Efficiency of Energy Conversion

- If we are more efficient with the energy we already have there will be less pollution, less reliance on foreign oil and increased domestic security.
Illustration

An electric motor consumes 100 watts (a joule per second (J/s)) of power to obtain 90 watts of mechanical power. Determine its efficiency?

\[
\text{Efficiency} = \frac{\text{Useful Energy Output}}{\text{Total Energy Input}}
\]

\[
\begin{align*}
\text{Efficiency} &= \frac{90 \text{ W} \times 100}{100 \text{ W}} \\
&= 90\%
\end{align*}
\]

Efficiency of Some Common Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Motor</td>
<td>90</td>
</tr>
<tr>
<td>Home Oil Furnace</td>
<td>65</td>
</tr>
<tr>
<td>Home Coal Furnace</td>
<td>55</td>
</tr>
<tr>
<td>Steam Boiler (power plant)</td>
<td>89</td>
</tr>
<tr>
<td>Power Plant (thermal)</td>
<td>36</td>
</tr>
<tr>
<td>Automobile Engine</td>
<td>25</td>
</tr>
<tr>
<td>Light Bulb-Fluorescent</td>
<td>20</td>
</tr>
<tr>
<td>Light Bulb-Incandescent</td>
<td>5</td>
</tr>
</tbody>
</table>

Vehicle Efficiency – Gasoline Engine

25% of the gasoline is used to propel a car, the rest is lost as heat, i.e. an efficiency of 0.25

Source: Energy Sources/Applications/Alternatives
Heat Engine

- A heat engine is any device which converts heat energy into mechanical energy.
- Accounts for 50% of our energy conversion devices.

Carnot Efficiency

- Maximum efficiency that can be obtained for a heat engine.

\[\eta (\text{Carnot}) = (1 - \frac{T_{\text{cold}}}{T_{\text{hot}}}) \times 100 \]

Illustration

For a coal-fired utility boiler, the temperature of high pressure steam would be about 540°C and T cold, the cooling tower water temperature would be about 20°C. Calculate the Carnot efficiency of the power plant.
5. Energy Efficiency

Inference

A maximum of 64% of the fuel energy can go to generation. To make the Carnot efficiency as high as possible, either T_{hot} should be increased or T_{cold} should be decreased.
Boiler Components

- Chemical Energy Input (100 BTU)
- Thermal Energy (88 BTU)
- Mech. Energy (36 BTU)
- Generator
- Elect. Energy Output (10.26 Wh)

Overall Efficiency

Overall Efficiency of a series of devices:

\[
\text{Eff} = \frac{\text{E}_{\text{boiler}} \times \text{E}_{\text{turbine}} \times \text{E}_{\text{generator}}}{\text{Chemical Energy} \times \text{Thermal Energy} \times \text{Mechanical Energy}}
\]

- \(\text{E}_{\text{boiler}} = 0.88\)
- \(\text{E}_{\text{turbine}} = 0.41\)
- \(\text{E}_{\text{generator}} = 0.97\)

\[
\text{Eff} = 0.35 \text{ or } 35\%
\]
The efficiency of a system is equal to the product of efficiencies of the individual devices (sub-systems).

System Efficiency

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Efficiency</th>
<th>Cumulative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction of Coal</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>Transportation</td>
<td>98%</td>
<td>94% (0.96x0.98)</td>
</tr>
<tr>
<td>Electricity Generation</td>
<td>38%</td>
<td>36% (0.96x0.98x0.38)</td>
</tr>
<tr>
<td>Transportation Elec</td>
<td>91%</td>
<td>33%</td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incandescent</td>
<td>5%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Fluorescent</td>
<td>20%</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

Efficiency of a Light Bulb

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Efficiency</th>
<th>Cumulative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of Crude</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>Refining</td>
<td>87%</td>
<td>84%</td>
</tr>
<tr>
<td>Transportation</td>
<td>97%</td>
<td>81%</td>
</tr>
<tr>
<td>Thermal to Mech E</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>Mechanical Efficiency-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>50%</td>
<td>10%</td>
</tr>
<tr>
<td>Rolling Efficiency</td>
<td>20%</td>
<td>6.6%</td>
</tr>
</tbody>
</table>
5. Energy Efficiency

Efficiency of a Space Heater

- Electricity = 24%
- Fuel Oil = 53%
- Natural Gas = 70%

Heat Mover

- Any device that moves heat "uphill", from a lower temperature to a higher temperature reservoir.
- Examples:
 - Heat pump.
 - Refrigerator.

Heat Pump Heating Cycle

Heat Pump Cooling Cycle

Source: http://energyoutlet.com/res/heatpump/pumping.html

Coefficient of Performance (C.O.P)

Effectiveness of a heat pump is expressed as coefficient of performance (C.O.P)

\[\text{C.O.P} = \frac{T_{\text{hot}}}{T_{\text{hot}} - T_{\text{cold}}} \]

Example

Calculate the ideal coefficient of performance (C.O.P.) For an air-to-air heat pump used to maintain the temperature of a house at 70 °F when the outside temperature is 30 °F.

\[\text{C.O.P} = \frac{T_{\text{hot}}}{T_{\text{hot}} - T_{\text{cold}}} \]
Solution Cont.

\[T_{\text{hot}} = 70^\circ F = 21^\circ C = 21 + 273 = 294 K \]
\[T_{\text{cold}} = 30^\circ F = -1^\circ C = -1 + 273 = 272 K \]
\[\text{C.O.P} = \frac{294}{294 - 272} = \frac{294}{22} = 13.3 \]

Consequences

- For every watt of power used to drive this ideal heat pump, 13.3 W is delivered from the interior of the house and 12.3 from the outside.
- Theoretical maximum is never achieved in practice. This example is not realistic. In practice, a C.O.P in the range of 2 - 6 is typical.

More C.O.P.’s

Compare the ideal coefficients of performance of the of the same heat pump installed in Miami and Buffalo.
Miami: \(T_{\text{hot}} = 70^\circ F, T_{\text{cold}} = 40^\circ F \)
Buffalo: \(T_{\text{hot}} = 70^\circ F, T_{\text{cold}} = 15^\circ F \)

Miami: \(T_{\text{hot}} = 294^\circ K, T_{\text{cold}} = 277^\circ K \)
Buffalo: \(T_{\text{hot}} = 294^\circ K, T_{\text{cold}} = 263^\circ K \)
C.O.P = \frac{T_{\text{hot}}}{T_{\text{hot}} - T_{\text{cold}}}

\begin{align*}
\text{Miami} & \quad \text{Buffalo} \\
= \frac{294}{(294-277)} & = \frac{294}{(294-263)} \\
= 17.3 & = 9.5
\end{align*}