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Abstract

Linear elastic fracture mechanics predicts that joint orientation is controlled by the stress field in which the joints propagate. Thus joint sets

are effective proxies for stress trajectories during joint growth. Complexity in joint orientation indicates stress trajectory variability, a

phenomenon quantified using an eigenvalue method that measures dispersion of joint normal vectors (i.e. poles) around the mean vector.

Ratios between the eigenvalues of a joint orientation tensor give the clustering strength (z) and the shape factors (g) of the distribution.

A joint set that forms in a relatively isotropic rock subject to a rectilinear stress field should exhibit strong clustering and small random

orientation variation that can be described by the Fisher statistical model. However, most joint orientation distributions in bedded rocks have

non-random variation, greater in strike than in dip. This relative stability of the vertical stress orientation is strongest when joints are bounded

by bedding interfaces, reflecting the tendency for deflection in the local stress field arising from the growth of side cracks, joint segments and

adjacent joints in joint zones. Even when joint growth across bedding interfaces indicates negligible strength anisotropy, joint orientation

distributions reflect less joint–joint interaction during vertical growth than during horizontal growth. As strike variation grows due to the

presence of a non-rectilinear stress field, the orientation data better fit a Kent statistical model. Joint sets formed during fold development or

in rocks with irregular bedding boundaries are more weakly clustered with Fisher-like orientation distributions. Orientation distributions for

joint sets formed throughout a stress rotation have Kent-like shapes that indicate the magnitude of stress trajectory variation and clustering

strength that depends on the joint density at each increment of the stress rotation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Joints provide records of stress orientation at the time of

propagation (Pollard and Segall, 1987). Provided the stress

difference during joint propagation was sufficient to allow

two relatively closely spaced joints to pass each other

without deflection (i.e. Olson and Pollard, 1989), joint

orientation data indicate the extent to which the principal

stress trajectories remained parallel across a sample volume

(Engelder and Geiser, 1980). If a rectilinear stress field

governed propagation throughout the affected rock volume,

poles to individual joints cluster strongly about the mean
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pole of the joint set. Alternatively, joint poles cluster weakly

around the mean pole of the joint set if the principal stress

trajectories were non-parallel spatially and/or changed

orientation over time.

Joint patterns in the foreland portions of some mountain

belts have well-defined orientation modes suggesting that

portions of the upper crust are subject to rectilinear stress

fields (e.g. Melton, 1929; Babcock, 1973; Hancock et al.,

1984; Dunne and North, 1990) (Fig. 1A). Furthermore, the

contemporary tectonic stress fields in the upper crust of

eastern North America and northwestern Europe appear

rectilinear to a first approximation (Zoback, 1992).

However, joint patterns in orogenic forelands more often

have weak or multiple orientation modes suggesting that

rectilinear stress fields in the upper crust are the exception

rather than the rule (Fig. 1B and C). In these latter cases,

confusion arises when defining a joint set based on strike

alone, because weak orientation modes can arise from a

non-rectilinear stress field (e.g. Parker, 1942; Verbeek and
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Fig. 1. Diagrams of joint patterns at outcrops separated by covered

intervals. (A) A hypothetical regional joint set has the same orientation

from outcrops 1 to 2. (B) A hypothetical regional joint set changes in

orientation from outcrops 1 to 2 due to a radial stress field. (C) Two

hypothetical joint sets develop in the region due to temporal variation in the

stress field.
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Grout, 1983; Laubach and Lorenz, 1992; Arlegui and

Simon, 2001) (Fig. 1B) or through time during the regional

rotation of a rectilinear stress field (e.g. Engelder, 2004)

(Fig. 1C).

An analysis of a regional stress field using dikes around

Spanish Peaks shows that stress trajectories were not

parallel at the scale of the dike set (Odé, 1957). Rock

discontinuities like bedding, faults, joints and inclusions

like concretions also perturb regional stress fields (e.g.

Olson and Pollard, 1989; Rawnsley et al., 1992; McCo-

naughy and Engelder, 1999). In this context, the question

that we raise and address is whether stress fields in the upper

crust are ever rectilinear even at the scale of a sample

volume the size of an outcrop. If not, we must conclude that

as in the rock adjacent to the Spanish Peaks stocks (Odé,

1957), localized stress heterogeneities always add complex-

ity to the stress field, and hence fracture pattern. Taken at

face value, orientation data from the World Stress Map

suggest that stress trajectories at scales larger than the

outcrop are not strictly parallel even in places like the upper

crust of eastern North America (Zoback, 1992).

Our approach to answering the question about the scale

of rectilinear stress fields in the upper crust is to use the

dispersion of orientation for a joint set as a proxy for the

degree of variability of stress trajectories in a rock volume

as a function of some combination of space and time. All

joints in a set formed in a rectilinear stress field and hosted

by an isotropic material should be parallel, and, if measured

perfectly, their normal vectors (i.e. the projections of the

poles in the lower hemisphere) should plot at a single point

on a spherical projection. For any real joint set, however, the

poles to joints plot in a region on the sphere, with their point

concentration decreasing away from a mean vector (Fig. 2).
As long as joints propagate without being deflected by

the presence of neighbors, we presume that joint sets formed

in a rock displaying material isotropy and subject to a

rectilinear stress field will have the strongest clustering

about the mean orientation. In this case, joint set data would

be subject only to random variation in orientation arising

from the propagation of side cracks (e.g. Lacazette and

Engelder, 1992) causing the overlap of joint segments (e.g.

Hodgson, 1961) and the growth of joint zones (e.g.

Engelder, 1987). These factors plus measurement error

should yield a data set with dip dispersions equal to strike

dispersions. Poles to such joints sets would fit the Fisher

statistical model, where dispersion about the mean vector is

assumed to be circular, i.e. unvarying with direction (Fisher,

1953).

When three-dimensional fracture variation is quantified

in the literature, the Fisher model is most often applied

under the assumption that joint dispersion is primarily

governed by random variation (e.g. Priest, 1993; Song et al.,

2001; Kemeny and Post, 2003; Engelder and Delteil, 2004).

However, inspection of joint distributions on stereographic

projections reveals that joint dispersion is not always

random and that, specifically, strike dispersion generally

exceeds dip dispersion (Fig. 2; Table 1). When joint

dispersion is not random, the tightness, shape and

orientation of the vector concentration reflect stress field

complexity at the time of jointing and overlap of joint

segments, as well as the compass’s precision and the skill of

the operator. By comparing joint distributions from various

tectonic settings and noting the differences between strike

and dip dispersions, we can assess the extent to which

horizontal tectonic and vertical gravitational stresses remain

rectilinear during jointing.

We apply the eigenvalue ratio method of Woodcock

(1977) to quantify the distribution of joint poles in a set

(Fig. 3). To assess the effect of increasing stress complexity

on joint set dispersion, we analyze joint orientation data

from horizontal sedimentary rocks, horizontal sedimentary

rocks subject to a stress field rotation, folded rocks, and

folded rocks subject to stress field rotation (Table 1). To

demonstrate the effect of rock properties on joint set

dispersion, we compare joint orientation data from black

shale whose minor anisotropy arises from a pervasive

compaction under overburden stress with data from bedded

sediments whose major anisotropy arises from a change in

lithology. In the former case, vertical joint propagation

encounters little change in fracture strength whereas in the

latter case there is a large contrast in fracture strength from

bed to bed. From these results, we conclude that eigenvalue

ratios of joint normal vectors are convenient for assessing

stress complexity during fracturing, determining whether a

joint sample represents one (unimodal) or more (multi-

modal) sets, and deciding which probability density model

for the orientation data (e.g. Fisher, 1953 or Kent, 1982)

applies to the joint set.



Fig. 2. Equal-angle, lower-hemisphere stereographic projection of normal vectors to joints from selected sets in Table 1 showing a sample of the distribution

shapes taken on by joint data. Fisher (1953) distribution is valid for joint sets whose strike dispersions are not statistically different from their dip dispersions, as

is the case for the S data set. Commonly, joint set strike dispersion exceeds dip dispersion, resulting in an elliptical distribution better characterized by the Kent

(1982) model, for example the O joint set. For near-vertical joint sets such as O, the two halves of the dip dispersion plot 1808 apart in strike. Symbols: asterisk,

BW; star, UW; times, T1; circle, U; dot, O; triangle, T2; diamond, S; location abbreviations are the same as Table 1; Inc, inclination of the joint pole. On the

equal-angle plot, the shape of the distribution remains the same from the perimeter of the circle to the center, but its size per arc length on the projection

decreases towards the center. The datum circled on the southern perimeter of the projection is the one removed in the Split Mountain sensitivity test

documented in Table 1. Note that subset 1 of T2 contains more joints than subset 2.
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2. Quantifying dispersion about a mean joint pole

The orientation of a joint plane can be represented by a

unit vector parallel to its pole. This unit vector has three

orthogonal components, the direction cosines, which are

projected onto the north, east and down axes. The vector

sum magnitude, R, of n unit vectors (i.e. joint poles) with

direction cosines ui vi wi

� �
is:
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The mean pole of the joint set is a vector given by the

direction cosines (e.g. Fisher, 1953):

umean vmean wmean

� �
Z

Xn
iZ1

ui

R

Xn
iZ1

vi

R

Xn
iZ1

wi

R

2
4

3
5: (2)

Watson (1966) determined that the moment of inertia

was an analog to the clustering of unit vectors. The moment

of inertia of a set of masses depends on the size of the

masses (m) and their distances from the rotational axis (r):
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By representing each unit vector intersection with the

sphere as a unit mass, the problem reduces to each datum’s

distance from three perpendicular rotational axes, which the

direction cosines of the unit vectors determine. In this way,

Watson (1966) constructed the normalized orientation

tensor (T) to quantify the clustering of directional data:
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The eigenvectors of T (Table 1) define a coordinate

system where x1 is the axis in the direction that minimizes

the moment of inertia and x3 is in the direction that

maximizes the moment of inertia and x2 is perpendicular to

x1–x3 plane (Watson, 1966). The x1 axis is in the direction of

the mean vector or mean pole to the joint set. The

eigenvalues (l1, l2, l3) of T represent relative



Table 1

Joint data sources and summary of clustering analysis

Location N Rock Env log (l1/l2) log (l2/l3) g z x1 x2 x3 Formation Age

Dec Inc Dec Inc Dec Inc

Bizanos Wall (BW)

(Engelder and Delteil, 2004)

50 U H 9.41 1.82 5.17 11.2 341 04 133 85 251 02

Taughannock Falls, NY 070

strike (T1)

47 U H 5.66 0.790 7.16 6.45 160 02 251 25 067 65 Geneseo D

Corning, NY (CO) 42 U H 5.69 0.657 8.67 6.35 059 01 328 10 154 80 Rhinestreet D

Watkins Glen, NY (W) 59 B H 5.27 1.00 5.26 6.28 246 03 156 00 061 87 Ithaca D

Rock Camp, WV (R) 22 B HR 3.91 2.23 1.75 6.15 138 02 229 06 33 84 Bluefield M

Taughannock Falls, NY 345

strike (T2)

40 U HR 4.76 1.14 4.16 5.90 256 02 346 17 158 73 Geneseo D

Lilstock, U.K. (L) (Engelder

and Peacock, 2001)

47 B F 5.23 0.604 8.65 5.83 212 5 113 58 305 31 Lias J

Union, WV (UW) 29 U FR 5.42 0.402 13.5 5.82 178 01 268 11 85 79 Bluefield M

Chocin, Czech Republic (C)

(Engelder and Delteil, 2004)

101 B H 3.85 1.96 1.97 5.81 346 01 256 01 124 88 Jizera K

Elk Basin, WY (E)

(Engelder et al., 1997)

37 B F 5.40 0.370 14.6 5.77 276 08 013 41 177 48 Eagle K

Fort Smith, AR (F) 37 B H 4.99 0.772 6.47 5.76 071 02 161 18 335 72 Atoka P

Octavia, OK (O) 180 B F 4.74 0.827 5.73 5.57 286 01 016 04 177 86 Jackfork P

Huntingdon, PA (H)

(Ruf et al., 1998)

78 B FR 4.52 0.833 5.43 5.35 143 10 051 07 287 78 Brallier D

Usti, Czech Republic (U)

(Engelder and Delteil, 2004)

56 U HR 3.88 1.26 3.08 5.14 134 02 043 05 247 85 Jizera K

Split Mountain, UT (S)

(Silliphant et al., 2002)

69 B F 4.76 0.229 20.8 4.99 201 18 312 49 097 36 Chinle T

Split Mountain, UT less one

joint (Silliphant et al., 2002)

68 B F 4.96 0.0471 105 5.00 201 18 294 11 054 69 Chinle T

Locations and external data sources are noted. Location abbreviations used in the text are given in parentheses. Abbreviations: N, sample size; Rock Behavior (Rock): B, bed-bounded joints; U, unbounded joints.

Geological Environment (Env): H, horizontal strata; F, folded strata; R, stress rotation observed in outcrop by presence of fringe cracks, sheared joints, or by joints that curve along strike; l1, l2, l3 are eigenvalues

of T; g, shape factor; z, strength factor; x1, x2, x3 are eigenvectors; dec, declination (lower hemisphere); inc, inclination (positive down). When x2 plunges shallowly, the primary dispersion is in the strike

direction. The orientation distribution takes on an increasingly circular form as x2 increases in plunge from 0 to 458, and again becomes more elliptical as it increases in plunge from 45 to 908. When x2 plunges

steeply, the primary dispersion is in the dip direction. Ages: D, Devonian; M, Mississippian; P, Pennsylvanian; T, Triassic; J, Jurassic; K, Cretaceous.
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concentrations or clustering in the respective directions x1,

x2 and x3.

Applying this approach to determining the clustering

around the mean pole of a joint set requires one

modification. For near-vertical features like joints, the

normal vectors for two features with a small intersection

angle but opposite dip directions project to opposite axes,

resulting in a non-representative vector sum near zero. To

circumvent this problem, the orientation data should be

rotated arbitrarily so that they are all in the same dip

quadrant. After quantifying the clustering, the mean vector

and cluster description should be rotated to the original

coordinates to establish true clustering characteristics.

The ratios between l1, l2 and l3 indicate the shape and

concentration of the normal vector distribution, and are

displayed concisely in a Woodcock (1977) eigenvalue ratio

plot (Fig. 3). For example, if l1 is large compared with l2
and l3 and the value of R approaches n, the sample has a

single mode (Watson, 1966). Thus, as l1/l2 increases, the

sample tends to a single mode, whereas when l2/l3
increases, the cloud of normal vectors stretches from a

circle to an ellipse to a girdle (Woodcock, 1977). The term g

quantifies the shape of the distribution much like a Flinn

(1962) diagram, and is equivalent to the slope of the line

connecting the origin of the plot to a data point. The

tightness of the individual data in the distribution about the

mean vector or girdle is quantified by the strength (z) factor

(Woodcock, 1977):

zZ log
l1

l3

� �
: (5)

For a given shape factor, joint orientation distributions

with large z have a smaller magnitude of strike and dip

variation than those with small z.
Fig. 3. Woodcock (1977) logarithmic eigenvalue ratio plot of 15 data sets

summarized in Table 1. Inset of plot shows location labeling (see Table 1).

NZsample size. Symbols: triangle, Bizanos Wall (BW); asterisk,

horizontal rock; dot, horizontal rock with rotated stress field; plus, folded

rock; diamond, folded rock with rotated stress field; g, shape factor; z,

strength factor.
3. Joint sets

New and published joint orientation data from sedimen-

tary rocks in varied geological settings in the United States

and Europe were analyzed by the eigenvalue method

(Table 1). The outcrops are identified according to whether

vertical joint growth was bed-bounded, whether the beds

were folded, and whether outcrop evidence suggests stress

rotation during joint set formation. These joint sets are

found in a variety of tectonic positions including regional

cross-fold sets (CO, W, T2, F, O), fold-parallel sets (L, E,

H), sets transected by fold axes (UW, R, S, T1), and

indeterminate sets (C, U). The T1, T2, CO, U, and UW

joints are not confined to individual beds, but at bedding

interfaces the CO and UW joints often change dip. The T1

set predates the T2 set at that sample site (Engelder et al.,

2001).

To summarize the 14 joint data sets described here, z

ranges from 5 to 6.5 and g ranges from 1.75 to more than 20
(Table 1). For most of the joint samples, x1 is equivalent to

the mean vector of joint normals, x2 plunges shallowly and

x3 plunges steeply. No joint set data yield an infinite strength

(z), which arises when a precisely measured joint set

propagates in an isotropic rock subject to a rectilinear stress

field (Fig. 3). Further, cluster strength in the natural joint

sets has been observed to be sensitive to n, in that, as the

sample size increases, the given shape becomes better

defined (Fig. 4). This indicates that small joint data samples

may not randomly sample the underlying joint population to

characterize its basic attributes. For orientation data, a

minimum sample size of 30 has been cited as necessary to

produce statistically significant results (Fisher et al., 1987).
4. Statistical criteria for joint set dispersion

For more rigorous statistical modeling of joint set

orientations in three dimensions, the probability density

distributions developed for orientation data from unimodal

populations can be applied (Fisher, 1953; Kent, 1982).

While the Fisher (1953) model, with two parameters, is

computationally simpler than the five-parameter Kent

(1982) model, it requires rotational symmetry about the

mean. Geological and engineering studies have often

modeled joint sets using the Fisher distribution (e.g. Priest,

1993; Song et al., 2001; Kemeny and Post, 2003; Engelder

and Delteil, 2004); however, any joint set with statistically

greater variation in either the strike or dip direction does not



Fig. 4. Box plot of strength factors for 100 random samples of increasing size from the total samples for locations CO, L, S, H, and O (Table 1), selected to

represent a variety of distribution strengths and sample sizes. The circle on the right edge of the plot represents the whole sample distribution strength.
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meet this criterion (Fig. 2). The Kent (1982) model, with an

end member case being the Fisher distribution, can

accommodate elliptical dispersion of joint orientations

about the mean (Peel et al., 2001).
The shape factor is an effective tool for screening which

parametric distribution is appropriate for each joint set. As

rotational symmetry implies that l1Ol2Zl3, a pure Fisher

(1953) distribution plots on the y-axis of the eigenvalue ratio
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diagram. A Fisher distribution indicates the presence of a

rectilinear stress field on the scale of a sample volume that is

usually an outcrop. Based on the goodness of fit test statistic

(Fisher et al., 1987; Kent, personal communication), the null

hypothesis that the data fit the Fisher distribution cannot be

rejected for joint sets with shape factors above 8 for sample

sizes of 30 or more (e.g. CO, L, UW, E and S in Fig. 3). For

g!8, there is statistical significance to the elongation of the

distribution in the direction of x2. As n increases, it becomes

increasingly difficult to fit the Fisherian constraint at larger

values of g. This n required to disprove rotational symmetry

is directly proportional to g because, for example,

dispersion with an aspect ratio of 1.1 can be proven non-

circular with fewer data than can dispersion with an aspect

ratio of 1.01. For small z, l2, l3, x2, and x3 are especially

sensitive to outliers (e.g. S, Table 1). For the values of g

between 3 and 8, the Kent model applies to most joint sets

with sample sizes from 30 to more than 100 (e.g. T1, W, F,

O, H, BW). The elliptical dispersion within joint sets in this

range indicates the absence of a rectilinear stress field on the

scale of the outcrop. In the interval of shape between 3 and

4.5, some joint distributions technically fit a unimodal

statistical model, but appear as two distinct sets separated by

a small angle in the outcrop (e.g. T2) that should be

separated before statistical analysis. For values of g below

3, the sets diverge from a unimodal distribution (e.g. C, U,

R). Either two joint sets with different mean vectors begin to

emerge, indicating a distinct change in the stress field

between jointing events (e.g. Younes and Engelder, 1999),

or the joint set clusters around a small circle, which suggests

that fracturing occurred continuously during a stress field

rotation or that the stress field curved across the sampling

domain.

The selection of the incorrect probability distribution

model for the data can introduce significant error into a

simulation of fracture orientation (Fig. 5). For example,

applying the Fisher (1953) model to five joint sets that have

elliptical dispersion underestimates the vector dispersion in

the x2 (declination) direction and overestimates the

dispersion in the x3 (inclination) direction as determined

with the Kent (1982) model. The errors are symmetrical

across the x1–x2 and x1–x3 planes, so the percent error is

doubled over the whole distribution.
5. Discussion

While the orientation distribution for a rectilinear joint

set should plot at infinity on the y-axis of a Woodcock plot,

no data collected under field conditions ever would. This

point is highlighted by the data from BW, a single plane

measured 50 times with a Freiberger geological compass

(Fig. 3; Table 1). Although the plane remains the same, the

compass and operator do not enable identical measure-

ments, so the data have finite strength. If the compass-

induced error was equal in declination and inclination, the
BW data would plot on the y-axis of the diagram. However,

the precision of the compass is greater in declination than in

inclination, giving the BW distribution a finite shape. So,

depending on the instrument and operator, data collected

from a joint set formed in an isotropic rock under a

rectilinear stress field may have at least a slightly elliptical

distribution.

The Geneseo Formation, Devonian black shale of the

Appalachian Plateau, New York, has negligible mechanical

anisotropy relative to joint growth as indicated by the

vertical propagation of joints through slight compaction

anisotropy (Engelder et al., 2001; Lash et al., 2004). T1

joints in the Geneseo Formation propagated in pre- or early

Alleghanian time with a standard deviation of 2.48 for

outcrop average strike at 14 locations in a 1400 km2 area

(Lash et al., 2004). This is equivalent to a circular variance

of 0.00474 on a scale of 0–1. Such widespread consistency

in joint attitude suggests the presence of a rectilinear stress

field across the region during the propagation of the T1 set.

Indeed, at Taughannock Falls, the T1 set has the largest

cluster strength (zZ6.45) of any outcrop-scale joint sets

measured (Table 1). This suggests that stress trajectories

during T1 fracturing approached maximum parallelism

possible for outcrop-scale volume of rock because the rock

is so transparent to direction of joint growth. Yet, despite the

tight cluster, and little evidence for deformation-associated

dispersion of the T1 joints regionally or locally, their

dispersion at the scale of the Taughannock Falls outcrop is

greater in strike than in dip (Table 1), indicating that T1

propagation was not entirely controlled by random

processes of joint growth in a rectilinear stress field. In

particular, subtle stress heterogeneity is reflected in

horizontal trajectories that are less consistent than vertical

trajectories.

The subtle stress heterogeneity in the direction does not

automatically signal a non-rectilinear remote stress field.

One source of heterogeneity arises from the propagation of

side cracks (e.g. Lacazette and Engelder, 1992) causing the

overlap of joint segments (e.g. Hodgson, 1961) and the

growth of joint zones (e.g. Engelder, 1987). The T1 outcrop

extends for several hundred meters where the trace of

‘individual’ joint traces revealed overlapping crack seg-

ments. These fluid-driven joints (e.g. Lacazette and

Engelder, 1992) are more likely to propagate toward each

other in the horizontal direction, leading to a greater

possibility of joint deflection à la Olson and Pollard (1989)

in the horizontal direction. T1 sits so close to a Kent

distribution (gZ7.16) that there is every reason to nominate

these data for an outcrop propagating in a regional

rectilinear stress field.

At other outcrops in the Appalachian Basin (CO, W)

where sediments are interbedded siltstones and shale, cross-

fold joint clustering is strong (zO6), characteristic of

formation in a rectilinear stress field. Where the joints cross

bedding surfaces in the Rhinestreet Formation (CO), they

maintain a distribution nearly identical to that for jointing in
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the more homogeneous black shale of the Geneseo

Formation (T1). Where joints are bed-bounded in the Ithaca

Formation (W), however, g is smaller than for either T1 or

CO (Table 1). The effect of the mechanical bed boundaries

is to limit vertical growth and thereby prevent joint–joint

interaction that might mask a 2D rectilinear stress field on

vertical planes. In contrast, horizontal growth allows for

joint–joint interaction in that direction, thus accenting the

non-rectilinear nature of the horizontal stress field and this is

reflected in greater dispersion in joint strikes than in joint

dips (Table 1). We note that W and T2 are cross-fold joint

sets subject to stress rotation with time (i.e. Younes and

Engelder, 1999).

Orientation distributions for joint sets formed throughout

a stress rotation have shape values that indicate the amount

of rotation, and strength values that depend on how uniform

the joint density is over the distribution. In rocks that were

subject to a varying stress field orientation during fracturing,

the largest joint set z is found at Rock Camp (R) where a

temporal stress field rotation is indicated by the overprinting

of joints with slickenlines and clockwise fringe cracks. The

density of joint orientations in the R set remains constant

throughout the distribution, resulting in a large z. Here small

g indicates an arcuate distribution of joint strikes due to

temporal variation in a rectilinear stress field during

fracturing rather than pervasive instantaneous fracturing

throughout a non-rectilinear stress field (e.g. Spraggins and

Dunne, 2002). At Union (U), an outcrop proximal to R, the

joint orientation distribution has a large g (Fig. 2), which

indicates that jointing occurred at a single instance in the

stress rotation recorded at R. A discrete stress rotation of

small magnitude (larger g) during Alleghanian shortening is

observable in T2 cross-fold joints (Fig. 2). The relative

complexity of the horizontal stress trajectories between the
Fig. 5. Error introduced into the probability density distribution by incorrectly appl

T1, W, F, O, and H (Table 1). The joint distributions selected for the analysis have

model, and therefore have the highest likelihood of being mistakenly forced into
foreland Arkoma Basin and the Ouachita fold and thrust belt

is captured in the g values for Fort Smith (F) and Octavia

(O) joint sets, which demonstrate that the former experi-

enced a smaller stress rotation during jointing (Table 1). In

the T2 joints, one joint subset is more frequent than the other

and there is a break in the orientation distribution between

the sets (Fig. 2), so the strength of that distribution is smaller

than the strength at R (Table 1). At Usti (U) (Fig. 2) and at

Chocin (C), one joint subset is poorly represented (Fig. 2),

causing z at these locations to be considerably smaller than

for R and T2 joints (Table 1).

As a group, folded joint sets and joint sets formed during

fold development have larger values of g than joints found

in any other structural setting, with most fitting the Fisherian

statistical constraint. The orientation distributions of two

joint sets that formed concurrently with folding (L, E) have

zwith values near 5.8, while another fold-related set (H) has

a smaller value (Table 1; Fig. 3). The variation in joint dip

that occurs within these sets is an indication of the layer’s

temporal rotation with respect to the vertical principal stress

during the fracturing interval. H does not have the circular

normal vector dispersion of the other fold-related sets but

shows fringe crack development, indicating horizontal

stress rotation in addition to a relative vertical stress

rotation. The joints at Split Mountain (S) formed in the

fluvial Chinle Formation, and comprised a circular

orientation distribution that most likely is influenced by

random processes. The joints with shallow dips that increase

the dip dispersion in the S sample were mechanically

influenced during fracturing by the position of non-

horizontal channel boundaries.

In summary, the eigenvalue ratios for joint sets, and

therefore the cluster strength (z) and shape (g), can be used

to infer whether the remote stress field in the upper crust was
ying the Fisher (1953) model instead of the Kent (1982) model, the joint sets

the five largest shape factors for distributions that do not fit the Fisher (1953)

the Fisher (1953) orientation distribution.
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rectilinear during joint propagation. Joint sets with the

largest distribution strengths and relatively large shape

factors indicate the presence of a rectilinear stress field at

least on the scale of outcrops. A small g for a joint

orientation distribution within an outcrop generally indi-

cates the rotation of the horizontal stress during fracturing.

Joint sets that develop in non-rectilinear stress fields present

during folding have the greatest distribution shape factors,

but smaller strength factors than joint sets formed in

horizontal rocks. Irregular bed boundaries can contribute to

joint dip dispersion, also leading to a large g, small z

distribution.

Joint orientation distributions in horizontal beds,

especially where bedding did not arrest vertical growth,

indicate that the vertical dimension of the fracture is more

consistently oriented than the strike dimension. This result

is interpreted to mean that the local stress due to growth of

side cracks, joint segment overlap and joint zones causes

scatter in joint orientation in horizontal planes. Bed rotation

during folding or irregular mechanical boundaries causes a

deviation from the rectilinear stress field common to

outcrops in undeformed forelands.
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