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EVOLUTIONARY BIOLOGY 

Chewed Leaves Reveal 
Ancient Relationship 
God, the great British geneticist J. B. S. Hal- 
dane once remarked, must have "an inordi- 
nate fondness for beetles." And cejiain bee- 
tles have an tnordtnate and, it turns out, his- 
toric fondness for ginger plants. Paleontolo- 
gists have discovered how ancient this culi- 
nary preference really is by studying fossils 
of damaged leaves. The data help push back 
the time when a group of beetles called leaf 
beetles evolved their great diversity and 
demonstrate just how faithfiil some species 
can be to their favorite foods. The results are 
also convincing paleobotanists that they can 
sometimes glean more about their plant's 
ancient past from a chewed-up leaf fossil 
than from a pristine one. 

On page 291, paleobotanist Peter Wilf of 
the Uiiiversity of Michigan, Ann Arbor, 
Conrad Labandeira, a paleobiologist at the 
Smithsonian Institution's National Museum 
of Natural History in Washington, D.C., and 
their colleagues describe a new beetle fossil 
based not on traces of the insect skeleton• 
in fact, the insect itself never even shows up 
in the fossil record•but on the distinctive 
gouges the beetles left when they munched 
on 11 ginger leaves many millions of years 
ago. The chew marks of the newly described 
Cephaloleichnites strongi prove that leaf 
beetles underwent rapid evolution and diver- 
sification more than 65 million years ago• 
far earlier than the oldest fossils of insect 
bodies suggest•possibly taking advantage 
of (and perhaps influencing) the rapid diver- 
sification among flowering plants occurring 
at the same time. 

What's more, C. strongi represents the 
earliest known rolled-leaf beetle species, 
hundreds of which today still are picky 
eaters, preferring just one of the ginger- and 
heliconia-like plants in the Zingiberales 
order. For decades, ecology students have 
learned about this impressive array of 
beetle-plant pairings, in which different 
rolled-leaf species adopt the same lifestyle 
but on their own distinct host plant. This 
new work adds "a historical dimension to 
this emblem of tropical biology," says Brian 
D. Farrell, an insect evolutionist at Harvard 
University. Adds Phyllis Coley, a tropical 
ecologist at the University of Utah, Salt 
Lake City: "The beetles and the gingers are 
an extremely old and conservative pairing, 
which m turn suggests that each could have 
had profound selective effects on the other." 

As a young ecologist in the 1970s, Don- 
ald Strong•the fossil's namesake•could 
not help but notice the vast variety of rolled- 
leaf beetleis, whose larvae take up residence 
inside the young, curled leaves of gingers. 
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heliconias, and their relatives, plants that 
thrive in the understories of tropical forests 
of the Western Hemisphere. In particular, he 
was enchanted by what the beetles did to the 
leaf itself Their damage becomes quite ap- 
parent as the leaf unfiirls and serves as a 
lasting reminder of a beetle long gone. "It 
was an issue of artistry, how beautifiil the 
damage was," recalls Strong, now at the 

Telltale jaws. From the characteristic chew 
marks left on fossilized (eaves, researchers 
have identified an ancient beetle and its fa- 
vorite food. Rolled-leaf beetles today still 
munch on ginger plants, as shown by the char- 
acteristic damage on this leaf from Panama. 

University of California, Davis. 
Over the next few decades. Strong docu- 

mented the specialized associations among 
different beetles and particular plant species. 
Eventually, he learned to identify a beetle 
species from the leaf's chew marks, which 
varied according to the size and shape of the 
particular beetle's jaws. 

Wilf came across Strong's research in 
1998, when he and Labandeira were studying 
a different sort of insect damage•tiny fossil 
pellets, mysterious specks of fossilized mate- 
rial found on 53-million-year-old fossil leaves 
he had collected from Wyoming. Until that 
time, Wilf hadn't really noticed the chew 
marks. But when he and Labandeira took a 
second look at the leaves, "we realized the 
damage [seen by Strong in the modern 
leaves] matched beautifully with what we 
had," Labandeira recall». Moreover, the fossil 
leaves looked very much like some modem 
gingers. Even after millions of years, says 
Wilf, "[the beetles] are eating the same thing, 
and they are doing it the same way." 

Soon Labandeira found even older leaves 
bearing the telltale signs of the rolled-leaf 
beetle. While working with Kirk Johnson at 
the Denver Museum of Natural History, La- 
bandeira noticed that some of Johnson's fos- 
sils, whose identity he didn't yet know, also 
had chew marks resembling C. strongi's. 
And they, too, turned out to be fossil gin- 
gers. Because these fossils came from a 
North Dakota deposit dating back to the 
Late Cretaceous, "we now know this insect 

is 20 million years older than if we just 
looked at body fossils," Wilf points out. 

These findings lend support to a theory 
proposed by Farrell in 1998. Farrell suggest- 
ed that most plant-eating beetles likely 
evolved in parallel to flowering plants and 
therefore were quite diverse during the di- 
nosaur's heyday (Science, 24 July 1998, p. 

' 555). But until now, there has been little 
: supporting fossil evidence, as only one rele- 

vant beetle fossil exists from that time. Now 
researchers may be able to get around this 
lack of fossils by looking at insect damage 
instead, says Leo Hickey, a paleobotanist at 
Yale University; "The work shows the po- 
tential of an overlooked resource in [study- 
ing] the evolution of insects." Inspired by 
this new work, Hickey expects that he and 
his botanical colleagues will be giving their 
plant fossils a second look for signs of insect 
activity. Coley agrees, noting that "it seems 
that the use of fossil damage patterns to in- 
fer ecological and evolutionary relationships 
is quite powerful." -ELIZABETH PENNISI 
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where overburden is thick and decreases vertical
effective stress where overburden is thin. These
pressure and stress profiles are created solely by
differential loading and variations in rock prop-
erties (such as permeability and bulk compress-
ibility) and do not require any other mechanism
to lower the permeability and increase overpres-
sure (39, 40). The model provides a simple
mechanism for overpressure generation and
slope failure in basins around the world by
providing an explanation for high overpressures
that begin at shallow depth on the middle and
lower slope. These results revitalize the hypoth-
esis that overpressure contributes to slope geo-
morphology (30–32). The lateral flow predicted
describes how compaction-driven flow can con-
tribute to the distribution, diversity, and size of
cold seeps and the communities that thrive on
the solutes in the seep fluids.
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Timing the Radiations of Leaf
Beetles: Hispines on Gingers
from Latest Cretaceous to

Recent
Peter Wilf,1,2* Conrad C. Labandeira,2,5 W. John Kress,3

Charles L. Staines,4 Donald M. Windsor,6 Ashley L. Allen,2

Kirk R. Johnson7

Stereotyped feeding damage attributable solely to rolled-leaf hispine beetles
is documented on latest Cretaceous and early Eocene ginger leaves from North
Dakota and Wyoming. Hispine beetles (6000 extant species) therefore evolved
at least 20 million years earlier than suggested by insect body fossils, and their
specialized associations with gingers and ginger relatives are ancient and phy-
logenetically conservative. The latest Cretaceous presence of these relatively
derived members of the hyperdiverse leaf-beetle clade (Chrysomelidae, more
than 38,000 species) implies that many of the adaptive radiations that account
for the present diversity of leaf beetles occurred during the Late Cretaceous,
contemporaneously with the ongoing rapid evolution of their angiosperm hosts.

Insects and flowering plants (angiosperms)
comprise most terrestrial biodiversity, and
their trophic associations are dominant fea-

tures of terrestrial ecosystems (1). Diagnostic
insect damage on fossil angiosperms is a
primary source of data for understanding the
evolution of these associations and can also
provide information complementary to insect
body fossils on the times of appearance of
insect lineages (2). Such insect damage is
known almost exclusively from dicots (3, 4),
although monocots comprise ;22% of living
angiosperm species (5) and are hosts to di-
verse groups of herbivorous insects (6, 7).
Among the best studied associations between
insects and monocots is the specialized feed-
ing of rolled-leaf hispine beetles (family
Chrysomelidae, subfamily Hispinae, tribes
Cephaloleiini and Arescini) in the semi-
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aquatic shaded habitat provided by the rolled
juvenile leaves of gingers, heliconias, and
their relatives (order Zingiberales) in under-
stories of Neotropical forests (Fig. 1) (8–13).
The feeding marks of larval rolled-leaf
hispines are stereotyped (9) (Fig. 1) and re-
main intact on the mature unrolled leaves,
increasing their potential for fossilization.

The family Chrysomelidae, or “leaf bee-
tles,” has ;38,000 described species (14)
and a possible total diversity of .60,000
species (15). Most extant leaf beetles con-
sume angiosperms, indicating a series of
adaptive beetle radiations (7). The subfamily
Hispinae (;6000 species) (7, 13, 15–17) is
considered to be among the more derived and
specialized groups within the Chrysomelidae
(6, 7). The Hispinae and its putative sister
group (;5000 species) (Fig. 2) comprise a
clade that includes most extant species of
monocot-feeding beetles (18).

The body-fossil record of leaf beetles is
virtually nonexistent during the Late Creta-
ceous (7, 19), the time interval known for
rapid evolution and diversification of angio-
sperms (20), and the record of most angio-
sperm-feeding Chrysomelidae is confined to
the Cenozoic (7). The first appearance of
Hispinae, in particular, is in the middle Eo-
cene, and the rolled-leaf hispines have no
fossil record (Fig. 2). This lack of temporal
resolution limits understanding of the timing
of chrysomelid radiations in relation to the
evolution of angiosperm host plants, whose
Cretaceous fossil records are far more com-
plete than those of leaf beetles (5, 21, 22).

Here, we report diagnostic feeding pat-
terns, of the type documented for larvae of
living rolled-leaf hispines in Central America
(9), on 11 specimens of latest Cretaceous and
early Eocene Zingiberopsis (Fig. 1). This
well-described leaf genus, a fossil member of
the ginger family (Zingiberaceae), is known
from Late Cretaceous through earliest Oligo-
cene strata of North America and from the
early Late Cretaceous of Germany (23–26).
The nearest living relative of Zingiberopsis is
considered to be the Asian genus Alpinia (24)
(Fig. 3). Of the 11 insect-damaged specimens
studied, 7 were Z. isonervosa from the early
Eocene Wasatch Formation, Great Divide
Basin, southwestern Wyoming (26–28). The
remainder were three specimens of Z. attenu-
ata, from the latest Cretaceous Hell Creek
Formation, and a single specimen of Z. ison-
ervosa from the early Eocene Camels Butte
Member of the Golden Valley Formation; all
four specimens are from the Williston Basin,
southwestern North Dakota (28). The damage
consists of individual (Fig. 1E) or sequential
(Fig. 1, C and F through I) linear feeding
strips that are bounded by reaction tissue and
have asymmetrically rounded termini, as de-
scribed in detail below (29). We propose the
ichnotaxon Cephaloleichnites strongi, gen. et

sp. nov., for the fossil insect damage (29).
The best fit of current phylogenetic data

to the fossils suggests a basal member of a
derived group, the Hispinae, feeding on a
derived monocot host (Figs. 2 and 3). An
adaptive trajectory within the phylogeny of
Hispinae and their close relatives is depict-
ed in Fig. 2, which starts on aquatic and
semiaquatic dicots and then shifts to mono-
cot host plants (stages 1 to 4 in Fig. 2) (18).
C. strongi documents the extension of the
semiaquatic life-style inland to the wet
rolled-leaf habitat of Zingiberales (stage 5
in Fig. 2). Host shifts by higher hispine taxa
occurred on terrestrial monocots and, for
the “cassidoid” group, on dicots (stages 6 to
8 in Fig. 2).

The present-day occurrence of rolled-leaf
hispines on six of the eight families of Zin-
giberales (13) raises the question of the order
of colonization within Zingiberales. Plant
chemistry is thought to be a primary con-
straint and selective force on the host shifts of
Chrysomelidae and other herbivorous beetles
(30). The Zingiberaceae as a group possess
well-developed phytochemistry, and several
compounds with potentially defensive uses
have been extracted from Alpinia leaves in
particular, including tannins, phenols, alka-
loids, and diverse terpenes (31). In contrast,

leaves of Heliconia, a relatively basal mem-
ber of the Zingiberales (Fig. 3) that is host to
a high diversity of rolled-leaf hispines (8), are
notably lacking in defensive compounds, and
experimental data show negligible effects of
Heliconia chemistry on the larval develop-
ment of rolled-leaf hispines (11). Corre-
spondingly, we have also observed, in her-
barium collections, a relatively low frequen-
cy and intensity of hispine damage on Zin-
giberaceae in comparison to Heliconia. The
preceding evidence suggests an initial colo-
nization of basal, chemically “simple” Zin-
giberales, which led to the diverse associa-
tions with living Heliconia, followed by
adaptive radiations of specialized hispines on
the Zingiberaceae by the Maastrichtian or
earlier.

C. strongi predates the body-fossil record
of Hispinae by ;20 million years, document-
ing the Cretaceous origins of the group (Fig.
2). As the fossil records of many living lin-
eages of monocots begin in the Campanian
and Maastrichtian (5), our data demonstrate
the presence and trophic activity of derived,
specialized, monocot-feeding beetles near the
time of the first appearances of present-day
host groups. In addition, the recent discovery
of a fossil sagrine beetle (19) indicates the
presence of the sister group to the hispines by

Fig. 1. Recent and fossil (Cephaloleichnites strongi) hispine damage on Zingiberales (29). (A) is live;
(B) and (D) are pressed specimens from the U.S. National Herbarium; (C), (E), (H), and (I) are from
the early Eocene; and (F) and (G) are from the latest Cretaceous (28, 29). (A) Chelobasis perplexa
Baly larva feeding on a leaf of Heliconia curtispatha Petersen (collected in Chiriquı́ Province,
Panama). The arrows indicate damage trails with irregular margins that are deployed perpendicular
to leaf venation. (B) Hispine damage of the type noted by the arrows in (A) on Heliconia vaginalis
Bentham [U.S. National Herbarium (US) 3134380, collected in Costa Rica]. (C) C. strongi (holotype)
on Zingiberopsis isonervosa Hickey (USNM 498174). (D) Hispine damage on Renealmia cernua
(Swartz) Macbride (Zingiberaceae), a close relative of Zingiberopsis (Fig. 3) (US 1153643, collected
in Panama). Extended linear slot feeding is visible. (E) C. strongi, single slot of the type shown in
(D) (USNM 498168). (F and G) C. strongi on Z. attenuata Hickey and Peterson [DMNH 19957, (F);
DMNH 19959, (G)]. (H and I) C. strongi on Z. isonervosa [USNM 509718, (H); USNM 498169, (I)].
Scale bars in all panels equal 5 mm, except in (G), where the scale bar is 1 mm.
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the Campanian (Fig. 2). Taken together, the
Cretaceous hispine and sagrine occurrences
indicate a high likelihood that many other
clades of leaf beetles evolved well before the
terminal Cretaceous.

Angiosperm diversity exceeded that of other
groups of land plants by the early Late Creta-
ceous (20). The rapid evolution of angiosperms
continued throughout the Late Cretaceous (22),
and 44% of extant angiosperm orders have
Cretaceous fossil records, including most living
lineages (21). Thus, Cretaceous radiations of
leaf beetles occurred during an extended inter-
val of evolutionary innovation for angiosperms,
suggesting the possibilities of plant-beetle co-
evolution or of adaptive beetle radiations that
closely followed the diversification of angio-
sperms. Supporting the latter hypothesis is Far-
rell’s contrast of the diversities of sister groups
of gymnosperm- and angiosperm-feeding bee-
tles (7), leading to his estimate that radiations of
beetles on angiosperms were responsible for the
evolution of ;100,000 living beetle species.

Rolled-leaf Hispinae and Zingiberales
have maintained a stereotyped, highly spe-
cialized plant-animal interaction in the New
World for .66 million years, surviving the
mass extinctions of plants at the end of the

Cretaceous (32) and profound climate chang-
es throughout the Cenozoic (33). This lon-
gevity supports findings of high phylogenetic
conservatism for host associations in living
Chrysomelidae (34) and in the exploitation of
ecological niches over evolutionary time
(35). Finally, the exclusively subtropical and
tropical distribution of the extant interaction
provides further evidence for warm climates
in the Western Interior of North America
during the Late Cretaceous and early Eocene
(23, 26, 32).
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Fig. 2. Hypothesized
evolutionary coloniza-
tion of angiosperms by
hispine beetles and their
immediate ancestors,
with the corresponding
fossil record of bee-
tles and their feeding
damage (19, 36). At
the left is a phyloge-
ny of hispine tribes
(blue) (13) and subfam-
ilies and tribes of its
putative sister group
(green) (37), with an
empty branch repre-
senting all other Chry-
somelidae; dashed lines
indicate groups without
published phylogenies,
inserted on the basis of
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(38). Approximate num-
bers of described spe-
cies (spp.) are indicated
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es, using (14) for the
total of 38,000 and (7)
for the blue and green
clades. The two tribes of
rolled-leaf hispines are
in capital letters. Rele-
vant body fossils of in-
sects are almost entirely confined to Cenozoic Lagerstätten. At the top right is
a cladogram of all major monocot lineages and several representative clades of
basal dicots, which is a compromise topology among recently hypothesized
evolutionary relationships based on both molecular and morphological charac-
ters (39–41). The lower right indicates dominant (red squares) and subdominant
(orange squares) plant hosts for chrysomelid clades at the left (6, 42–44);
numbered red clusters represent inferred major colonization stages. The matrix
reflects larval herbivory, almost all of which is deployed as external feeding or
leaf mining. The overall trajectory of primitive aquatic dicot to advanced

monocot to core eudicot host colonization is indicated by the stippled arrow;
secondary colonizations of core eudicots (43), as supported by beetle phylog-
enies, are designated by smaller arrows (6, 45). The colonization of core eudicots
by “cassidoid” hispines is primary (43, 44). The actual history of colonization is
undoubtedly more complex than depicted, and the time scale refers only to
fossil occurrences, not to branching events. The blank sections of the time scale
are “Pliocene” and “Pleistocene,” from left to right. Cam. 5 Campanian; Maa. 5
Maastrichtian; Pal. 5 Paleocene; Olig. 5 Oligocene; Donac 5 Donaciinae; C 5
Criocerinae; S 5 Sagrinae; Bruch 5 bruchoid complex.

Fig. 3. The phylogenetic relationships of
the families of the order Zingiberales
and the major clades of the family Zin-
giberaceae, with a hypothesized place-
ment for the fossil ginger Zingiberopsis.
Commelinales is used as the outgroup.
The cladogram of living taxa is derived
from parsimony analyses of morpholog-
ical and molecular (rbcL, atpB, matK,
18S RNA, and internal transcribed spac-
er regions) characters (39, 46). Zingib-
eropsis is inserted as a sister to its living
relative with the greatest morphologi-
cal similarity, Alpinia (23, 24).
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