
by the thin arrows in Fig. 15 with that obtained by 
assuming o-f = 2.0, a value independent  of E g 
(the thick arrow in Fig. 15). For a constant trf = 
2.0, driving stress shadow width is roughly 1.0 
times the bed thickness (i.e., X//t  A) in all models, 
with slightly larger shadow widths obtained in 
stiffer lithologies. When trf increases with in- 
creasing EA, however, the dependence  of 
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Fig. 15. Variation in crack-driving stress with distance x away 
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models where the Young's modulus of the cracked bed is 
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respectively assumed to be 1.5, 2.0 and 2.5 MPa in the models 
with E A= 17.5, 35 and 70 GPa. This variation in fracture 
stress variation is arbitrary, but of the same order of magni- 
tude expected for the modeled range of Young's moduli. 

driving-stress shadow width o n  E A is greatly en- 
hanced.  Because there  is a natural  t endency  for 
stiffer lithologies to exhibit greater  f racture  
stresses (e.g., Gross et al., in press), the spacing 
of  fluid-driven joints should be even more  strongly 
dependen t  on li thology than suggested by Fig. 10. 

The  development  of  joint sets is largely con- 
trolled by the mechanical  interaction of  cracks. 
Crack interact ion occurs because joints locally 
per turb  far-field stresses and influence the initia- 
tion of  new joints in the vicinity. We character ize 
the distribution of  crack-normal  stress a round  a 
dilated, pressurized crack confined to one layer 
of  a layered elastic med ium and demons t ra te  that  
in the vicinity of  the crack: (1) crack-normal  com- 
pressive stress is increased; (2) large shear stresses 
develop along bedding interfaces; and (3) crack- 
driving stress is reduced.  

The extent to which crack-driving stress is re- 
duced  in the vicinity of  the crack is dependen t  on 
the elastic proper t ies  of  the involved strat igraphy 
and the pore pressure in the crack. Because joint 
spacing depends  on the distribution of  crack-driv- 
ing stress, our  simple effective stress analysis pre- 
dicts the spacing of  fluid-driven joints should 
depend  on lithology and ambient  pore pressure 
during jointing. The  dependence  of  fracture stress 
on Young ' s  modulus  enhances  the influence of  
lithology on the spacing of  fluid-driven joints. 
W h e n  bedding interfaces are bonded  together,  
the driving stress distribution a round  a dilated, 
pressurized crack is not  significantly affected by 
the thickness of  adjacent,  unf rac tured  beds. Con-  
sequently, in the absence of  interbed slip, fluid- 
driven joint spacing should not  be strongly influ- 
enced by the thickness of  adjacent,  unfrac tured 
beds. 

6. Conclusions 

Our  numerical  models  of  the stress and dis- 
p lacement  distributions a round  a pressurized 
crack in layered elastic medium provide a first- 
o rder  constraint  for future work on the spacing of  
fluid-driven joints. In  complex systems such as 
these, there  is a tendency for oversimplification 
of  model  boundary  or  initial conditions. In mod-  
eling a larger por t ion of  the natural  system, and 
by not  explicitly prescribing stresses and displace- 
ments  in the vicinity of  the joint or  along layer 
interfaces, we hope  to have avoided many such 
oversimplifications. Our  numerical  results should 
be cons idered  by o ther  workers  when designing 
boundary  and initial condit ions in similar models  
with reduced  degrees  of  f reedom.  
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