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Abstract. Current climate model projections are uncertain. This uncer-15

tainty is partly driven by the uncertainty in key model parameters such as16

climate sensitivity (CS), vertical ocean diffusivity (Kv), and strength of an-17

thropogenic sulfate aerosol forcing. These parameters are commonly estimated18

using ensembles of model runs constrained by observations. Here we obtain19

a probability density function (pdf) of these parameters using the Univer-20

sity of Victoria Earth System Climate Model (UVic ESCM) - an interme-21

diate complexity model with a dynamic three-dimensional ocean.22

Specifically, we run an ensemble of UVic ESCM runs varying parameters23

that affect CS, ocean vertical diffusion, and the effects of anthropogenic sul-24

fate aerosols. We use a statistical emulator that interpolates the UVic ESCM25

output to parameter settings where the model was not evaluated. We adopt26

a Bayesian approach to constrain the model output with instrumental sur-27

face temperature and ocean heat observations. Our approach accounts for28

the uncertainties in the properties of model-data residuals. We use a Markov29

chain Monte Carlo method to obtain a posterior pdf of these parameters.30

The mode of the climate sensitivity estimate is 2.8 ◦C, with the correspond-31

ing 95% credible interval ranging from 1.8 to 4.9 ◦C. These results are gen-32

erally consistent with previous studies. The CS pdf is sensitive to the assump-33

tions about the priors, to the effects of anthropogenic sulfate aerosols, and34

to the background vertical ocean diffusivity. Our method can be used with35

more complex climate models.36
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1. Introduction

Climate hindcasts and projections are strongly affected by two key climate model pa-37

rameters: climate sensitivity (CS) and vertical ocean diffusivity. Meridional overturning38

circulation, global temperature, and ocean heat accumulation that produces thermosteric39

sea level rise are good examples of climate variables that depend on these parameters40

[Goes et al., 2010; Knutti et al., 2002]. Better characterization of the uncertainty in these41

parameters is thus critical for future climate prediction.42

Climate sensitivity is defined as the equilibrium near-surface temperature response to43

a doubling of atmospheric CO2. CS is a measure of climate feedbacks that amplify or44

dampen the direct response of near-surface temperature to radiative forcings [Andronova45

et al., 2007]. Vertical ocean diffusivity is a parameter that influences heat uptake by the46

ocean. It parametrizes mixing processes below the grid scale of climate models. For the47

same climate sensitivity, at higher diffusivities the atmosphere will reach the equilibrium48

temperature specified by CS more slowly, due to more heat flux into the deep ocean [NAS ,49

1979].50

In order to estimate these parameters from climate models and observations, one needs51

to know past climate forcings. Both parameter estimation studies and simple theoretical52

considerations show that assumptions about these forcings influence climate sensitivity53

estimates and the uncertainty surrounding them [Andreae et al., 2005; Tanaka et al.,54

2009; Urban and Keller , 2010]. For example, Andreae et al. [2005] use a zero-dimensional55

climate model to illustrate that when they assume no aerosol effects, a climate sensitivity56

of just 1.3 ◦C is needed to explain the observed 1940-2000 warming. On the other hand,57
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aerosol forcing of -1.7 Wm−2 (a value that is within the IPCC range [Forster et al., 2007])58

requires a climate sensitivity of more than 10 ◦C [Andreae et al., 2005]. Out of the main59

climate forcings, the forcings due to aerosols are especially uncertain. A large part of this60

uncertainty is due to anthropogenic sulfate aerosols [Forster et al., 2007].61

Parameters controlling climate sensitivity, vertical diffusion in the ocean, and strength of62

anthropogenic sulfate aerosols are commonly estimated using model runs and observations63

[Knutti et al., 2002, 2003; Forest et al., 2002, 2006; Drignei et al., 2008; Tomassini et al.,64

2007; Edwards et al., 2007; Sanso and Forest , 2009]. Typically, an ensemble of model65

runs is used where the key parameters are systematically varied. The outputs from these66

runs are then compared with the observations, and the posterior probability distribution67

functions (pdfs) for model parameters are derived.68

One conceptually simple methodology selects only the model runs that are consistent69

with the observations using a broad, heuristic approach [Knutti et al., 2003]. In this70

framework all parameter combinations that pass the consistency criterion are assigned71

a uniform probability, while those that do not pass it receive a zero probability. These72

probabilities are then used to construct the posterior pdfs.73

A more complex approach uses Bayesian statistics. This approach requires: (i) a model74

ensemble, (ii) observations, (iii) a statistical model that relates climate model output to75

the observations, and (iv) prior information about the model parameters (priors). In this76

framework, each parameter combination is associated with a likelihood that depends on77

how well the corresponding model output matches the observations [Tomassini et al.,78

2007; Sanso and Forest , 2009]. The likelihood, L(Y |Θ), describes the degree of belief that79

the physical observations Y came from a climate model and a statistical model (describing80
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the properties of data-model residuals) with unknown parameters Θ. Once the statistical81

model is defined, the likelihood L(Y |Θ) can be calculated from the residuals between the82

model output and the observations. In the Bayesian framework, the posterior probability83

of the unknown parameters given the observations is proportional to L(Y |Θ), and to the84

prior probability of the parameters:85

p(Θ|Y ) ∝ L(Y |Θ)× p(Θ). (1)

While the posterior probability p(Θ|Y ) can be evaluated on a grid of parameter values,86

this can become too computationally expensive if the parameter space is multidimen-87

sional. In such cases Markov Chain Monte Carlo (MCMC) methods [Metropolis et al.,88

1953; Hastings , 1970] can be used. The MCMC generates a sequence of parameter values89

(a Markov chain) which may be treated approximately as samples from the posterior dis-90

tribution. Hence, virtually any property of the posterior distribution can be approximated91

by a corresponding sample property of this sequence.92

Intermediate Complexity Earth System models are frequently used for this analysis93

[Forest et al., 2002, 2006; Knutti et al., 2003; Tomassini et al., 2007; Sanso and Forest ,94

2009]. The appeal of these models is that they can be run at many parameter settings95

with relative ease. At the same time these models still represent many relevant physical96

processes. While the models can be run hundreds of times, many more runs at arbitrary97

parameter values are needed for the MCMC sampling. To approximate model output at98

these values, emulators (statistical approximators of climate models) can be used [e.g.,99

Drignei et al. [2008]; Holden et al. [2010]; Edwards et al. [2010]]. The emulators draw on100

D R A F T December 15, 2011, 3:34pm D R A F T



X - 6 OLSON ET AL.: CLIMATE SENSITIVITY ESTIMATE

information about model outputs at known parameter settings to interpolate the output101

to any desired parameter setting.102

In this study, we use the University of Victoria Earth System Climate Model (UVic103

ESCM) to estimate these important climate parameters. We constrain the ensemble of104

model runs with atmospheric surface temperature and ocean heat content observations105

to present probability distribution functions for key model parameters controlling the106

processes described above: climate sensitivity CS, background vertical ocean diffusivity107

Kbg, and a scaling parameter for the direct effects of anthropogenic sulfate aerosols Asc.108

The use of the full 3D ocean allows for the representation of the non-linear effects of Kbg109

on ocean dynamics and currents (e.g., on the Meridional Overturning Circulation). We110

present posterior joint and marginal pdfs for the parameters, and explore the sensitivity111

of the results to prior assumptions.112

2. Earth System Model, its Emulator, and Observational Constraints

2.1. Model Description

We use the University of Victoria Earth System Climate Model (UVic ESCM) [Weaver113

et al., 2001] for our analysis. The atmospheric component is a one-layer energy-moisture114

balance model, with winds prescribed using the NCAR/NCEP climatology. The oceanic115

component is a three-dimensional model MOM2 [Pacanowski , 1995]. Both the atmo-116

spheric and the oceanic components have horizontal resolution of 1.8◦ (lat) × 3.6◦ (lon).117

The ocean has 19 depth levels. The model also includes terrestrial vegetation and carbon118

cycle [Cox , 2001], oceanic biogeochemistry based on Schmittner et al. [2005], and ther-119

modynamic sea ice. We use the modified 2.8 version of the model. Specifically, we use a120
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newer solar forcing, and include new transient forcings. The new forcings are described121

in Section 2.3.122

2.2. Model parameters

2.2.1. Climate Sensitivity (CS)123

Climate sensitivity is defined as the equilibrium response of global average near-surface124

temperature to a doubling of atmospheric CO2. Climate sensitivity is a diagnosed param-125

eter in the UVic ESCM. We vary CS through an additional parameter f ∗ that perturbs126

local outgoing longwave radiation:127

Q∗
PLW = QPLW + f ∗(Tt − T0). (2)

Here To is temperature at equilibrium (i.e. at the start of the transient run), Tt is a128

temperature at time t, QPLW is the planetary outgoing longwave radiation as calculated129

in the standard 2.8 version of the model and Q∗
PLW represents the modified outgoing130

longwave radiation. This approach is similar toMatthews and Caldeira [2007] and Zickfeld131

et al. [2009], but here the temperature terms are functions of latitude and longitude.132

While f ∗ is the input parameter to the model, we want to know the CS values for each133

ensemble model run (Section 2.3). We determine the relationship between f ∗ and CS134

using a small number of CO2 doubling experiments with varying f ∗ values at Kbg = 0.1135

cm2 s−1. The runs continue for 2250 years to capture the equilibrium response of the136

model to CO2. The CS is diagnosed as the average global temperature during the last 50137

years of the runs minus the 50 year average prior to doubling. This mapping neglects a138
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potential dependency of CS on Kbg at the same value of f ∗. We adopt a prior range for139

CS from 1.1 to 11.2 (Table 1).140

2.2.2. Background Vertical Ocean Diffusivity (Kbg)141

The rate at which surface temperatures adjust to radiative forcings is controlled by142

the rate at which heat is absorbed by the ocean. The vertical mixing of heat in the143

ocean is parameterized in UVic ESCM by a vertical diffusivity parameter Kv, which has144

contributions from tidal and background diffusivities [Schmittner et al., 2009]:145

Kv = Ktidal +Kbg. (3)

Ktidal uses the parameterization of St. Laurent et al. [2002] following the methodology146

of Simmons et al. [2004]. The background diffusivity Kbg is assumed to be globally147

uniform. We vary Kbg to obtain different vertical ocean diffusivities (Kv), while keeping148

standard parameters for Ktidal. In our model, Kbg largely determines the total diffusivity149

in most areas of the pelagic pycnocline since the tidal component is small in those areas150

[St. Laurent et al., 2002; Schmittner et al., 2009]. As in Schmittner et al. [2009] and Goes151

et al. [2010], the model is modified to limit Kv to ≥ 1 cm2 s−1 in the Southern Ocean152

below 500 m for better agreement with observations. Following Goes et al. [2010], we153

adopt the prior range for Kbg from 0.1 to 0.5 cm2 s−1 (Table 1).154

2.2.3. Anthropogenic Aerosol Scaling Factor (Asc)155
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Direct anthropogenic sulfate effects are modeled through spatially-resolved sulfate albe-

dos ∆as following Matthews et al. [2004] and Charlson et al. [1991] according to:

∆as = Ascl
βτ(1− αs)

2

cos(Zeff )
. (4)

Here β = 0.29 is the upward scattering parameter, τ is the aerosol optical depth field, αs is156

surface albedo, and Zeff is the effective solar zenith angle. The strength of anthropogenic157

sulfate aerosol effects is modulated via the scaling parameter (Asc). This parameterization158

does not account for the indirect effects of the sulfates on clouds. However, the indirect159

effects were found to be roughly proportional to the direct effects on major components160

of the Earth’s radiation budget and climate on the global scale under idealized climate in161

a study by Bauer et al. [2008]. We use the prior range for Asc from 0 to 3 (Table 1).162

2.3. Hindcast Model Runs

We run an ensemble of UVic ESCM model runs where we systematically vary the three163

parameters over their prior ranges. Specifically, Kbg is varied on a uniform grid with values164

of (0.1, 0.2, 0.3, 0.4, 0.5) cm2 s−1. We sample CS at (1.14, 1.64, 2.15, 2.62, 3.11, 3.98,165

5.36, 6.51, 8.20, 11.2) ◦C. The samples for Asc are (0, 0.75, 1.5, 2.25, 3). These values166

form a quasi-cubic grid (Figure 4).167

We spin the model up from observed data fields for 3,500 years with forcings set at year168

1800 values. The transient runs continue from year 1800 to the present using historic169

radiative forcings. Volcanic aerosols, anthropogenic sulfate aerosols, changes in solar170

constant, and additional greenhouse gases such as CH4, N2O and CFCs, are implemented171

following Goes et al. [2010]. Specifically, the volcanic radiative forcing anomalies are from172

Crowley [2000a, b] for the period from 1800-1850, and from GISS [2007] and Sato et al.173
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[1993] for years 1850 to 2000. We update the solar forcing using the data of Krivova et al.174

[2007]. The atmospheric CO2 concentration forcing is from Etheridge et al. [1998] and175

Keeling et al. [2004], complemented by the RCP8.5 scenario data after year 2002 [Moss176

et al., 2010; Riahi et al., 2007].177

2.4. Observational Constraints

We use two observational constraints. The first is global average atmospheric surface178

/ ocean surface temperatures (T ) from the HadCRUT3 dataset of the Hadley Center179

[Brohan et al., 2006]. These observations are defined as anomalies with respect to the180

1850-1899 period average. The observations cover the time period from 1850 to 2006181

(Figure 2). The second constraint is global total ocean heat content (OHC) in the 0-700182

m layer [Domingues et al., 2008]. These observations span the period from 1950 to 2003,183

and are calculated as anomalies with respect to the whole observation period (Figure 2).184

Modeled temperature and ocean heat content are converted to anomalies to be consistent185

with the observational constraints.186

2.5. Gaussian Process Emulator

The MCMC sampling requires a large number of model runs (> 10000) at arbitrary187

parameter values. Since it is computationally infeasible to run UVic ESCM at that many188

parameter settings, we use a statistical emulator that can approximate the model outputs189

at any parameter value. We adopt Gaussian Process (GP ) emulation. This technique190

was previously used to approximate climate models by Bhat [2010], Sanso and Forest191

[2009] and Rougier et al. [2009]. We emulate model output as a function of climate192

parameters separately for temperature and for ocean heat content. For each tracer, we193
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develop separate emulators for each time step during the years for which the observations194

are available (Section 2.4). Thus, we build a total of 157 emulators for temperature, and195

54 for the ocean heat content.196

We define model output of tracer k at time t as ft,k(θ) where θ is a vector of model197

parameters (Kbg, CS,Asc). The ft,k(θ) is only defined on a discrete set of parameter values198

where the model was run. The purpose of the emulator is to estimate a function f̃t,k(θ)199

approximating model output on the continuous parameter ranges specified in Table 1. In200

the following discussion we will consider the emulator for atmospheric surface temperature201

at time t0. The emulators for all other times and for the second tracer (ocean heat content)202

follow a similar statistical model. The indices t and k will thus be dropped from the rest203

of the emulator description.204

The emulator is developed in linearly rescaled coordinates with transformed parameters205

θ′= (K ′
bg, CS ′, A′

sc) each taking on a range from zero to unity. The emulator approximates206

the climate model output as:207

f̃(θ′) = P (θ′) + Z(θ′), (5)

where P is a quadratic polynomial in model parameters, and Z is a zero-mean Gaussian208

Process with an isotropic covariance function. Specifically, the covariance between Z at209

parameters θ′i and θ′j is modeled as mC(i, j) where m is a scale multiplier and C is defined210

by:211

C(i, j) = exp
−Dij

l
. (6)
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Here Di,j is the Euclidean distance between the two model parameter settings and l is a212

range parameter. Based on exploratory data analysis, we choose l=0.6. This formulation213

ensures that model output at nearby parameter settings is highly correlated (i.e. model214

output is a smooth function of the parameters). We choose a nugget variance σ2
ϵ of zero.215

This implies that the emulator is equal to model output at the points of the ensemble216

design grid.217

We estimate the polynomial parameters and m. The polynomial parameters are the218

generalized linear squares estimates adjusting for the covariance function of the spatial219

process. They have a closed form solution that follows a standard formulation in Universal220

Kriging. m is likewise found by maximum likelihood given the parameter λ = σ2
ϵ/m = 0,221

and it has a closed form solution given λ as well (D. Nychka, personal communication).222

The optimized parameters provide the Best Linear Unbiased Estimate (BLUE) of f̃(θ′)223

[Furrer et al., 2010].224

Emulators for other times and variables have different P and m. Henceforth all the225

emulators for all time steps and both tracers will be collectively referred to as the “emu-226

lator”.227

The emulator was extensively tested using the leave-one-out cross validation analysis.228

The emulator is found to perform adequately well (e.g., Figure 1) during the times when229

the variability of model output across the parameter space is high. The cross-validation230

errors are larger in the relative sense during the times close to the midpoints for the231

averaging periods for the anomalies (i.e. year 1870 for temperature, and 1980 for ocean232

heat content). At such times the signal is small and the model output is not a smooth233

function of the parameters, therefore it is impossible to accurately predict it based on the234
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information from the remaining runs. We are unaware of any improvement in emulation235

techniques that could overcome this problem. We note that in this case the emulator236

errors are very low in the absolute sense and they are not expected to affect the estimation237

results. Overall, based on the cross-validation analysis, we are confident that the emulator238

provides a reasonable tool to interpolate model output.239

3. Statistical Model and Markov Chain Monte Carlo

We use a Bayesian parameter estimation method. In order to be able to evaluate the240

likelihood of observations given the unknown parameters L(Y |Θ), we need a statistical241

model that defines the relationship between the model (and the emulator) output and the242

observations. We refer to the emulator output by f̃t,k(θ) (for time t, tracer k, and param-243

eter combination θ). The observations are denoted by yt,k. We denote each observational244

time series by yk = y1,k, ..., yNk,k where Nk is the number of observations for tracer k. The245

set of all observations is referred to as Y = (yT,yOHC).246

We assume that the discrepancy between the emulator and the observations is due to247

the time constant bias bk and time-varying error ϵt,k. Thus, our statistical model is:248

yt,k = f̃t,k + bk + ϵt,k. (7)

ϵt,k results from (i) model error, (ii) natural climate variability, (iii) emulator error,249

and (iv) observational error. We assume that ϵt,k is an autoregressive process of order250

1 (AR1) with unknown AR1 parameters σ2
k and ρk. σ2

k represents the variance of the251

AR(1) innovations while ρk represents the autocorrelation of lag1 (i.e. correlation of252

ϵt,k with ϵt−1,k). This form is chosen both for its simplicity and the ability to account253
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for the uncertain autocorrelation in the error terms. The bias term bk represents time-254

independent biases. Note that for ocean heat content we use anomalies with respect to255

the entire observational period. As a result, the average modeled and observed OHC is 0256

by definition and we set bOHC to 0. Our statistical model is similar to Urban and Keller257

[2010], although they do not incorporate bias terms.258

For this statistical model, the likelihood of each observational time series yk given the

UVic ESCM model output and the statistical parameters L(yk|θ, σk, bk, ρk) is given by

[Bence, 1995] and is provided in the Appendix. We assume independence between the

model-data residuals for different tracers. Under this assumption, the likelihood of both

observations is equal to the product of the individual likelihoods: L(Y ) = L(y1)×L(y2).

Denote the set of all parameters by Θ = (Kbg, CS,Asc, σT , ρT , bT , σOHC , ρOHC). Using

Bayes Theorem, the posterior probability of the parameters can be calculated as:

p(Θ|Y ) ∝ L(Y |Θ)× p(Θ) (8)

where p(Θ) is the prior for the parameters (Section 4).259

Two distinct approaches to estimate the properties of the the error process ϵ are (i) from260

the observations or models [Forest et al., 2006; Tomassini et al., 2007], or (ii) directly from261

the model-data residuals together with the physical parameters [Urban and Keller , 2010;262

Goes et al., 2010; Tonkonojenkov , 2010]. Here we use the second approach and estimate263

all parameters together in the MCMC step.264

We draw samples from the joint posterior p(Θ|Y ) using the MCMC algorithm [Metropo-265

lis et al., 1953; Hastings , 1970] and generate the posterior probability distribution of Θ.266

Our MCMC prechains are 50,000 members long, while the final chain has 300,000 mem-267

bers. We use information from previous chain covariance to construct the proposal dis-268
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tribution for each subsequent chain following Roberts and Rosenthal [2009]. We test the269

chains for convergence using the MCMC standard errors from the consistent batch means270

procedure [Flegal et al., 2008; Jones et al., 2006], and by repeating the assimilation with271

different starting values of the parameters for the final chain. Neither of these checks sug-272

gest any issues with convergence. Hence, we are satisfied that our MCMC-based inference273

provides reasonable estimates of the posterior pdfs.274

4. Priors

We run two assimilation experiments. In the base case experiment we use non-uniform275

priors for climate sensitivity and background vertical ocean diffusivity. We refer to this276

experiment as NON-UNIF. The priors for this experiment are listed in Table 1 and plotted277

in Figure 3. For Kbg the prior is Lognormal (-1.55, 0.59) cm2 s−1 [Bhat , 2010]. This prior278

has a mode of 0.15 cm2 s−1 and a mean of 0.24 cm2 s−1. The prior represents our prior belief279

that the values of 0.1 - 0.2 cm2 s−1 are more likely than 0.4 - 0.5 cm2 s−1 which is suggested280

by Goes et al. [2010] who use vertical oceanic tracer distributions to constrain Kbg. The281

climate sensitivity prior incorporates weak prior information derived from current mean282

climate and Last Glacial Maximum constraints. Specifically, we use a product of normal283

inverse Gaussian distributions (NIG) of NIG(α = 1.8, δ = 2.3, β = 1.2, µ = 1.7) and284

NIG(α = 1.9, δ = 3.3, β = 1.0, µ = 1.3). We choose these distributions for their empirical285

ability to simultaneously fit the lower, upper, and best estimates in Knutti and Hegerl286

[2008], not because we have any theoretical motivation for the NIG distribution. While287

the central tendencies of the two NIG pdfs are generally compatible with past studies, the288

distributions are not based on any specific pdf from any of these studies. The combined289

prior distribution for CS is shown in Figure 3. It has a mean of 3.25 ◦C, and the 90%290
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interval from 1.7 to 5.2 ◦C. We use uniform priors for Asc and for all statistical parameters291

over the ranges specified in Table 1.292

To explore the sensitivity of the results to priors, we run a second assimilation exper-293

iment, where all priors are uniform over the ranges shown in Table 1. We refer to this294

experiment as UNIF.295

5. Results

5.1. Probabilistic Hindcasts

The probabilistic hindcasts capture the overall temporal structure of the observations296

(Figure 2). Specifically, the emulator is able to correctly represent the trend due to297

greenhouse warming (black line). We add an AR1 error process (representing model,298

observational, and emulator error, as well as the natural variability) to each emulator299

from the sub-sampled MCMC chain to produce the 95% credible intervals. In case of300

temperature, each emulator is corrected by adding a corresponding bias term from the301

chain. Overall, the method produces a reasonable surprise index (e.g., 1.9% of the ocean302

heat content and 5.1% of the temperature observations lie outside of the 95% hindcast303

range).304

The surface air temperature from the best fit emulator illustrates the effects of the305

stratospheric volcanic aerosols, with several prominent short-term coolings associated with306

the eruptions. For some of these eruptions, such as Agung (1963) and Mount Pinatubo307

(1991), the modeled response matches the observations relatively well, while for others,308

such as Krakatoa (1883), the model displays considerable cooling that is not present in the309

observations. Some of this discrepancy might be due to the unresolved climate variability,310
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and due to the uncertainty in the past volcanic radiative effects [Ammann et al., 2003]311

and temperature observations.312

5.2. Parameter Estimates

Under the baseline assumptions of non-uniform priors, posterior pdfs for climate sen-313

sitivity and vertical ocean diffusivity are broadly consistent with previous studies. The314

mode of the climate sensitivity pdf is 2.8 ◦C, and the mean is 3.1 ◦C. The 95% posterior315

credible interval ranges from 1.8 ◦C to 4.9 ◦C (Table 2). These values are broadly consis-316

tent with the likely range of 2 to 4.5 ◦C, and the most likely value of 3 ◦C given by the317

IPCC [Solomon et al., 2007]. The mode is similar to results from Forest et al. [2006] and318

Knutti et al. [2003], and is slightly higher than in Tomassini et al. [2007].319

ForKbg, we estimate a mode of 0.11 cm2 s−1, and a mean of 0.19 cm2 s−1 (Table 2, Figure320

3). The pdf forKbg was reported to depend on the tracers used to constrain this parameter321

[Schmittner et al., 2009]. The mode of the Kbg matches results of Schmittner et al. [2009]322

based on global vertical ocean profiles of CFC11, and of ∆14C, and is slightly lower than323

0.15 cm2 s−1 reported in [Goes et al., 2010] based on profiles of three tracers. We stress324

that Kbg is not directly comparable with vertical diffusivities in other models [Tomassini325

et al., 2007; Kriegler , 2005] because these parameters represent different processes. For326

example, our Kbg excludes tidally induced and Southern Ocean mixing, while the related327

Kv in Kriegler [2005] accounts for all vertical mixing processes. Therefore, our results328

should be interpreted as specific to our version of UVic ESCM.329

The estimated aerosol scaling factor has the most likely value of 1.2. This is broadly330

consistent with the default assumptions on the aerosol effects in the UVic ESCM (which331

imply the value of 1). Estimation of Asc should be interpreted with caution because Asc332
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implicitly includes effects due to neglected forcings that might have emission or concen-333

trations patterns similar to the anthropogenic sulfates. To better constrain Asc it will be334

necessary to include these neglected forcings. Otherwise, one could interpret the value335

of Asc as representing the combined effects of the aerosols as well as the neglected forc-336

ings. Similar to the case of Kbg, Asc is a model specific parameter and can not be readily337

compared to results from other models [i.e. Tanaka et al. [2009]].338

As in previous studies, the climate sensitivity pdf, and its upper tail in particular,339

are sensitive to the assumptions about the priors [e. g. Forest et al., 2002, 2006; Sanso340

and Forest , 2009; Tomassini et al., 2007; Annan and Hargreaves , 2011] (Figure 3). For341

example, replacing the expert prior with the uniform prior moves the upper bound of342

the 95% credible interval for CS to 10.2 ◦C (Table 2). This is in agreement with the343

results from Forest et al. [2006], but considerably higher than in Annan and Hargreaves344

[2011]. This discrepancy might be at least in part because Annan and Hargreaves [2011]345

consider a different type of constraint - Earth Radiation Budget Experiment (ERBE) data346

analyzed by Forster and Gregory [2006]. For the uniform prior, there is a considerable347

probability mass above the upper bound of the IPCC likely range of 4.5 ◦C (Figure 3),348

similar to previous studies (e.g., Forest et al. [2006]; Knutti et al. [2003]).349

The use of uniform priors for climate sensitivity can be problematic as the posterior350

estimates are sensitive to the upper bound for the prior [Annan and Hargreaves , 2011].351

In addition, such priors do not take independently collected evidence from other studies352

into account. High climate sensitivities become possible in this case because the flat prior353

assigns them high weight to begin with, while the constraint provided by the observations354
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can be relatively weak. This suggests that it is crucial to use independent prior information355

during CS estimation whenever possible.356

In addition, in the UNIF experiment the posterior pdf ofKbg is bimodal (Figure 3). Mul-357

timodal pdfs for Kbg have been previously reported by Forest et al. [2002] and Tomassini358

et al. [2007]. It is, thus far, unclear which physical mechanisms, if any, are driving this359

bimodality. Note that here we withhold information on vertical tracer distributions that360

is needed to constrain Kbg and that the bimodality essentially disappears once that con-361

straint is introduced as a prior in the NON-UNIF case.362

Joint bivariate pdfs for parameter pairs exhibit a complex structure (Figure 4), similar363

to the results from from Tomassini et al. [2007]. Although this is not visibly evident,364

there is some correlation between Kbg and CS. Specifically, the correlation is 0.24 in the365

NON-UNIF experiment, and 0.44 in the UNIF experiment. This is in agreement with 0.4366

found in Urban and Keller [2010] even though the two studies differ in terms of climate367

models, observational constraints, and priors. It is difficult to compare these results with368

other studies ([e. g. Tomassini et al., 2007; Forest et al., 2002, 2006]) because they do369

not report the numerical value for the correlation coefficient while the pairs plots of the370

parameters can underestimate the correlation [Urban and Keller , 2010].371

Climate sensitivity is even more strongly correlated with Asc, meaning that for higher372

climate sensitivity, higher aerosol effects are needed to explain historical climate change.373

This agrees with results from Andreae et al. [2005] and Tanaka et al. [2009] and implies374

that reducing uncertainty in Asc will help reduce uncertainty in climate sensitivity. Ruling375

out high values of Asc is especially important, because this is where climate sensitivity376

pdf appears to be most sensitive to Asc (Figure 4).377
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When the uniform priors on Kbg and CS are used, higher aerosol scaling values become378

possible, even though the prior on Asc is the same in both cases. Because Asc and CS379

are correlated, higher aerosol scalings are necessary to counteract higher warming due to380

larger climate sensitivities in the uniform prior case to match the observations.381

Climate parameter estimation using a model with a 3D ocean (GENIE-1) has been382

previously performed by Holden et al. [2010] so it might be interesting to compare our383

methodology and results with that study. Holden et al. [2010] vary a much larger set384

of parameters and derive a pdf for climate sensitivity using a Last Glacial Maximum385

(LGM) tropical Sea Surface Temperature (SST) anomaly as a main constraint. They also386

indirectly use information from several global climate metrics through a pre-calibration387

procedure. In our study we consider an orthogonal set of constraints that includes infor-388

mation about the time-resolved response of climate to modern forcings. We also provide389

a probabilistic estimate of vertical ocean diffusivity Kbg. In terms of the ocean models390

used, Holden et al. [2010] employ a coarse resolution frictional geostrophic model. On the391

other hand, the resolution of UVic ESCM is much higher and the dynamics is based on392

the Navier-Stokes equations, subject to the hydrostatic and Boussinesq approximations.393

The statistical methodologies are different as well. In particular, our approach is fully394

Bayesian and we use explicit priors for all model parameters. Also, the statistical proper-395

ties of the error process are assumed in Holden et al. [2010], while here we estimate them396

together with the physical model parameters. The mode of climate sensitivity found in397

Holden et al. [2010] is 3.6 ◦C under the favored set of assumptions, which is substantially398

higher than 2.8 ◦C in our baseline case of non-uniform priors. We cannot attribute this399
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gap with certainty to any specific factor due to the number of differences between the400

studies.401

6. Caveats

Our forthcoming conclusions are subject to several caveats. The first set of caveats402

deals with the Earth System model. Our model does not include all forcings (such as,403

sulfate effects on clouds or tropospheric ozone [Forster et al., 2007]). The patterns of some404

of excluded forcings might be similar to anthropogenic sulfates, thereby biasing the Asc405

estimates. Including thus far neglected forcings is the subject of future research. Also, we406

only consider a subset of uncertain climate parameters. Our results would change if these407

additional uncertainties were considered. The model relies on a number of simplifications.408

The representation of open ocean mixing is highly parametrized and ignores, for example,409

effects of transient upper ocean mixing processes, such as tropical cyclones, that have410

been shown capable of influencing upper-ocean temperature patterns through mixing of411

heat [Sriver et al., 2010]. We vary the longwave radiation feedbacks to change climate412

sensitivity. In reality, the uncertainty in shortwave radiative feedbacks also contributes to413

the CS uncertainty [Bony et al., 2006]. Also, we only use a single model and neglect the414

uncertainty in model response to external forcings [Stouffer et al., 2006]. Finally, we do415

not fully account for past climate forcings uncertainties.416

The second set of caveats is concerned with observations. When a short instrumental417

record is used, the results of our method can be influenced by natural climate variability418

and by observational errors comprising the residuals between the model and observations419

[Tonkonojenkov , 2010]. Adding more observations can improve the parameter estimates,420

as could using spatially resolved information.421
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Finally, limitations of the parameter estimation method deserve mentioning. We use422

a simplified likelihood function that does not account for the spectral complexity of the423

residuals, nor for the decrease of observational errors with time. Incorporating a more424

comprehensive likelihood function that captures a cross-correlation between the residuals425

for different tracers is the subject of future research.426

7. Conclusions

Using a Bayesian approach, we fuse the UVic ESCM model with global observations427

to estimate background vertical ocean diffusivity (Kbg), climate sensitivity (CS), and the428

scaling parameter for the effects of anthropogenic sulfate aerosols (Asc). Our methodology429

incorporates the effects ofKbg on 3D ocean dynamics. We use a Gaussian Process emulator430

to provide a fast surrogate for the climate model at arbitrary parameter combinations.431

The parameter estimates can be used to make climate projections using the UVic ESCM432

in future studies.433

The mode for Kbg is similar to previous results obtained using oceanic tracers such as434

CFC11, temperature, and ∆14C as constraints. TheKbg pdf is sensitive to the assumptions435

about the priors. If a uniform prior is used, then the results appear to show a bimodality,436

which is a potentially important result that might need further investigation.437

Under the default assumptions of informative priors, the mode of climate sensitivity is438

2.8 ◦C, with the 95% credible interval from 1.8 ◦C to 4.9 ◦C. This mode is consistent with439

many previous studies but lower than reported in Holden et al. [2010] who also use a 3D440

ocean model. As in previous studies, the upper tail of the CS pdf is sensitive to priors.441

The CS pdf depends critically on Asc, with much higher climate sensitivities likely at high442
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values of Asc. The agreement with previous studies that use simpler climate models gives443

more confidence to using these models to estimate climate sensitivity.444

445

Appendix

When the statistical model is defined as in Section 3, the likelihood of observational446

time series yk coming from the model is given by [Bence, 1995]:447

L(yk|θ, σk, bk, ρk) =
(
2πσ2

p,k

)−1/2
exp

(
−1

2

ϵ21,k
σ2
p,k

)
×

×
(
2πσ2

k

)−(Nk−1)/2 × exp

(
− 1

2σ2
k

Nk∑
j=2

w2
j,k

)
.

Here σ2
p,k = σ2

k/(1− ρ2k) is stationary process variance, Nk is the number of observational448

data points for tracer k, and wt,k = ϵt,k − ρkϵt−1,k, t > 1 are whitened errors.449
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Figure Captions

Figure 1. Top row: scatterplot of the temperature anomaly (with respect to the 1850-2006635

mean, [K]) emulator predictions vs. actual model output values for years 1870, 1940, and 2000.636

Specifically, each of the parameter combinations of the ensemble was taken out one at a time,637

and the emulator was trained on the remaining 249 ensemble members. Then the emulator was638

used to predict the missing value. The 1:1 line is also shown. Note that Y axis limits are different639

for each subplot. Bottom row: same for the ocean heat content anomalies (with respect to the640

1950-2003 mean, [1 × 1022J ]), for years 1960, 1980, and 2000. The emulator performance, of641

course, will be different for other times not shown here.642

Figure 2. Probabilistic model hindcasts (grey shaded area), maximum posterior probability643

model output (‘best fit’, black line), and corresponding observations (red crosses) for the NON-644

UNIF assimilation experiment: (a) global average atmospheric surface temperature anomaly with645

respect to 1850-1899 mean [K] with corresponding observations of above surface / ocean surface646

temperatures from the HadCRUT3 dataset [Brohan et al., 2006]; (b) upper ocean (0-700m) heat647

content anomaly with respect to 1950-2003 mean [1E22J], and observations from Domingues648

et al. [2008]. The grey area denotes the 95% credible intervals for model output taken from649

a 1000-member subsampled MCMC chain, with corresponding AR1 error processes (and bias650

terms for temperature) added. For the AR1 process simulations, the σ and ρ parameters were651

taken from the corresponding chain member. For the best fit model output for temperature, the652

maximum posterior probability model output was combined with the corresponding bias term.653

Figure 3. Posterior pdfs (top row) and cdfs (bottom row) for model parameters obtained using654

both temperature and ocean heat content observations. Red: for the NON-UNIF experiment;655

blue: for the UNIF experiment. The dashed probability distribution lines represent the priors656
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used in the NON-UNIF experiment. The dashed whiskers in the box-and-whisker plots extend657

to the most extreme data point which is no more than 1.5 interquartile ranges from the box.658

Figure 4. Bivariate joint pdfs for model parameters. Left: for the NON-UNIF experiment,659

right: for the UNIF experiment. The contour lines delineate the 90% and 95% posterior credible660

intervals. A 1000-member thinned MCMC chain is plotted using red dots. Parameters used for661

the UVic ESCM ensemble are shown in thick black circles.662
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Table 1: Prior ranges for the parameters used in the NON-UNIF experiment. Subscript T refers
to the temperature data, and OHC refers to the ocean heat content data.

Parameter Units Lower
Bound

Upper
Bound

Prior Form

Kbg cm2 s−1 0.1 0.5 Lognormal(-1.55, 0.59)

CS
◦C per CO2

doubling
1.1 11.2

NIG(α = 1.8, δ = 2.3, β = 1.2, µ = 1.7) ×
NIG(α = 1.9, δ = 3.3, β = 1.0, µ = 1.3)

Asc unitless 0 3 uniform
σT

◦C 0.01 inf uniform
σOHC 1× 1022 J 0.01 inf uniform
ρT unitless 0.01 0.99 uniform

ρOHC unitless 0.01 0.99 uniform
bT

◦C -0.51 0.50 uniform

Table 2: Properties of the posterior pdfs of all estimated parameters.

Parameter Experiment Mode Mean 95% credible interval

Kbg
NON-UNIF 0.11 0.19 [0.10, 0.45]

UNIF 0.11 0.30 [0.10, 0.50]

CS
NON-UNIF 2.8 3.1 [1.8, 4.9]

UNIF 3.0 4.8 [ 1.6, 10.2]

Asc
NON-UNIF 1.2 1.1 [0.35, 1.5]

UNIF 1.6 1.2 [ 0.25, 1.8]

σT
NON-UNIF 0.10 0.10 [0.091, 0.11]

UNIF 0.10 0.10 [0.091, 0.11]

σOHC
NON-UNIF 2.6 2.7 [2.2, 3.3]

UNIF 2.6 2.7 [2.2, 3.3]

ρT
NON-UNIF 0.58 0.58 [0.44, 0.72]

UNIF 0.58 0.58 [ 0.44, 0.72]

ρOHC
NON-UNIF 0.079 0.17 [ 0.018, 0.43]

UNIF 0.091 0.17 [ 0.018, 0.42]

bT
NON-UNIF -0.031 -0.031 [ -0.079, 0.021]

UNIF -0.034 -0.033 [ -0.083, 0.022]
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Figure 1: Top row: scatterplot of the temperature anomaly (with respect to the 1850-2006
mean, [K]) emulator predictions vs. actual model output values for years 1870, 1940, and 2000.
Specifically, each of the parameter combinations of the ensemble was taken out one at a time,
and the emulator was trained on the remaining 249 ensemble members. Then the emulator was
used to predict the missing value. The 1:1 line is also shown. Note that Y axis limits are different
for each subplot. Bottom row: same for the ocean heat content anomalies (with respect to the
1950-2003 mean, [1 × 1022J ]), for years 1960, 1980, and 2000. The emulator performance, of
course, will be different for other times not shown here.

D R A F T December 15, 2011, 3:34pm D R A F T



X - 36 OLSON ET AL.: CLIMATE SENSITIVITY ESTIMATE

Figure 2: Probabilistic model hindcasts (grey shaded area), maximum posterior probability
model output (‘best fit’, black line), and corresponding observations (red crosses) for the NON-
UNIF assimilation experiment: (a) global average atmospheric surface temperature anomaly with
respect to 1850-1899 mean [K] with corresponding observations of above surface / ocean surface
temperatures from the HadCRUT3 dataset [Brohan et al., 2006]; (b) upper ocean (0-700m) heat
content anomaly with respect to 1950-2003 mean [1E22J], and observations from Domingues
et al. [2008]. The grey area denotes the 95% credible intervals for model output taken from
a 1000-member subsampled MCMC chain, with corresponding AR1 error processes (and bias
terms for temperature) added. For the AR1 process simulations, the σ and ρ parameters were
taken from the corresponding chain member. For the best fit model output for temperature, the
maximum posterior probability model output was combined with the corresponding bias term.
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Figure 3: Posterior pdfs (top row) and cdfs (bottom row) for model parameters obtained using
both temperature and ocean heat content observations. Red: for the NON-UNIF experiment;
blue: for the UNIF experiment. The dashed probability distribution lines represent the priors
used in the NON-UNIF experiment. The dashed whiskers in the box-and-whisker plots extend
to the most extreme data point which is no more than 1.5 interquartile ranges from the box.
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Figure 4: Bivariate joint pdfs for model parameters. Left: for the NON-UNIF experiment,
right: for the UNIF experiment. The contour lines delineate the 90% and 95% posterior credible
intervals. A 1000-member thinned MCMC chain is plotted using red dots. Parameters used for
the UVic ESCM ensemble are shown in thick black circles.
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