
INTRODUCTION
Fossil leaves are a rich source of information about past rainfall

because the morphologies of living leaves, and leaf size in particular, are
greatly influenced by available moisture (Raunkiaer, 1934; Richards, 1996).
Because leaves transpire water into the atmosphere and have a high ratio of
surface area to volume, plants in drier climates tend to have smaller leaves
because they cannot afford the elevated water loss required to maintain
large leaves (Givnish, 1984). Available water, which is controlled by many
factors including precipitation, evapotranspiration, temperature, seasonal-
ity, and soil conditions, appears to be the primary control on the size of an
average leaf (Givnish, 1984; Richards, 1996). Mean annual precipitation is
a proxy for available water that is both readily available from climate sta-
tions and applicable to a wide variety of research. The emphasis of this
paper is therefore on the correlation between mean annual precipitation
(MAP) and leaf morphology.

Recent paleoprecipitation estimates have been based on Wolfe’s
(1993) Climate Leaf-Analysis Multivariate Program (CLAMP), which
ordinates a multivariate data set of leaf-morphologic characters scored from
modern vegetational samples that are associated with climate stations to
provide a quantitative framework for estimating climatic variables. The
CLAMP samples are primarily from North American forests, and few are
from the moist tropics. Estimates of MAPand other variables such as grow-
ing season precipitation have been derived either using CLAMP(Wolfe,
1994; Herman and Spicer, 1996, 1997) or multiple regression analysis of
the CLAMPdata set (Wing and Greenwood, 1993; Greenwood, 1996;
Gregory and McIntosh, 1996). Most of these authors have noted the approx-
imate nature of the statistical fits and urged caution when interpreting
results. Only the multiple regression approach has been tested on living

forests, with the result that both mean annual and growing season precipita-
tion are consistently overestimated (Table 1).

An alternative to methods based on CLAMPis a reexamination of the
positive univariate relationship between leaf area and annual precipitation
(Webb, 1968; Dilcher, 1973; Dolph and Dilcher, 1980a, 1980b; Hall and
Swaine, 1981; Givnish, 1984). Givnish (1984) quantified this relationship
for a broad range of forest types in South America, Costa Rica, and
Australia and found it to be significant. Preliminary tests of Givnish’s
equations with new data gave promising results, leading to the revised and
expanded analysis presented here.
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LEAF AREA AND PRECIPITATION 1

We selected fifty vegetation samples from living forests for our pre-
dictor set (Table 2), encompassing a wide variety of climates and vegeta-
tion. No samples were included from areas with few climate data, extreme
winter cold and dry growing seasons, severe human modification, high
salinity, or marked nutrient deficiencies. Samples with fewer than 16
species were excluded because above this value regression statistics were
highly similar, but below about 16 species the fit deteriorated. Plants that
were not native, dicotyledonous, woody, and leaf-bearing were excluded
whenever they could be identified as such from species lists, as were man-
groves, which typically inhabit saline environments. Ground herbs were
uniformly excluded.

The mean of the natural logarithms of the species’leaf areas (MlnA)
was estimated for each sample in either of two ways: directly from leaf-
area measurements when possible, for seven samples, or, for the other 43
samples, from the proportions of species reported in each of the traditional
Raunkiaer-Webb size categories (Raunkiaer, 1934; Webb, 1959; Fig. 1;
Table 2). For compound leaves, leaflets were used instead of leaves. If two
size classes were originally merged into one, separate values for the two
size classes were log-interpolated.

For the direct measurement approach, we used either actual meas-
urements of leaf area or length and width data from manuals, supple-
mented with U.S. National Herbarium material. For the latter, area values
for each species were calculated as the mean of the natural log areas of the
smallest and largest leaves, where leaf area was approximated as two-
thirds length × width (Cain and Castro, 1959). The MlnAfor the 43 samples
scored with size categories was MlnA= Σai pi , where ai represents the
seven means of the natural log areas of the size categories (2.12, 4.32,
6.51, 8.01, 9.11, 10.9, and 13.1), and pi represents the proportions of
species in each category. Because the size classes are mostly a geometric
series with a factor of nine, the lower bound of leptophyll was taken as the
upper bound divided by nine, and the upper bound of megaphyll as the
lower bound multiplied by nine (Givnish, 1984). This computation is simi-
lar to Givnish’s “average width” (Givnish, 1984) and to the leaf size index
(LSI) of Wolfe and Upchurch (1987). As a cross check, we converted the
directly measured samples to Raunkiaer-Webb categories; changes in
derived MlnAwere small (maximum of 0.24).

The highly significant fit of MlnAas a function of mean annual pre-
cipitation is shown in Figure 2. The fit can be inverted for paleoclimatic pur-
poses so that MAPis the dependent variable: ln(MAP) = 0.548 MlnA+
0.768, r 2 = 0.760, standard error = 0.359, F (1,48) = 152, p= 10–15. We will
refer to the application of the preceding as leaf-area analysis. The quality of
fit is lower when ln(MAP) is regressed against LSI (r 2 = 0.720, F = 124).

We also compared the slope of the relationship of MAPas a function
of the percentage of species with large leaves in our data set to that in the
CLAMP data set of Wolfe (1993; Fig. 3). Because the percentages of
species in the two largest size categories in CLAMP(Fig. 1) are values
closely associated with moisture (Wolfe, 1993), a steeper slope in the
CLAMP data set than in ours might explain the consistent pattern of over-
estimated MAPseen in Table 1. For the CLAMPdata set, the percentage of
large leaves was taken as the summed percentage of mesophylls 1 and 2
(Fig. 1) and for our data set as the summed percentage of mesophylls,
macrophylls, and megaphylls. The comparison is not exact because the
CLAMP mesophyll 1 category includes the upper part of the Raunkiaer-
Webb notophyll category (Fig. 1). The result of this mismatch should be that
most CLAMPsites have a higher percentage of species with large leaves at
a given MAPthan do our sites, and that the slope in question is lower in the
CLAMP data set than in our data set. Instead, the reverse is true: the slope
within CLAMP is significantly higher (Fig. 3). We suggest that this steep
slope causes overestimated mean annual precipitation (Table 1).

DISCUSSION
Leaf-area analysis, a univariate method, is more significant and has an

r 2 close to or greater than those of various multivariate models based on the
CLAMP data set (Wing and Greenwood, 1993; Gregory and McIntosh,
1996; Herman and Spicer, 1996). The benefits of using data from more than
one major area are clear (Fig. 2). None of the six subsets of data covers the
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1All supporting data and an overlay for measuring leaves are available from Wilf.



entire range of either axis, but the subtrends are subparallel. All but the
Central American subset are primarily either above or below the trendline,
which reflects some combination of differences in primary data collection
and real variation among forests. For example, the low MlnAof the West
Indian samples may result from the drying and destructive effects of high
winds. The overall trend is probably not linear for the driest or the wettest
climates, where biological stresses are maximized. At the dry end, MlnA
appears to decline abruptly off the regression line (Fig. 2). Very wet climates
typical of cloud forests were not sampled. Cloud forest leaves can be much
smaller than leaves at lower and drier elevations in the same region (e.g.,
Howard, 1969). The lack of extreme values of MAPin our data set should
therefore be noted by ecologists, but this omission is probably unimportant
in the context of paleoprecipitation because desert and cloud forest floras
are very rare in the fossil record.

The scatter in the regression (Fig. 2) mandates that leaf-area analysis
be used with caution. Estimates based on several contemporaneous fossil
samples are preferable to those from single samples. We strongly advise the
use of supplemental data, including the distributions and characteristics of
coals, clays, red-beds, and evaporites and the judicious analyses of fossil
flora and fauna belonging to large extant clades with narrow moisture toler-
ances. Care must be taken with samples of fossil leaves to account for
taphonomic removal of large leaves prior to deposition (Greenwood, 1992).

EOCENE EXAMPLE
Geological data have long indicated that the early to early middle

Eocene of the U.S. Western Interior was much warmer than today, with gen-
erally frost-free winters (e.g., Roehler, 1993). Proxy paleoprecipitation data
are critical for improving understanding of this unusual time period. Wing
and Greenwood (1993) presented MAPestimates based on the CLAMPdata
set for six early and middle Eocene floras from the Western Interior and one
from the West Coast, using two predictors, the percentages of species having
(1) drip-tips and (2) leaves in the mesophyll 2 category (Fig. 1). The size cat-
egorizations were made from a data set of length and width measurements of
the fossil leaves. Using these same data, we derived MlnAand reestimated
paleo-MAPfor the fossil samples with leaf-area analysis.

All seven revised estimates are lower (Table 3). The greatest change is
for Bear Paw, which drops by more than half and is the only case where
standard error bars of the original and revised estimates do not overlap; Bear
Paw has the highest percentage of species with drip-tips (50%). The revised
estimates rank in a logical fashion. Chalk Bluffs, California, emerges as the
wettest sample, which is consistent with its being the only site near the
coast. Green River, the youngest sample, ranks driest in both analyses, in
accord with floristic evidence and vast evaporitic deposits in parts of the
Green River Formation indicating intermittent dry periods (MacGinitie,
1969; Roehler, 1993). The Bear Paw, Sepulcher, Kisinger Lakes, and Wind
River samples are intermediate both in age and in estimated MAPbetween
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Figure 1. Two systems of leaf-
area classification, shown on
natural log scale: Raunkiaer -
Webb (Webb, 1959) and
CLAMP (Climate Leaf-Anal y-
sis Multiv ariate Pr ogram:
Wolf e, 1993). CLAMP siz es
were measured fr om Wolf e
(1993, p. 25) using digitizing
tablet. Abbre viations: Le =
leptoph yll, Na = nanoph yll, Mi
= micr ophyll, No = notoph yll,
Me = mesoph yll, Ma = macro-
phyll, Mg = megaph yll (Le1 =
“leptoph yll 1,” etc.). Cutoff
values (in mm 2): 25, 225,
2025, 4500, 18225, 164025
(Raunkiaer -Webb); 19, 91, 392,
1420, 3516, 6226 (CLAMP).

Figure 2. Mean natural
log leaf area (MlnA) as
a function of mean
annual precipitation
(MAP): MlnA = 1.39
ln(MAP) + 0.786, r 2 =
0.760, standar d err or
= 0.572, F (1,48) = 152,
p = 10–15. Data fr om
Table 2.

Figure 3. Regressions of mean annual precipitation (MAP) vs. percent
of species with lar ge leaves for CLAMP data set (W olf e 1993) and leaf-
area anal ysis data set of this paper (T able 2). For CLAMP: MAP =
6.18(%mesoph yll 1 + %mesoph yll 2) + 47.5, r 2 = 0.439. For leaf-area
analysis: MAP = 3.77(%mesoph ylls + %macr ophylls + %megaph ylls) +
47.0, r 2 = 0.554. Diff erence in slope is significant at p < 0.001 level, using
equality test of Sokal and Rohlf (1995, p. 498).



the older Camels Butte and the younger Green River samples, possibly
indicating a regional drying trend.

The revised estimates, although lower, all indicate much more humid
conditions than are found at basinal elevations of the same areas today. Water
vapor is the most significant of the greenhouse gases, contributing two to
three times the atmospheric heat retention of carbon dioxide in the modern
atmosphere (e.g., Bigg, 1996). Water vapor is also the agent of latent heat
transport, a possible mechanism of continental warming in the early Eocene
(Sloan et al., 1995). High humidity may help to explain the frost-free nature
of early to middle Eocene climates in the western United States.
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