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Abstract

Transected joints (i.e. systematic joints that strike at an angle to the present fold axis trend) occur on the flanks of Split Mountain, a
Laramide anticline near the eastern end of the Uinta Mountains, Utah. The common orientation on both flanks for these WNW-striking joints
is inconsistent with joints driven by a syn-folding stretch normal to the direction of highest curvature. A smaller dispersion of the poles to
these transected joints occurs when they are rotated with bedding to their ‘pre-fold” orientation. This dispersion of poles is inconsistent with a
post-fold genesis in a regional stress field but permits the possibility that these WNW joints propagated as a systematic set prior to Laramide
folding. A pre-fold interpretation is substantiated by a regional WNW-striking joint set within Cretaceous and older rocks in the surrounding
Piceance, Uinta, and southeastern Sand Wash basins. During tilting accompanying the upfolding of Split Mountain, most joints of this
WNW-striking regional set remain locked without slipping under a shear stress. Fracture toughness and frictional strength are two rock
properties that serve to lock a joint until a critical resolved shear stress is achieved. A gravity load caused down-dip slip on some joints that
were tilted to a dip of about 62°. This suggests that a local principal stress remained roughly vertical during bedding rotation. Assuming
fracture strength and friction prevented slip on most joints during tilting, the ratio of least horizontal, Sy, to vertical stress, S, at the critical tilt

angle was approximately 0.55. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

New techniques for the 3-D representation, reconstruc-
tion, and forward modeling of fault-related folds must be
dynamically admissible. This is to say that 3-D models must
remain consistent with the state of stress during the folding
of natural rocks. A question then arises as to what
constraints can be placed on stress in the limbs of a fold
during the folding process. Our objective is to describe one
technique for constraining the state of stress within the limb
of the Split Mountain anticline, Utah, a fold attributed to
Laramide deformation in the sense of both timing and style
(Gries, 1983; Hansen, 1986).

We chose a Laramide-age structure for our study of stress
in fold limbs, in part, to question the common perception
that joint density always correlates with fold curvature in
Laramide-style folds (Lisle, 1994; Engelder et al., 1997).
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Presumably, a correlation between joint density and fold
curvature arises because an effective tensile stress is gener-
ated by tangential longitudinal strain during folding (e.g.
Ramsay, 1967; Price and Cosgrove, 1990; Bobillo-Ares et
al., 2000). This tension leads to the development of hinge-
parallel fractures in the outer arc of the fold where the
stretching direction is normal to the fold axis in folds with
a 2-D evolution in fold shape (Ramsay and Huber, 1987;
Lemiszki et al., 1994). In folds with a 3-D evolution in fold
shape, joints may be induced by local fold-related strains
that are neither parallel nor perpendicular to the fold axis
(Fischer and Wilkerson, 2000). Early studies of the asso-
ciation between jointing and Laramide folding include those
at Sheep Mountain and Goose Egg Dome, Wyoming (Harris
et al., 1960), Williston Basin, North Dakota (Murray, 1968),
Elk Basin, Montana (McCaleb and Wayhan, 1969), and
Little Sand Draw, Wyoming (Garfield et al., 1992). Later
studies have suggested that primary joint patterns at, for
example, Sheep Mountain may reflect a former structural
position (Maschmeyer and Cooke, 2000). Recent analyses
calculating 3-D or Gaussian curvature of beds (e.g. Lisle,
1994) suggest that fold-related fracture density increases
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Fig. 1. Generalized tectonic map of the Uinta Mountains. WB = Washakie basin; SWB = Sand Wash basin; s.m.a. = Split Moutain anticline; s.r.a. = Section
Ridge anticline; w.c.a. = Willow Creek anticline; s.c.a. = Skull Creek anticline; r.a. = Rangely anticline. Tectonic map was modified from Untermann and

Untermann (1949), Ritzma (1969), Campbell (1975) and Bradley (1995).

with folding strain at Point Arguello, California (Narr,
1991) and Oil Mountain, Wyoming (Hennings et al., 2000).

Many Laramide-age structures are molded by the shape
and trend of some forcing member such as a basement block
and are consequently called forced folds (George Sowers,
personal communication, 1971). This fold style, also
referred to as a drape fold, is a specific example of a more
general fold class (Stearns, 1978). Kinematically, forced
folds have properties of leading-edge folds (e.g. Fisher
and Anastasio, 1994), and are distinct from fault-propa-
gation folds, which exhibit self-similar growth (Suppe,
1985; van der Pluijm and Marshak, 1997). The forcing
member in a leading-edge fold is often not basement but
rather a bend in a fault surface or a fault-related fold deeper
within the sedimentary cover (Jamison, 1987; Cosgrove and
Ameen, 2000). Draping over a forcing member can involve
stretching of beds by deformation mechanisms varying from
jointing (e.g. Engelder et al., 1997) to faulting (Withjack et
al., 1990) to extreme cataclasis (e.g. Jamison and Stearns,
1982). Despite abundant data supporting the density—curva-
ture hypothesis, not all well-developed joint sets about
forced folds are generated by a fold-related mechanism.
The purpose of this paper is to demonstrate that forced
folding can take place without causing synfold jointing
and without driving slip on most pre-existing transected
joints. This behavior places a constraint on the state of stress
within fold limbs during folding.

Transected joints are a set of systematic joints that trend

at some angle to the present fold axis and form either before
folding or during an early stage of folding. Transected joints
on opposite flanks of a fold appear as a single, systematic set
only when bedding is restored to its original attitude. Later
tightening of the fold causes the joint set to fan about the
flanks of the fold and thereby increases the scatter of poles
to systematic joints, in contrast to the tight clustering of
poles to a systematic joint set that might be found in
uniformly dipping rocks. The term, transected joints,
comes from the literature on cleavage where transected
cleavage occurs at a distinct angle with the fold hinge
(e.g. Ramsay and Huber, 1987, p. 334). A transected
cleavage is not necessarily a late generation of cleavage
superimposed on folding but rather it may be a cleavage
from any stage of the folding process (Powell, 1974;
Treagus and Treagus, 1981; Ghosh, 1993).

2. The geology of Split Mountain anticline

This paper presents new field data on brittle fracture
about the Split Mountain anticline, Dinosaur National
Monument, Utah, a west-plunging forced fold that formed
during the Eocene uplift of the Eastern Uinta Mountains
(Figs. 1-3). Interest in fractures at Split Mountain anticline
stems from its similarity to Rangely anticline, Colorado, a
prolific reservoir in a Laramide fold 60 km to the southeast
(Fig. 1). The Rangely structure is a two billion barrel oil
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Fig. 2. Geologic map of Split Mountain anticline showing the structural sections referred to in this paper. Eye icon indicates the position of the view looking to
the NE in Fig. 3. Lithologic map symbols are as follows: Kfmd = Frontier Sandstone, Mowry Shale, Dakota Formation; KJem = Cedar Mountain Formation,
Morrison Formation; Jseca = Stump Formation, Entrada Sandstone, Carmel Formation; Jgc = Glen Canyon Group; Trc = Chinle Formation; Trcg = Gartra
Member of Chinle; Tym = Moenkopi Formation; Ppc = Park City Formation; Pw = Weber Sandstone.

Fig. 3. Photo illustrating drape folding of the Split Mountain anticline. View is indicated by eye icon looking to the NE in Fig. 2.
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Fig. 4. Generalized mechanical stratigraphy depicting fracturing styles
observed in the Mesozoic clastic section around Split Mountain Anticline.
Unit thicknesses are in meters. Stratigraphic section adapted from
Untermann and Untermann (1949, 1955) and Hintze (1988).

field in which fractures affect the efficiency of tertiary
recovery (Narr, 1998).

The Split Mountain anticline is a manifestation of late
Mesozoic to early Tertiary compression within the Cordil-
leran region (e.g. Hintze, 1988). Timing of Cordilleran
compressional events is dated by periods of clastic sedi-
mentation (Fig. 4). Deposition in the latter part of the
Mesozoic was influenced by the emplacement of major
thrust sheets to the west. By the late Jurassic, synorogenic
clastics of the Nevadan Orogeny were shed eastward over
Utah (Peterson, 1986; Peterson and Turner-Peterson, 1987,
Allmendinger, 1992). The major thrusting of the Sevier
Orogeny began with initial uplifts along the Paris—Willard
thrust system in Idaho, Utah, and Wyoming in earliest
Cretaceous time (Armstrong, 1968; Wiltschko and Dorr,
1983). Episodic uplift caused further clastic sedimentation
in the form of the sandstones of the Dakota and lower

Frontier Formations, units that also contain well developed
joint sets.

Initial Laramide uplift in the vicinity of Split Mountain
occurred in the western Uinta Mountains along the North
Flank and Uinta thrusts in the Late Maastrichtian and
continued along these faults into the Paleocene (Bradley,
1995). Uplift progressed into the central and eastern Uinta
Mountains in the Early and Middle Eocene along the north-
vergent Henry’s Fork and Spark’s faults, and along the
south-vergent Uinta Basin Boundary Thrust system
(Hansen, 1984, 1986; Bradley, 1995). Synorogenic sedi-
ments of the Fort Union Formation and Wasatch Group
were shed from the rising Uinta Mountains and surrounding
Laramide uplifts and deposited into the Green River,
Piceance, and Uinta Basins. The formation of the Split
Mountain anticline and correlative structures to the south-
east took place at this time (Fig. 1). Fault-slip analysis
suggests that detachment and eastward translation of the
Uinta block may have been due to impingement of the
Sevier thrusts from the west (Gregson and Erslev, 1997).
Laramide uplifts in the surrounding basins include the
Grand Hogback monocline, the Axial, Cherokee, and
Douglas Creek arches, and the Uncompahgre, Sawatch,
White River, and Rock Springs uplifts. The close of the
Laramide orogeny in the eastern Uintas coincided with the
end of deposition of the youngest Eocene sediments
(Hansen, 1984).

The exact relationship between the Split Mountain anti-
cline and basement faulting is unknown. The Teepee anti-
cline at Dinosaur National Monument is interpreted as a
interference structure without basement involvement
(Novoa et al., 1998). However, Split Mountain is a larger
structure and not of the same scale as either the Teepee
anticline or other typical interference folds (Wayne Narr
and Don Medwedeff, personal communication, 2001).
Split Mountain and the larger Uinta arch parallel the trend
of the Proterozoic-aged trough filled with an 8—11-km-thick
section of the Uinta Mountain Group (Hansen, 1986; Stone,
1993). Proterozoic basement faults were tectonically
inverted as indicated by the preservation of the Uinta
Mountain Group in the hanging walls of Laramide faults
in the Axial, Beaver Creek, and Rangely anticlines but not
in the footwalls (Morel et al., 1986; Richard, 1986; Stone,
1986). The general consensus is that Split Mountain is the
manifestation of an inverted Precambrian normal fault
lifting both the Uinta Mountain Group and the overlying
cover into a large N—S bend over an E-W axis (Gregson
and Erslev, 1997; Wayne Narr and Don Medwedeff,
personal communication, 2001).

3. Structural data from Split Mountain anticline

Fracture data from the Split Mountain anticline were
collected at both scanline and transect stations. The highest
quality, best-exposed outcrops were reserved for scanline
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Lithologic map symbols are as listed in the caption of Fig. 2.

surveys, which were performed using techniques described
by Priest and Hudson (1976), La Pointe and Hudson (1985),
and Narr and Suppe (1991). A transect station is an outcrop
of insufficient quality for a full scanline survey but of suf-
ficient quality to permit measurement and characterization
of a few joints. Transect stations interspersed between scan-
line surveys allowed for additional outcrop coverage around
Split Mountain. Fracturing styles, predominant joint sets,
joint orientation, unequivocal abutting relationships,
bedding orientation, lithology, and mechanical bed thick-
ness were also recorded at each scanline survey and transect
station.

A previous study of Split Mountain collected hetero-
geneous samples of fault-slip data near major faults and
folds (i.e. Gregson and Erslev, 1997). Our sampling focused
on unfaulted sections and, in particular, those units with
well developed joint sets. However, some units in these
‘unfaulted’ sections contained a significant number of
deformation bands and/or rare faulted joints (Fig. 4). We
did not run scan lines in those units in which deformation
bands were the most common brittle fracture.

3.1. Mechanical stratigraphy

The Mesozoic clastic rocks around Split Mountain anti-
cline exhibit a style of brittle fracture that varies with lith-
ology (fracture partitioning; Gross, 1995), in this case
dependent upon porosity. Well-cemented, fine- to
medium-grained sandstone beds and shale beds deform by
jointing (e.g. Pollard and Aydin, 1988), whereas more
porous sandstone with beds generally thicker than 2 m,
deform by local cataclasis along deformation bands steeply
inclined relative to bedding (e.g. Aydin, 1978; Antonellini
and Aydin, 1995; Davis et al., 1999). Systematic joints are
found in the indurated, competent beds of the Frontier,
Morrison, and Chinle Formations as well as beds in the
Glen Canyon Group, the Curtis Member, and the Mowry
Shale (Fig. 4). In contrast, the more porous cross-bedded
sandstones of the Frontier, Dakota and Entrada Formations,
the Glen Canyon Group and the poorly-cemented conglom-
erates of the Gartra Member of the Chinle Formation
display steeply dipping, anastomosing deformation bands
and fewer joints. This study focuses exclusively on joints.
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In addition to joints and deformation bands, some rocks
contain veins and other units are unjointed. Faulted joints
are far less common. Because of the large variation in brittle
behavior at Split Mountain, we constructed a mechanical
stratigraphy (e.g. Corbett et al., 1987; Gross et al., 1997b)
that distinguishes among six brittle lithologies based on the
manner by which each unit fractures (Fig. 4). Our mech-
anical stratigraphy includes units with joints (in some cases
these are faulted joints), units with deformation bands, units
with both joint and deformation bands, units with veins, and
shales with very few joints (Silliphant, 1998). As deter-
mined by this study, the units containing the best-developed
joint sets are the relatively competent beds, including sand-
stones of the Frontier Formation and sandstones and silt-
stones of the Glen Canyon Group and the Chinle Formation.
Joints showing evidence of shear offset appear only in the
Glen Canyon Group and at the top of the Chinle Formation
(Wilkins et al., 2001).

3.2. Bedding attitude about Split Mountain

Split Mountain anticline is a west-plunging fold with a
broad, gently-folded crest bounded by two flexed hinges
with steep flanks (Figs. 2 and 5). Dips for Mesozoic rocks

on the exposed flanks of the fold range up to 74°N on the
north flank and up to 80°S on the south flank. The fold axis
of Split Mountain bifurcates as it plunges to the west. The
Bullwinkle anticline, the smaller, more northern portion of
the nose of Split Mountain anticline, trends slightly south of
west and dips up to 60° on the north limb and up to 30° on
the south limb.

3.3. Joint orientation

Scanline data on systematic joints come from several
formations, with the best distribution of high quality
outcrops found in the Chinle Formation and the Glen
Canyon Group around Split Mountain and the Frontier
Formation around the Bullwinkle anticline. A vector-mean
pole was calculated from the raw orientation data for each
scanline and plotted as a dip and strike symbol (Fig. 6). The
average vector-mean pole and associated dispersion statis-
tics were also calculated for these rock units (Fig. 7).

A cone of confidence indicates the angular distance from
the statistically averaged vector-mean pole within which the
true average vector-mean pole for each brittle lithology is
found to a certain level of confidence (e.g. Fisher, 1953).
The size of a cone of confidence is a measure of the spatial
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Fig. 7. Lower hemisphere equal area projections of joint orientations as measured in the field and after the host beds were rotated to horizontal. Each data point
represents the mean pole from one scanline. Each solid square is the mean pole for the stereoplot. n = number of data. K = McElhinney (1964) precision

parameter.

dispersion of orientation data. The mean in situ strike of
systematic joint sets and the 95% cone of confidence (ags)
for average vector-mean poles for the four joint-bearing
rock units combining all stations on both limbs (excluding
the Josie’s Ranch section) are 275° (aos = 8.7°) for the
Frontier Formation, 299° (a¢5 = 21.3°) for the Glen Canyon
Group, 304° (ays = 8°) for siltstone beds within the Chinle
Formation, and 307° (95 = 10.5°) for the Gartra Member of
the Chinle Formation. Along the south flank of Split
Mountain, the mean azimuths for systematic joints and
their dispersion in the Morrison and Moenkopi Formations
are 259° (g5 = 27.6°) and 288° (a5 = 11.8°), respectively.

3.4. Faulted joints

Joints showing evidence of shear offset appear only in the
Glen Canyon Group and at the top of the Chinle Formation,
exclusively in the Josie’s Ranch section (Fig. 2). The mean
orientation of these joints is 295° 62°N with the northern
hanging wall down thrown (Wilkins et al., 2001). Striations
on this joint set are steeply plunging, indicating normal slip
movement. Pinnate joints and wing cracks appear near the
tips of these faulted joints (Wilkins et al., 2001). Where

present near the bottom of faulted joints, the pinnate joints
are located in the footwall and where present near the top of
faulted joints, the pinnate joints are located in the hanging
wall.

4. Data analysis

The strike of the primary joint set in outcrops of the Glen
Canyon Group, Chinle Formation, Gartra Member, and the
Moenkopi Formation about Split Mountain is not fold axis-
parallel (Fig. 6). Therefore, we consider the possibility that
this is a transected joint set that predates folding altogether.
Although joints of the Frontier Formation about Split Moun-
tain are transected as well, some joints in the Frontier
Formation about the Bullwinkle Anticline and the Morrison
Formation about Split Mountain are axis parallel and, hence,
are not transected.

If the primary joint set post-dates folding and is
controlled by a regional stress field of vertical and hori-
zontal principal stresses, it will have the same attitude on
both limbs of the fold, and will be non-orthogonal to
bedding when bedding has a significant dip (e.g. Hancock
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and Engelder, 1989). Post-fold jointing that reflects a
local, inhomogeneous stress field is unlikely to consti-
tute a systematic set throughout the fold. To test for a
transected joint set, we collated joint data from the four
rock units with the largest number of scan lines and
subjected sets of poles to a fold test similar to that used in
paleomagnetic studies. The idea is that a regional, pre-fold
joint set forms orthogonal to bedding and is subsequently
rotated along with the fold so that it remains orthogonal to
bedding.

4.1. The ‘pre-fold’ joint orientation

The first step in testing for transected joints is to restore
bedding to horizontal. The host bed for each scanline survey
was rotated back to horizontal, its ‘pre-fold’ orientation, and
the vector-mean pole to the primary joint set within the host
bed was rotated through the same angle. Each rotation
operation has two steps. First, the trend and plunge of the
appropriate fold axis (i.e. Split Mountain or Bullwinkle
anticline) was rotated to horizontal and then the bedding
plane was brought to horizontal by rotating it around the
horizontal fold axis through an angle equal to the dip of the

bed. Pi-diagrams were constructed from bedding poles
around the nose of each fold to determine the trend and
plunge of their respective fold axes: 272°/12° for Split
Mountain anticline and 265°/10° for Bullwinkle anticline.
These data were used to determine the two rotation angles to
bring bedding and the vector-mean pole to joints to hori-
zontal for each scanline.

The vector-mean pole to the rotated systematic joints for
each scanline survey corresponds to a ‘pre-fold’ azimuth of
277° (Frontier Formation), 298° (Glen Canyon Group), 304°
(Chinle Formation), and 307° (Gartra Member) (Fig. 7).
Vector-mean poles for joints in the Chinle Formation and
Glen Canyon Groups indicate joints essentially normal to
bedding, whereas vector-mean poles for the Gartra Member
of the Chinle Formation and the Frontier Formation dip 83°
and 84°, respectively, relative to horizontal bedding. The
angle between the average fold axis at Split Mountain (i.e.
E-W) and the WNW-striking systematic joint set within
three of the four units is about 30° (Fig. 6). Joints in the
Frontier Formation are subparallel to the fold axis and are
not part of the WNW-striking joint set in the Chinle
Formation, Gartra Member of the Chinle Formation, and
the Glen Canyon Group.
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4.2. Fold test

By comparing the dispersion of the vector-mean poles in
their ‘unfolded’ orientation with the dispersion of vector-
mean poles to joints in their present orientation, we can
determine admissibility of the hypothesis that initial joint
propagation predated folding. We do so by drawing upon
the principle of the paleomagnetic fold test: “magnetism
directions older than the folding phase must be statistically
better clustered (oriented in a preferred direction) before
their bedding attitudes are altered by tilting” (McElhinny,
1964). By the same logic, if the fold transected systematic
joints, the dispersion of joint orientations measured around
the fold should be significantly less in the unfolded position
(after post-tilt correction) than in the folded position.

Statistical significance is measured by the variance in
dispersion of poles to joints observed before and after
folding as explained in Fisher (1953) and McElhinny
(1964). On applying the fold test we conclude that the

hypothesis for pre-folding propagation of WNW jointing
is admissible because the data are statistically significant
at the 99% confidence level.

There is a caveat to this conclusion. If a systematic joint
set developed in response to tangential longitudinal strain,
and hence is syn-folding, that set could actually become
better clustered after beds are unfolded. This is because
the joints would be normal to bedding (and strike parallel
to fold axis trend), and thus their dips would not be uniform
in the present folded state. This may give the incorrect
perception that the joint set is pre-folding (i.e. if based
solely on the fold test). However, one criterion for tangential
longitudinal strain-related joints is that the orientation of the
great circle girdle to joint poles would align with either the
local fold axes or maximum curvature at some time during
fold development. In fact, the poles to the girdles for joints
from the Chinle Formation, Gartra Member, and Glen
Canyon Group do not align with the fold axis. Likewise,
they are so pervasive that they did not develop in response to
a local maximum curvature.

4.3. Joint spacing

Joint spacing is one measure of joint density, the para-
meter that several geologists have correlated with fold
curvature (i.e. Lisle, 1994; Hennings et al., 2000). The
average spacing between systematic joints in competent
beds of interlayered sedimentary rocks is often proportional
to the bed thickness (Ladeira and Price, 1981; Narr and
Suppe, 1991; Gross et al., 1995; Engelder et al., 1997).
Other parameters also affect joint spacing: elastic properties
and fracture toughness of the rock, initial flaw size,
thickness of the incompetent units, and propagation
mechanism (e.g. Fischer et al., 1995; Gross et al., 1995; Ji
and Saruwatari, 1998; Bai and Pollard, 2000). Joint spacing
is normalized according to bed thickness so that spacing
from single beds of different thickness may be compared
in a meaningful manner. The normalized parameter for joint
spacing in individual beds, the inverse of median-spacing/
thickness, is called the fracture spacing ratio (e.g. Gross,
1993; Gross et al., 1997a). When characterizing the spacing
data from several beds within a common rock unit, normal-
ized joint spacing is represented by the slope of the linear
regression of bed thickness vs. median fracture spacing (i.e.
the fracture spacing index of Narr and Suppe (1991)).

The typical fracture spacing ratio for scanline surveys
around Split Mountain anticline ranges from 0.6 to 1.6
(Fig. 8). A fracture spacing index was calculated for the
Glen Canyon Group throughout Split Mountain and Chinle
Formation on the northwest flank of Split Mountain (Fig. 9).
Each datum on the fracture spacing index plots is from a
scanline survey containing at least nine systematic joints
(seven in the case of two beds exceeding 4 m in thickness).
The fracture spacing index for the WNW joint set in the
Glen Canyon Group (= 1.19) is higher than that found for
the WNW joint set in the Chinle Formation (= 0.81). We do
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not obtain a reasonable fit for a fracture spacing index line
from Chinle data taken on the south flank of Split Mountain.

The lower fracture spacing index for the Chinle For-
mation is due, in large part, to inclusion of data from the
Northwest Section (Figs. 1 and 7). Joint spacing in the
Chinle on the south flank of Split Mountain, particularly
the Quarry Section, show several fracture spacing ratios
>1.0. To test for a statistical difference between joint
spacing in the Chinle Formation of the Northwest Section
and spacing on the south flank of Split Mountain, we apply
Student’s #-test (Engelder et al., 1997). We test whether the
mean fracture spacing ratio of the Northwest section of Split
Mountain and the mean fracture spacing ratio of the south
flank (Quarry and River sections) represent the same popu-
lation. The null hypothesis is not rejected, indicating that the
two data sets come from the same discrete population at the
95% confidence level. Therefore, we proceed with the inter-
pretation that fracture density does not vary significantly
with structural position and that this fracture density was
inherited from the time of joint development prior to
folding.

5. Discussion
5.1. A Pre-Laramide regional joint set
Our hypothesis is that the predominant WNW-striking

joint set within the Glen Canyon Group (298°), the Chinle
Formation (304°), and the Gartra Member of the Chinle

Formation (306°) on both flanks of the Split Mountain anti-
cline predates folding. A fold test indicates that this hypo-
thesis cannot be rejected at the 95% confidence level. If our
hypothesis is true, the WNW joints at Split Mountain are
likely to constitute part of a regional set that appears else-
where. Indeed, there is plenty of evidence for such a set
beyond the immediate vicinity of Split Mountain.
Pre-Laramide, WNW-striking systematic joint sets are
found in Cretaceous or older rocks in the Piceance Basin
to the east (Verbeek and Grout, 1997), the Uinta Basin to the
south (Verbeek and Grout, 1992), and the southeastern Sand
Wash Basin (Fig. 10). At Rangely anticline, Colorado, verti-
cal joints striking WNW-W appear in both the Permian
Weber Sandstone and the Cretaceous Castlegate Formation
(Narr, 1998). Joints trending between 275 and 290° in Upper
Cretaceous and older rocks on the Laramide Grand Hogback
monocline, Colorado and White River uplift, Colorado are
interpreted to pre-date folding (Harper, 1964; Murray, 1967,
Dula, 1981; Lorenz et al., 1991; Lorenz, 1995; Tremain and
Tyler, 1997; Narr, 1998). Joints in cores taken from the
MWX and SCHT wells, Colorado also trend between 276
and 279° in the Upper Cretaceous Mesa Verde Group
(Lorenz and Finley, 1991; Lorenz and Hill, 1994).
WNW-NW-trending coal cleats (275-280° to 315-355°)
in Upper Cretaceous to Lower Tertiary rocks exist through-
out the southeastern Sand Wash Basin (Tyler and Tremain,
1993). North of the Uinta Mountains in the Green River
Basin, E- and ENE-striking, pre-Laramide joints are docu-
mented along the western margin, in core from the center of
the basin, and on the Rock Springs uplift (Laubach, 1992;
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Laubach and Lorenz, 1992; Tyler et al., 1992a,b; Lorenz,
1995). Tertiary rocks also carry joints of this orientation.
Coal cleats in the Tertiary Price Formation in the south-
central Uinta Basin strike 295-320° and dip perpendicular
to bedding (Hucka, 1991).

At each location mentioned above (including Split
Mountain), the pre-Laramide systematic joint sets and/or
face cleat sets strike perpendicular or sub-perpendicular to
the arcuate trend of the Sevier Fold and Thrust belt (Fig. 10).
Since the strike of joints and cleats define the trajectory of
the maximum horizontal stress cratonward from the Sevier
belt, Laubach (1992) suggests that they propagated during
the period of Cretaceous Sevier and Early Tertiary foreland
compression. Similar regional joint patterns reach into the
forelands of the Ouachita and Appalachian Mountains
(Melton, 1929; Nickelsen and Hough, 1967; Engelder and
Geiser, 1980). The presence of WNW-striking joints in each
of the basins in the vicinity of Split Mountain further
strengthens our conviction that joints at Split Mountain
were transected by Laramide folding.

5.2. Constraints on stress during folding: minor faulting

The 22 samples that Gregson and Erslev (1997) collected
for fault inversion show a very complex pattern that indi-
cates a N—S to NNW-SSE compression. This is the orien-
tation of a regional compression that forced reactivation of
basement faults over which Split Mountain is draped. Such a
compression is inconsistent with the down-dip slip on joints
of Split Mountain. Apparently, the folding of sizable panels
of rock at Split Mountain generated a local stress that
favored neither pervasive frictional slip on existing joints
nor the formation of new joints. We conclude that basement
stress did not superimpose on the bending stress developed
in draped cover rock, a lesson gleaned from the analysis of
jointing at other Laramide folds as well (e.g. Engelder et al.,
1997; Fischer and Wilkerson, 2000; Maschmeyer and
Cooke, 2000). The literature documents many examples of
extension within folds when the remote stress favors
regional shortening (i.e. Srivastava and Engelder, 1990;
Lemiszki et al., 1994).

5.3. Constraints on stress orientation during folding: down-
dip slip on joints

The state of stress in the limb of a fold is constrained by
the presence of transected joints that show no evidence of
slip. Our goal is to constrain the stress in large panels of
folded rock by means of a slip criterion for faulted joints.
The simplest explanation for lack of slip on most transected
joints is that they were never subject to a shear stress despite
being tilted 30° or more. If bending was accompanied by
tangential—longitudinal strain, local stresses may have been
forced to rotate and thus remain orthogonal to bedding (e.g.
Price and Cosgrove, 1990; Lemiszki et al., 1994). In this
case, transected joints remained orthogonal to principal
stresses and were never subject to a resolved shear stress.

While the overwhelming majority of the transected joints
were locked without slipping during folding, Wilkins et al.
(2001) observe that WNW joints with a dip of 62° in the
Josie’s Ranch section slipped (Fig. 2). This means that some
transected joints were carried into a plane of higher resolved
shear stress by the tilting of beds during Laramide folding.
Down-dip slip on these transected joints indicates that the
local stresses did not rotate to remain orthogonal to bedding
during folding. Lack of an appreciable stress rotation is
attributed to the weight of overburden. Even if a tangential
longitudinal strain mechanism was active during folding at
Split Mountain, the weight of overburden would have super-
imposed a large vertical component of stress on the local
bending stress to restrict the rotational tilting of a local
vertical principal stress to a few degrees off vertical.
Because of this superposition, pre-folding joints tilted
more than a few degrees from vertical were undoubtedly
subject to a shear stress. The resolved shear stress was,
however, not large enough to overcome the locking
mechanism on most joints until these joints reached dips
of approximately 62°. Then down-slip slip took place.

Down-dip slip indicates that a cross section normal to the
fold axis (i.e. a—c plane; Hancock, 1985) of the Split
Mountain anticline contains the vertical principal stress, S,
(i.e. o), and the minimum horizontal principal stress, S,
with S, > S, as indicated by down-dip slip on faulted joints
(Wilkins et al., 2001). The intermediate principal stress
would have been the maximum horizontal stress, Sy,
parallel to the fold axis or normal to the local dip direction.
This is the stress state consistent with extensional tectonics
where gravity loading is responsible for the maximum prin-
cipal stress. In the vicinity of the River and Quarry sections
the a—c plane was normal to the E-N axes of both Split
Mountain anticline and Jensen syncline (Fig. 2). Near the
Josie’s Ranch section, the a—c plane (i.e. NNE-SSW) is
normal to the Jensen syncline as it changes trend to the
southeast (Fig. 2). As will be shown, this orientation
restricts us to the most conservative estimate for stress
difference, o 4.

5.4. Constraints on stress magnitude during folding: down-
dip slip on joints

Two rock properties serve to lock a joint subject to a shear
stress and prevent slippage: (1) fracture toughness of the
rock, and (2) the frictional strength of the joint. If a joint
is open and not in frictional contact, shear stress will cause
an elastic displacement parallel to the plane of the joint
(Pollard and Segall, 1987). Such displacements are very
small and fully recoverable once the shear traction is
removed. The joint remains locked unless cracks are driven
from the joint tips. Shear stresses above a certain level will
drive much larger and possibly irreversible slip accompany-
ing the opening of a crack at each tip of the joint. Such new
cracks will occur at an angle to the plane of the pre-existing
joint and follow a curved path to form wing cracks (Brace
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and Bombolakis, 1963) or kinks (Cruikshank et al., 1991). A
finite shear stress governed by the fracture toughness of the
rock is required to initiate the growth of wing cracks and
thereby unlock the joint for non-recoverable shear displace-
ment.

Joints may not be open and, in this case, frictional
strength of the joint surface may keep the joint locked to
prevent slippage. If joint walls are in frictional contact, the
resolved shear stress must exceed the joint’s frictional

strength before the tip of the joint can be loaded to induce
the propagation of wing cracks. Even if shear stress is high
enough to initiate frictional slip, the fracture toughness of
the rock could still act to prevent all but elastic slip. Conse-
quently, for any resolved shear stress, a joint must exceed
two strength criteria acting in series (i.e. frictional strength
before tensile strength) before the joint will slip. Hence, we
can estimate the range of principal stresses required to over-
come these locking mechanisms (i.e. friction and fracture
toughness), assuming a gravity load keeps the principal
stresses approximately vertical and horizontal during fold-
ing at Split Mountain. This calculation gives us a conserva-
tive estimate for the limit to the differential stress acting on
joints during bed tilting at Split Mountain. If the local
principal stresses partially rotate with the bedding by a
tangential longitudinal strain mechanism, then a larger
differential stress would have been required to unlock joints
and drive shear displacement.

5.4.1. Locking by fracture toughness

Parameters that allow us to calculate the onset of slip on
an open joint include the size of the joint and the fracture
toughness of the host rock (Lawn, 1993). Non-elastic slip on
an open joint will only occur when the stress intensity at the
joint tip, Kj;, exceeds the fracture toughness, K., of the rock.
Initially, we assume that the joint is just barely open (i.e.
without frictional strength) but not subject to significant
opening mode stress intensity (i.e. K;=0). Ky for a joint
normal to bed boundaries varies according to:

Ky = Y7 mc (H

where Y = 1 is the shape factor for a blade crack (i.e. a joint
in a sandstone confined between shale layers), 7,, is the
shear stress on the plane of the joint, and c is the half length
of the joint (i.e. half the thickness of the sandstone layer).
Slip will take place if wing cracks propagate from the
joint tips and into the bounding layers, usually shale,
when Ky > K. (Ingraffea, 1987). From Eq. (1), we see
that stress intensity increases with joint length (i.e. the verti-
cal dimension at Split Mountain) so that tall joints in thicker
beds are more likely to slip than short joints in thinner beds.
In fact, faulted joints at the Josie’s Ranch section commonly
have a length >10 m in beds as much as 14 m thick in the
Glen Canyon Group (Wilkins et al., 2001).

To calculate the state of stress in the limbs of the Split
Mountain anticline we incorporate the overburden load. The
local stratigraphic column suggests that tilting of the Chinle
Formation and Glen Canyon Group took place under about
2 km of overburden (Fig. 4). Assuming an average density
of 2.5 g/cc this gives a total vertical stress (S, =50 MPa
and compressive stress is positive). We will assume a hydro-
static water column for a pore pressure where P, =21 MPa
at 2 km, giving an effective vertical stress, S, = 29 MPa.

Assuming vertical and horizontal principal stresses (i.e.
the principal stresses do not tilt with bedding), both 7, and
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Kj increase as beds tilt and carry joints away from a vertical
orientation. The example given in Fig. 11a plots Kj; on a
joint in a 40-cm-thick bed (e.g. ¢ =20cm) subject to
several possible differential stresses found at 2 km under
hydrostatic pore pressure. Because joints did not propagate
during folding, we can reasonably assume that an effective
tension was not present during folding. Hence, at a depth of
2 km, the maximum differential stress was on the order of
29 MPa, at which point S’h would have been zero. The
magnitude of Ky depends on both the angle of the joints
relative to the plane of the principal stresses and the magni-
tude of the differential stress, S, — ;. Vertical joints are in a
plane of principal stresses and, therefore, not subject to
mode II loading. As beds are tilted by folding, transected
joints are subject to an increasing large resolved shear stress.
This is seen as an increase in stress intensity with a decreas-
ing dip of the joints (Fig. 11a).

Now, if we assume, for example, that K. =2 MPa m'?
and S, — S;, = 10 MPa, a 40-cm-thick bed must rotate about
15° (i.e. the joint dips 75°) before slip takes place by means
of wing crack development (Fig. 11a). If S, — S;, = 20 MPa,
the same bed must tilt only 8° (i.e. the joint dips 82°) before
slip takes place. When S, = 0 MPa (i.e. S, — S, = 29 MPa),
a bed (¢ =20 cm) must tilt only less than 6° before wing
cracks will develop on bed-normal joints assuming Kj. = 2
MPa m"2. According to Eq. (1), less tilting is required to
initiate slip on taller joints in thicker beds (Fig. 11b).

The effect of depth of burial is also of interest. Suppose
that we want to understand the amount of bed tilt required
for wing crack initiation when S, = 70% S,. At a depth of

2 km, beds must tilt 10° before slip accompanying wing
crack initiation is possible (Fig. 11c). Again we assume
that the joint does not have a frictional strength and that
K. =2 MPa m'"%. At a depth of 1 km, beds must tilt more
than 20°. This is largely because differential stress has
decreased with decreasing depth of burial, a common
phenomenon in the crust of the earth (Engelder, 1993).
However, we conclude that, in general, if joints at
Split Mountain were without a frictional contact, they
should have slipped by the time beds tilted to 15° if
o4 = 10 MPa (Fig. 11a). Yet, a significantly larger tilt (i.e.
28°) was required before joints were unlocked and slipped.

5.4.2. Locking by frictional strength

So far, our analysis assumes that joints are frictionless.
If, in fact, joints are in frictional contact, the shear stress
parallel to the joint surface must reach a certain magnitude
before static friction is overcome. Only then will the stress
intensity at the joint tip increase and induce the growth of
wing cracks. The larger the difference between S, (= o)
and Sy, (= 03), the greater the shear stress on the joint. Shear
stress can be normalized using the effective normal stress to
obtain a dimensionless parameter:

Txy

o, = ———— 2
oo, - P, @
that is independent of burial. If this dimensionless para-
meter, called frictional stress, exceeds the coefficient of
rock friction, then the joint will slip. This frictional stress

is also independent of joint size, in contrast to stress



168 L.J. Silliphant et al. / Journal of Structural Geology 24 (2002) 155-172

SH = .78 SV
Josie's
Ranch ’
Section
/x= 30°
Sh = .55 SV

Fig. 13. The orientation of the WNW regional joints relative to a local stress
developed during folding. 6 =dip of joints. A = misalignment between
strike of joints and local fold axes. While this figure may suggest that the
joints of Josie’s Ranch have a different orientation from those within the
Quarry section, it is actually the principal horizontal stresses that change
between these two sections.

Josie's Ranch Section
Misalignment ( 1.°) between

strike of joints & local fold axis .
Quarry Section

1

0.8

o
o

°
~

Frictional Stress

0.2

Dip of Joints (°)

Fig. 14. Frictional stress as a function of joint dip for various misalignments
between strike of joints and local fold axes.

intensity which is a function of joint size (Eq. (1)). We can
calculate a normalized shear stress (i.e. the frictional stress)
on joints as a function of joint dip (Fig. 12). The coefficient
of rock friction in the shallow crust is on the order of
0.85 (Byerlee, 1978). If the stress difference is low (i.e.
Sy, = 0.6S,), the frictional stress does not exceed the coef-
ficient of friction and joints will not slip regardless of the tilt
of bedding during folding. Even when frictionless joints
have a crack tip stress intensity large enough to drive
wing cracks after beds are tilted, there will be no such
propagation as long as the joints are locked by friction.
For a larger stress difference (i.e. Sy, = 0.55S,), frictional
stress will have caused frictional slip on joints in beds that
were tilted to more than 20°. If the stress difference is larger,
slip will occur on joints after less bedding tilt. Once joints
slip at a depth of 2 km, the joint-tip stress intensity is high
enough to cause wing crack growth on joints in beds as thin
as 10 cm (Fig. 11b).

The best examples of faulted joints at Split Mountain are
found in the Josie’s Ranch section, where beds 1-14 m
thick tilt so that the dip of joints is about 62° (Wilkins et
al., 2001). At this dip, the joints have just passed through the
orientation (i.e. 65°) for highest frictional stress when
Sy =0.55S, (Fig. 12). Joints of shallower dip are subject
to less frictional stress and, indeed, have not slipped.
Throughout Split Mountain only those joints in an optimum
orientation ( = 65°) for generating maximum fictional stress
have slipped. Because joints in a very restricted range of
dips actually slip and because the rock has a frictional
strength of w = 0.85 (i.e. Byerlee, 1978), we can estimate
the differential stress within the tilted beds at Split
Mountain. We conclude that at a depth of 2 km, the differen-
tial stress was 22.5 MPa at a hydrostatic pore pressure.

5.4.3. Locked joints with an optimum dip

At Josie’s Ranch where joints are faulted, the a—c section
is taken normal to the Jensen syncline (Fig. 2). Here, the
poles to joints dipping at (6 =) 62° are in the plane defined
by o (8,) and o5 (Sp,) (Fig. 13). However, not all joints tilted
to the optimum angle (i.e. =~ 65°) have slipped. There are
many such examples in the Quarry and River sections of Split
Mountain (Fig. 2). Locked joints with an optimum dip may
be explained if we assume that the principal stresses and the
a—c section are orthogonal to the fold axes in the vicinity of
the Quarry Section (i.e. = S}, is approximately N—S). In this
case there is a misalignment of (A =) 30° between the strike
of joint planes and the direction of the least horizontal prin-
cipal stress (Fig. 13). This misalignment has a significant
bearing on the frictional stress to which the joints are
subjected upon tilting. The normal and shear stresses on
dipping joints are given by Jaeger and Cook (1976) as:

o, = [0'3cos2/\ + a'zsinz)\]sinze + 0'1c0320 3)

T= %[01 - o-zsinzx\ - 0'30052)\]sin20 @)
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The normal stress on the plane of the joints is somewhat
larger and the shear stress is somewhat smaller on the joints
in the Quarry section where A = 30°. Maximum frictional
stress on the plane of joints in the Quarry section is approxi-
mately 75% of that achieved in the Josie’s Ranch section
where the intermediate principal stress was in the plane of
bedding (Fig. 14). Consequently, joints in the Quarry
section may pass through the orientation of optimum dip
without yielding (i.e. slipping).

In summary, most of the pre-fold joints at Split Mountain
are not optimally oriented for frictional slip and remained
locked during the folding process. Dip alone is not a
sufficient criterion for reaching the critical frictional stress
but rather the orientation of the joint within a 3-D stress state
must be considered. In general, it is the frictional strength of
joints, not fracture toughness of rocks, that keeps transected
joints locked during tilting by bending.

6. Conclusions

Brittle fracture within the Split Mountain anticline is
characterized by jointing in the indurated sandstone and
siltstone beds of the Frontier, Morrison, and Chinle Forma-
tions, the Glen Canyon Group, the Curtis Member of the
Stump Formation, and the Mowry Shale. The most common
joint set is a systematic WNW-striking joint set found
within the Glen Canyon Group and Chinle Formation on
both flanks of the Split Mountain anticline. Evidence
suggests that this set was formed prior to folding as part
of a later-transected, regional joint set. During formation
of the anticline, frictional strength prevented slippage on
most joints of this set as beds tilted and the joints were
subjected to a larger resolved shear stress. Once fold-related
tilting of bedding carried these joints to an optimum dip of
62°, some of the joints in the Glen Canyon were faulted with
a down-dip slip of the hanging wall. Down-dip slip on
faulted joints reflects an overall horizontal extension as
the folded Mesozoic section was bent over reactivated faults
in basement. Extension indicates that the stress state during
folding was S, > Sy > S;,. Down-dip slip on faulted joints
indicate that the lateral constraint (i.e. S,) was reduced
causing an increase in the differential stress. The orien-
tation, both dip and strike, of faulted joints places an impor-
tant constraint on the stress state in the limbs of the Split
Mountain anticline during folding. Hence, using a criterion
for frictional slip on faulted joints we conclude that
horizontal stress must have decreased to about 55% of the
overburden on the indurated sandstone and siltstone beds
under 2 km of overburden.
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