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Stochastic Security for Operations Planning With
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Abstract—In their attempt to cut down on greenhouse gas emis-
sions from electricity generation, several countries are committed
to install wind power generation up to and beyond the 10%–20%
penetration mark. However, the large-scale integration of wind
power represents a challenge for power system operations plan-
ning because wind power 1) cannot be dispatched in the classical
sense; and 2) its output varies as weather conditions change.
This warrants the investigation of alternative short-term power
system operations planning methods capable of better coping
with the nature of wind generation while maintaining or even
improving the current reliability and economic performance of
power systems. To this end, this paper formulates a short-term
forward electricity market-clearing problem with stochastic se-
curity capable of accounting for nondispatchable and variable
wind power generation sources. The principal benefit of this
stochastic operation planning approach is that, when compared to
a deterministic worst-case scenario planning philosophy, it allows
greater wind power penetration without sacrificing security.

Index Terms—Electricity markets, expected load not served,
level of penetration, reserve, stochastic security, uncertainty, unit
commitment, wind power generation.

I. INTRODUCTION

CURBING emissions of greenhouse gases causing global
warming is currently one of the most pressing issues

facing the electricity generation sector in industrialized nations.
To that end, several continental European countries, most
notably Denmark, Germany, and Spain, are increasing the
level of penetration of renewable and low carbon electricity
generation resources, wind power generation (WPG) being
the prime resource. The United Kingdom, although lagging its
continental counterparts, is committed to cover 10% of its elec-
tricity demand from renewable resources by 2010 and to reach
the 20% mark by 2020 [1]. In North America, although federal
authorities in both the United States and Canada have been
less proactive in the reduction of greenhouse gas emissions
[2], [3], several state and provincial jurisdictions have taken
steps to increase the penetration of WPG and other renewable
generation technologies. Good examples include Texas and
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Alberta with their respective 1995 MW and 284.5 MW of
installed wind capacity in early 2006 [4], [5].

It is well known that WPG cannot be scheduled and
dispatched in the classical sense because of its intrinsic de-
pendence on constantly-varying weather conditions. Large,
megawatt-range modern wind turbines generally have mech-
anisms that attempt to regulate their output as the wind speed
varies [6]. However, these local control schemes are designed
to extract the maximum power from the wind rather than to
respond to the dispatch instructions of a grid operator or to
system frequency excursions. Specifically, the integration of
WPG in power systems poses three challenges.

1) The WPG system input is uncertain and cannot be pre-
dicted accurately.

2) The WPG system input can vary immensely over time; in
a given hour, it may be quite high and then drop to a very
low value (and vice-versa) over to the next hour.

3) The correlation between the WPG system input and the
load may be negative. This is problematic, especially in
situations when load is low and WPG is high.

As a result, WPG needs sufficient and appropriate backup
from hydrothermal generating units to perform the primary, sec-
ondary, and tertiary regulation actions necessary to maintain a
secure grid operation [7]. Obviously, in systems where WPG
represents a significant proportion of the installed classic hy-
drothermal generation (HTG) capacity, the regulation needs im-
posed on the system may be important and have significant costs
[8]–[14]. In fact, it is well recognized that increasing the level
of WPG penetration requires a full reassessment of operating
methodologies and standards, especially in setting operating re-
serve requirements governing primary, secondary, and tertiary
regulation [9], [11]–[19].

In addition to the security and economic issues, the integra-
tion of WPG in existing grids has to be made in accordance with
current electricity market structures [9], [11], [14], [20]. Nowa-
days, WPG may be sold in hour-ahead or in real-time electricity
markets [9]. Nonetheless, there is no clear agreement on how
WPG should offer energy in these markets. It is evident, how-
ever, that the quality of WPG offerings is coupled to the accu-
racy of short-term (24 to 1 h ahead) wind forecasting techniques
[21]. Accurate WPG prediction techniques are also crucial to
grid operators in order to schedule appropriate levels and types
of operating reserves needed to perform the different regulation
tasks.

There is therefore a need to investigate alternatives and im-
provements to current short-term power system operations plan-
ning methods to be able to cope with and take advantage of the
nature of this new generation mix. This paper outlines one such
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proposal based on the electricity market-clearing with stochastic
security approach developed in [22] and [23]. In this paper, we
adapt the concept of stochastic security to perform secure-eco-
nomic short-term forward market-based scheduling of genera-
tion, load, and tertiary reserves for power systems with uncertain
WPG and load.

The formulation we develop here goes beyond efforts in
developing scheduling methods for small-scale isolated power
systems containing wind and other nondispatchable resources
[24]. When moving to larger systems, in a quest for compu-
tational tractability, some authors make use of offline Monte
Carlo simulations [8], while others use analytical work based on
empirical data [9], [15]–[19]. These techniques do not address
all three of the complicating aspects of operations planning
with WPG simultaneously as it is done in this paper. They only
deal with the inherent uncertainty in WPG predictions through
offline computation of the levels of operating reserves. The
unifying characteristic of these contributions is their attempt to
establish a priori system-wide levels of reserves to be provided
by HTG to cope with the uncertainty in WPG predictions
(Challenge 1). These approaches assume that reserve require-
ments are sufficient in setting an appropriate unit commitment
and scheduling ample ramping capacity to follow the possibly
erratic WPG swings (Challenge 2) and to manage possible
negative correlation between WPG and load (Challenge 3).

The major contribution of this paper is the design of an elec-
tricity market-clearing algorithm addressing simultaneously all
three challenges of operations planning with WPG. The sce-
nario-based approach we adopt in modeling the uncertain WPG
and load makes it possible to condition explicitly—through sce-
nario-specific unit commitment and ramping constraints—the
unit commitment, reserve levels, and HTG dispatches to the pos-
sibly erratic and negatively-correlated WPG and load. The other
contribution of this paper is the scenario modeling and genera-
tion methods required to approximate the continuously-valued
WPG and load over the scheduling horizon (as opposed to the
discrete nature of the uncertain events modeled in [22] and [23]).
This paper also formalizes of the use of WPG spillage for eco-
nomic or technical reasons as part of a market-clearing algo-
rithm. Finally, this paper contributes to demonstrate the value of
added scheduling flexibility (through voluntary or involuntary
load shedding and WPG spillage) in improving the technical
and economic properties of electricity markets with important
WPG penetration.

II. STOCHASTIC SECURITY

Power system operation is subject to the occurrence of
random events which include sudden line and generator failures
as well as demand variations. So far, the industry practices
used to plan for such contingencies have been based on
rules-of-thumb. These preventive actions include most notably
the scheduling of levels of operating reserves (spinning and
supplemental) to cover for the potential loss of generating
units. Reserve scheduling is however based on deterministic
models and usually ignores the likelihood and the potential
consequences of the random contingencies. This is a weak-
ness that has been recognized for some time now, and several

authors have investigated ways to better represent the impact
of contingency probabilities on operating reserve levels [25],
[26]. Recently, in Bouffard et al. [22], [23] the concept of
stochastic security was proposed as a way to further improve
the systematic scheduling of reserves. The key advantage of
stochastic security is that it accounts for the expected costs
of 1) preventive security actions through unit commitment,
generation and load dispatch, as well as reserve scheduling; and
2) post-disturbance corrective security actions which include
the deployment of reserves via generation and voluntary load
re-dispatch in addition to the possibility of using involuntary
load shedding. The important distinctions with respect to prior
proposals are the explicit optimization of post-disturbance
corrective actions and the consideration of involuntary load
shedding as an emergency action to respond to contingencies.
The approach recognizes, however, that involuntary load shed-
ding should only be used when the likelihood of disturbances
is very small, and the costs to customers, in terms of the cost of
lost load, are also small. The salient feature of preliminary case
studies for a day-ahead electricity market-clearing formulation
shown in [23] was that stochastic security can potentially
generate non-negligible economic savings while still ensuring
high levels of customer service reliability.

The unexpected failures of transmission lines and generating
units were the uncertainty factors considered in [22] and [23].
Nevertheless, as shown briefly in Appendix A, the basic market-
clearing problem with stochastic security is general enough to
accommodate any type of power system uncertainty. In this
paper, we exploit this generality by considering the short-term
power system operation planning problem for which the sources
of uncertainty are WPG and demand forecast errors. We note
that the type of uncertainty dealt with in this paper is in the
hourly average levels of wind generation and demand. That is,
we consider only the scheduling of energy and tertiary regu-
lation resources in the form of reserves, assuming that the re-
serves required for the primary and secondary regulation tasks
are scheduled through a mechanism separate from the actual
market-clearing problem. Ideally, as argued in [7], energy as
well as all resources necessary to perform the different regula-
tion actions should be scheduled simultaneously. However, with
the currently available computing power, this is hardly possible.

III. WIND POWER GENERATION AND DEMAND

FORECAST UNCERTAINTY

A. Demand

Short-term electricity demand prediction tools are numerous
and have been the subject of extensive research and develop-
ment [27]. Here, we assume that a prediction technique is avail-
able and provides an hour-by-hour sequence of load forecasts
(or any time step, as required by the scheduling horizon), 1

megawatts for the successive periods of the scheduling horizon
and demand entities . We note that,

for simplicity of exposition in this paper, we ignore transmis-
sion network effects.

1As a convention for the remaining of this paper, variables and parameters
written with a “hat,” ��, denote, respectively, the expected values of those vari-
ables and the forecasted values of those parameters.
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Since the demand forecasts are generally inaccurate, we
model the forecast errors as zero-mean normally-distributed
random variables (RVs) with (predicted) standard devia-
tion megawatts for and . The
normality assumption of the demand forecast error is standard
in the literature [27]. It is justified through the wide diversity
of the electricity demand across geographical areas and con-
sumer classes combined with an invocation of the central limit
theorem [28].

In an electricity market setting, a number of caveats about de-
mand forecasts and forecast errors must be addressed. First, de-
mand forecasts are performed by the load-serving entities

, which then bid accordingly in the market on behalf of
their consumers. As a result, the system-wide demand forecast
can be seen as a by-product of demand-side bidding in forward
(e.g., day-ahead and hour-ahead) electricity markets. That is, the
forecast sequences for and
are determined through the benefit functions of demands, which
reflect consumers’ price elasticities. Yet, we assume here that
the error in the demand forecast is independent of the consumer
benefit functions. This assumption is justified because forecast
errors are caused generally by uncontrollable factors exogenous
to the consumers, with weather being the prime factor [27].
Likewise, a normal distribution model implies that the under-
lying RV modeling the uncertain demand prediction may be
negative-valued, something which is not physically possible.
One way to avoid this modeling inconsistency would be to use
a log normal distribution to represent the prediction error [28].
Nevertheless, the assumption here is that the demand model es-
sentially can ignore occurrences of negative-valued loads since
these events, from a practical mathematical point of view, have
low enough probabilities [29].

B. Wind Power Generation

WPG prediction techniques are currently the subject of ex-
tensive ongoing research and development [21]. Nevertheless,
here we assume—like in the case of the demand—that a predic-
tion tool provides an hour-by-hour (or any time step, as required
by the scheduling problem) system aggregate WPG forecast se-
quence, megawatts for . As with the demand, we
model the forecast errors with zero-mean normally-distributed
RVs with (predicted) standard deviation megawatts for

.
Statistical models for wind speeds at specific locations do

not fit normal distributions but rather Rayleigh distributions [6].
In addition, this reality combined with the wind turbines’ non-
linear wind speed-to-power output relationships result in that
the probability distributions of the power output of individual
wind generators are not normal. However, like in the case of the
demand, the large number and the geographical dispersion of
wind turbines permit the invocation of the central limit theorem
to justify the normality assumption of the prediction error. This
assumption is also motivated by empirical evidence; see [30]
for a real life example. Of course, there may be cases where
the poor geographical diversity of the wind-based generation
capacity cannot justify making this assumption. In such cases,
forecast error model modifications have to be made accordingly;

this is, however, out of the scope of this paper. Nevertheless,
the approach we detail here based on the normally-distributed
forecast error (for both the load and WPG) is general enough
to be applicable with any forecast error probability distribution.
We also note that the problem encountered with negative-valued
load levels applies as well with WPG. Yet, we may assume here
that the WPG model also forbids negative-valued power output
levels because these have probabilities which are basically in-
significant.

C. Net Load

From the demand and wind power generation forecasts, it is
possible to define what is generally termed the net load forecast

and its associated forecast error RV [18], [12]. Given that
both the discrete time demand and WPG random processes have
similar frequency spectra, during some time period , we define
the net load forecast as the difference between the demand
and the WPG forecasts

(1)

Since it is generally assumed that the WPG and load forecast
errors are uncorrelated normal RVs, then the standard deviation
of the forecast error associated with the net load is given by

(2)

for . In the remaining parts of this paper, to simplify
the notation, we will use the net load concept in formulating
the electricity market-clearing problem with WPG and demand
uncertainty. In so doing, the net load forecast will be used
along its zero-mean normally-distributed forecast error RV
with standard deviation .

D. Net Load Scenario Construction

The continuously-valued net load forecast error model just
developed is not computationally practical to formulate a
market-clearing problem. This is because this model would
require the formulation of a mathematical program needing
to meet all constraints over the spectrum of net load values.
It would also require the objective function to be computed
as an integral over the continuum of the possible net loads. It
is more reasonable to consider an approximation whereby the
continuous probability distribution of the net load error RV
is discretized (sampled) through a number of representative
“slices” [31].

Fig. 1 shows an example of such a discretization of the
continuous distribution function of the net load forecast error.
Here, seven intervals are centered on the zero mean and each of
the intervals are one net load forecast error standard deviation

-wide. Obviously, other slicing designs can be adopted
with more intervals to improve the quality of the approximation
at the expense of a larger problem size. Likewise, uneven
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Fig. 1. Typical discretization of the probability distribution of the net load fore-
cast error.

slicing patterns can be used whereby more intervals are clus-
tered closer to the mean and fewer are used to model the tails
of the distribution.

The probability distribution slicing process produces dis-
crete-valued random variables for and

. For each slice is defined at the center of
its respective interval with its corresponding probability evalu-
ated using standard techniques [28]. For example, in Fig. 1, the
discrete realizations of the net load error RV are
per unit, per unit, and so on.

Under the assumption that the net load forecast error can only
adopt a finite number of values for each period, the market-
clearing problem will be solved only over a finite number of
net load forecast error trajectories. The forecast error trajecto-
ries are made up of sequences of nodes repre-
senting one of the possible discrete realizations of the net load
error RV. A specific instance of a trajectory, a net load forecast
error scenario and denoted as , is an or-
dered sequence of nodes . We also define the
error-free scenario for which the re-
alization of the net load error is nil for all . The col-
lection of all net load forecast error scenarios is called the sce-
nario tree . We assume that the scenario
tree always contains at least the error-free scenario. Note that to
avoid excessive notational zeal, we let as it is
understood that under scenario , it is the realization indexed
by which occurs during period . Furthermore, for each sce-
nario , there is a corresponding time-indexed sequence of
probabilities calculated from first principles.

Fig. 2 shows an example for a case with defining
“Low,” “As predicted,” and “High” net load forecast error slices
evolving over time periods. In Fig. 2, all transitions are
allowed, leading to a scenario tree containing nine scenarios.
The error-free scenario is easily identified as the sequence

.
Statistical studies of inter-hour wind generation variations in

Scandinavia [12], [32] indicate that most of the time recorded
inter-hour variations in the wind power generation remain
within plus or minus 5%–10% of the installed wind capacity.
Likewise, the observed inter-hour demand deviations from

Fig. 2. Net load forecast error scenario tree example.

the load forecast are usually well bounded. Consequently, in
formulating a market-clearing problem with wind/demand
uncertainty, it may be possible—and, in fact, necessary—to
optimize over a scenario tree that is made up of those scenarios
that do not contain very “unlikely” inter-period transitions.
These further simplifications should make the problem more
computationally tractable in light of the computational ex-
plosion arising when all probable inter-period transitions are
allowed. For example, the scenario tree corresponding to the
seven-slice net load forecast error probability distribution
in Fig. 1 running over an horizon of 24 h would have over
1.9 10 scenarios if all possible inter-hour transitions were
allowed. In streamlining the scenario tree, ad hoc scenario re-
jection techniques based on empirical evidence could be used.
Other systematic techniques applicable to generic stochastic
optimization problems can be investigated as well [33].

IV. MARKET-CLEARING UNDER NET

LOAD FORECAST UNCERTAINTY

In this section, we characterize the social cost objective
as well as the feasible set of the electricity market-clearing
problem defined for a net load forecast uncertainty scenario tree

. We examine more specifically aspects of scenario-per-sce-
nario power balancing through wind energy spillage, involun-
tary load shedding, as well as HTG and demand-side reserve
deployment.

A. Objective

The goal of the electricity market-clearing problem is to min-
imize a measure of the expected social cost

(3)

We distinguish between two components of the expected so-
cial cost function:
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• those which materialize with probability one and can only
be acted upon in the initial decision stage (at the time
of market-clearing or day-ahead unit commitment), which
are:
— the scheduling costs of tertiary reserve services during

period (generation and voluntary demand-side up and
down spinning reserves), ;

— the fixed running and startup costs of HTG during pe-
riod , which depend on their associated 0–1 unit com-
mitment variables, ;

• those second-stage components that materialize with a
probability during period , under scenario ,
which are:
— the demand benefits, ;
— the generation running costs, ;
— the costs of involuntary load shedding, , where

represents the vector of values of lost load.
We point out that boldfaced symbols denote vectors

of a given variable representing either all generators
or all demands . For in-

stance, is the vector of
HTG outputs during period under the realization of scenario

.
The reason why components of the expected social cost func-

tion are assigned a probability of one is that their associated sets
of decisions variables (i.e., unit commitment and reserve sched-
uling decisions) have to be taken prior to the revelation of the
uncertainty—first-stage decisions. On the other hand, the com-
ponents of the expected social cost function which are assigned
probabilities are those which only materialize once the
uncertainty is revealed—second-stage decisions. These compo-
nents measure the expected social cost associated with the re-
serve deployment and load shedding patterns needed to keep the
power system balanced during the full length of the scheduling
horizon and for all the considered scenarios.

In the expected social cost function, we do not assign an op-
erating cost component to the WPG. It is probably not realistic
at the present moment for WPG to submit nonzero running cost
offers given their relative incapacity to regulate effectively their
output. We assume that WPG cannot be dispatched in the clas-
sical sense; the only possible control action for WPG is wind
power curtailment, which we also call “wind power spillage.”
Clearly, the development of techniques aimed at the formulation
of effective market offer strategies for WPG warrants further in-
vestigation.

B. Power Balance

For all pairs belonging to the scenario tree , the power
balance must be satisfied

(4)

We recall that the variables represent the power output
of generator during period under scenario of the net load
error RV . In (4), the variables correspond to invol-
untary load shedding that could be applied, where of necessity

we impose

(5)

In (5), is the forecast error associated with demand
during period under scenario . Again, (5) is defined for all
time intervals and realizations of the net load RV forming the
scenario tree , except for the error-free scenario for which
we require that .2

In (4) and (5), the demand-side variables are also indexed
by the scenario index to model the demand-side adjustments
that may be requested by the grid operator as part of voluntary
responses to errors in the combined wind power and demand
forecasts. In the case of the error-free scenario , the de-
mand variables are given by , where is the
forecasted demand which is a by-product of the market bidding
by demand entity . Here, the forecasted wind power genera-
tion is not indexed by since, unlike the demand, it may not
be controlled directly through voluntary adjustments.

Further in (4), the variable models the rate at which
wind power generation is curtailed (“spilled”) during period
under scenario . Much like the involuntary load shedding
term, WPG spillage is bounded from below by zero and from
above by the actual wind generation

(6)

for all . Here, is the forecast error associated
with the WPG during period under scenario . We also note
that unlike the demand, we allow for WPG to be curtailed under
the error-free scenario.

The use of spillage may seem counterintuitive because WPG
is free energy. However, under low probability situations for
which the amount of wind generation is very high and the de-
mand is very low, the expected social cost may be lower if the
wind energy is simply curtailed. In such cases, the expected
costs of the required down-spinning reserve services that would
have to be supplied by hydrothermal units and demands can
easily outweigh the benefits of the free, but excessive, wind.
Wind energy spillage is generally obtained through active and
passive mechanical controls of the wind turbines’ blade pitch
angle and nacelle yaw angle [6].

C. Other Market-Clearing Constraints

Referring to the generic market-clearing with stochastic se-
curity problem detailed in Appendix A, we have addressed so
far the modeling of the objective function and of the power bal-
ance under the various forecast error scenarios. What remains
to be modeled are the operational constraints applying to indi-
vidual HTG units and demand entities. Clearly here, because of
the intrinsic and complex time dynamics of the market-clearing
problem, the ramping limitations of the HTG are prime factors

2The reason why we do not allow nonzero load shedding decisions in the
error-free scenario is essentially philosophical. We believe that under perfectly
forecasted conditions, the demand should be able to fully benefit from available
generation capacity. However, the opposite can also be acceptable as permitting
load shedding under the error-free scenario may allow lower levels of expected
social costs and higher wind power penetration.
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to be modeled. The interested reader is referred to Appendix B
for a more detailed treatment of these constraints. The other
important feature of the constraints detailed in Appendix B is
the explicit coupling they impose between first-stage (unit com-
mitment and reserve levels) and some of the second-stage de-
cision variables (HTG generation outputs and responsive de-
mand levels). Lastly, we impose constraints on variables sharing
common scenario paths to model forecast error nonanticipa-
tion. We do so by enforcing that a variable for

if the error realizations corresponding to scenarios
and are identical over the interval .

D. Incorporating HTG Contingencies

The proposed electricity market-clearing formulation would
be incomplete without the inclusion of a discussion of the im-
pact of HTG equipment outages. From the point of view of the
problem formulation, adding HTG outages is straightforward
because it boils down to the mere generation of extra scenarios
whose probabilities are found by calculating the convolution of
the probability distributions of the net load forecast error with
those of the contingencies.

From a computational point of view, however, the addition of
hydrothermal generator contingencies would render the solution
process of the market-clearing problem much more challenging.
The addition of a single generator contingency, also consid-
ering its possible times of failure, would multiply the number of
scenarios by the number of periods of the scheduling horizon.
We must recall that with each extra scenario, there are corre-
sponding extra variables and constraints. As a result, realisti-
cally-sized problems may be very hard to handle with current
computing tools in the reasonable amount of time required for
day-ahead market-clearing purposes.

Some modeling simplifications could be considered. One
possibility is to formulate a hybrid problem in which a deter-
ministic reserve criterion (e.g., criterion) covers the HTG
contingencies, while the probabilistic method developed here
takes care of scheduling reserves for the WPG and demand
uncertainty. A second solution could make use of the scenario
reduction techniques mentioned earlier [33]. Lastly, decom-
position techniques [31] are promising because they exploit
the intrinsic decomposable structure of the problem—whereby
each scenario is optimized individually under the command
of a master coordinating problem. These aspects, however, lie
outside of the scope of this paper.

V. ILLUSTRATIVE STUDY

This section outlines the results of an illustrative example
of how the electricity market-clearing with stochastic security
under demand and WPG uncertainty works. Primarily, we aim
to demonstrate the following.

• When planning operations under uncertain load and wind
forecasts, voluntary and involuntary load shedding are
valuable scheduling options for the system operator.

• Under stochastic market-clearing, the acceptable level of
wind power penetration can be more important than under
operating schemes based on deterministic “worst-case sce-
nario” security criteria.

TABLE I
HOURLY DEMAND FORECAST

TABLE II
PER-UNITIZED HOURLY WPG FORECAST

As the WPG penetration level is increased—WPG penetra-
tion is defined as the ratio of the WPG installed capacity to the
total HTG capacity—for some arbitrary WPG and demand fore-
casts, the stochastic market-clearing is solved and its outcomes
are analyzed against the outcomes of a corresponding determin-
istic security-constrained market-clearing formulation. Here the
deterministic market-clearing formulation schedules the power
system while ensuring that the power balance is met under all
realizations of the net load forecast error scenarios without re-
sorting to involuntary load shedding and without considering
the relative likelihood of the scenarios. It minimizes the cost of
unit commitment, reserves, and of the generation dispatch corre-
sponding to the predicted (error-free) net load scenario. This ap-
proach is similar to the security-constrained scheduling problem
formulated in [34].

To facilitate conceptual understanding and exposition, we
consider a small system consisting of three HTG units with a
aggregate capacity of 250 MW whose technical and cost data
are detailed in Appendix C. The system is scheduled over four
consecutive hours assuming the inelastic demand forecast given
in Table I. The standard deviation of the demand forecast error
is assumed to equal 2% of the hourly demand forecast. The
demand forecast error probability distribution is approximated
by a discrete distribution made up of seven one-standard-de-
viation-wide slices as previously shown in Fig. 1. This slicing
arrangement gives rise to a scenario tree with 2401 paths
spreading over the four hour-long scheduling horizon.

Here we investigate the performance of market-clearing with
stochastic security with respect to the level of penetration of
WPG. For this, we first assume we have the per-unitized wind
power forecast of Table II, which is scaled to the increasing pen-
etration level. Second, we take the WPG forecast error model
from Fabbri et al. [13]. Assuming that the WPG prediction was
made 24 h prior to the first hour of the schedule for an ensemble
of wind farms contained in a region with a diameter of 140 kilo-
meters, the standard deviation of the WPG forecast error is ap-
proximated by

(7)

where and are both in per unit of the installed wind
capacity for .
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Fig. 3. Total expected social costs of scheduling as a function of the WPG
penetration.

A. Results and Analysis

Fig. 3 shows the evolution of the expected social cost of the
schedule with increasing levels of WPG penetration for both sto-
chastic and deterministic market-clearing approaches. The de-
terministic and stochastic optimal social costs cannot be readily
compared because they are obtained through completely dif-
ferent objective functions. Nonetheless, an expected social cost
comparison can be made between the two if we compute the
expected cost of operation (i.e., the expected social cost of the
generation dispatches required to meet the power balance under
all net load scenarios without having to resort to any load shed-
ding) under the proviso that the market was initially cleared in
a worst-case scenario deterministic fashion. We obtain the ex-
pected social cost of the deterministic schedule by adding this
expected cost of operation to the deterministic unit commitment
and reserves costs. This expected social cost is comparable to
that of the expected cost of the stochastic approach because it
considers simultaneously the costs of unit commitment, reserve
scheduling, and generation dispatches under all scenarios as the
objective function of the stochastic approach (3) does.

The expected cost under stochastic market-clearing under-
goes a steady decrease as the amount of WPG increases. This
contrasts with the deterministic schedule cost which decreases
until the 8% penetration mark where it starts increasing until
no feasible schedules exist when the penetration level reaches
10%. The observed behavior of the deterministic-based ex-
pected scheduling cost indicates that at one point, the need for
reserves to cover all forecast error scenarios overwhelms the
expected savings brought about by the increasing level of free,
but uncertain, WPG.

Noticeably in Fig. 3, the size of the gap between the two
curves widens with the increase in the WPG penetration. This
size of the gap represents the value of the stochastic solu-
tion (VSS) [31], which is the expected value of the savings
brought about by using a stochastic approach. We observe a
slow increase in the VSS until the 8% penetration level. The
faster increase in between 8% and 9% is explained by the
need for the deterministic schedule to use expensive voluntary
demand-side reserve (at $50/MWh) to balance power under all
scenarios—even those with very low probabilities.

Fig. 4. Cost of reserves as a function of the WPG penetration.

The behavior of the expected costs and of the VSS can be
further investigated by inspecting Fig. 4, which shows the pro-
gression of the reserve costs as the WPG penetration increases.
There is nothing more to say about the case of the determin-
istic-based market-clearing; it is clear that the reserve costs in-
crease sharply with the level of WPG penetration. On the other
hand, the cost of reserves under stochastic market-clearing fol-
lows a different pattern: 1) between 0% and 2% penetration, the
cost of reserves decreases because, on average, it is cheaper to
spill wind and to shed load involuntarily than to schedule more
reserves because of the small size of the WPG capacity; 2) be-
tween 2% and 15%, more reserves are required since the costs
of load shedding and the opportunity costs of spilling wind in-
crease faster than those of reserves; and 3) for 15% of WPG
onward, the cost of reserves remains relatively constant as the
provision of more reserves cannot further decrease the global
expected scheduling costs. This phenomenon is reflected in the
amounts of involuntary load shedding and wind energy spillage
shown in Fig. 5. The faster increase in the wind energy spillage
occurring for WPG penetration levels above 15% is reflected in
the flat part of the curve for the cost of reserves since under these
higher penetration levels, wind energy spillage, which does not
cost anything, is used in lieu of expensive demand-side down-
spinning reserve.

One of the peculiarities of the demand and wind forecasts in
this case study is the occurrence of a low demand period during

, which is at the same time a high wind period. This has
serious implications as can be seen in Table III for a 15% WPG
penetration level. During this period, generator 3 is constrained
by its minimum output level (10 MW), impeding any kind of
down-regulating actions. Thus, a significant amount of wind en-
ergy has to be curtailed—an average value of 2306.3 kWh. In
fact, here one could argue that the maximal WPG penetration
level should not exceed 15% unless demand increases because
at this point, HTG generators have no more freedom to perform
down-going regulation without having to go offline. Obviously,
this is an extreme example on a very small and idealistic system.
However, with higher and higher levels of wind penetration,
such phenomena may become prevalent and of practical impor-
tance. Appropriate procedures and technologies to manage these



BOUFFARD AND GALIANA: STOCHASTIC SECURITY FOR OPERATIONS PLANNING 313

Fig. 5. Expected load not served and expected wind energy spillage as a func-
tion of the WPG penetration.

TABLE III
ERROR-FREE GENERATION, RESERVES, EXPECTED LOAD NOT SERVED, AND

EXPECTED WIND ENERGY SPILLAGE FOR 15% WPG PENETRATION

events have to be developed. Large-scale energy storage infra-
structure may offer part of the answer to this problem once its
capital cost has come down [35].

Table IV shows the expected marginal social costs of energy
and security for the stochastic market-clearing calcu-

lated as in [23]. We notice again the effect of the constraint on
down-going regulation active during period through the
low values for the expected marginal costs of energy and secu-
rity (below the $20/MWh offered marginal running cost of gen-
erator 3). These lower marginal expected costs indicate that, by
increasing their load during that period, consumers could ben-
efit from the plentiful supply of free wind.

B. Computational Complexity

The dimensions of the simple market-clearing problem here
are not trivial; they are reported in the second column of Table V.
The large dimensions are a consequence of the fact that no sce-
nario reduction techniques were applied. Moreover, the number
of discrete net load forecast error samples (seven per hour) is a
factor directly influencing the size of the problems. Obviously,

TABLE IV
EXPECTED MARGINAL SOCIAL COSTS OF ENERGY AND

SECURITY FOR 15% WPG PENETRATION

TABLE V
PROBLEM DIMENSIONS UNDER DEMAND AND WPG UNCERTAINTY

WITH AND WITHOUT SOLVER PREPROCESSING

using fewer slices would reduce the problem size at the ex-
pense of accuracy. In addition, with the help of the mixed-in-
teger linear programming solver preprocessing engine, one can
generally reduce significantly the size of the problem, as shown
in the third column of Table V.

The market-clearing problem was solved on a Pentium 4,
1.8 MHz with 512 MB of RAM using version 9.0.2 of CPLEX
under GAMS [36]. The solution time was of 39.0 s for the 10%
WPG penetration case. Similar computation times were ob-
tained for other penetration levels. Reiterating what has already
been mentioned regarding the computational complexity of
the proposed formulation, any practical implementation would
require further investigation into the application of scenario
reduction techniques. Moreover, the application of decomposi-
tion methods should equally be the subject of future research
efforts.

VI. CONCLUSION

Current electricity market-clearing schemes cannot fully in-
tegrate the most essential features of nondispatchable genera-
tion technologies like wind power. This limitation is becoming
an issue for grid operators as there is more and more public
and political pressure to increase the penetration of renewable
generation technologies, which depend on randomly-varying
weather conditions. Using the stochastic security framework de-
veloped in previous work, this paper proposed an electricity
market-clearing formulation that can account explicitly for this
type of uncertainty and variability.

There are several advantages to the use of a stochastic ap-
proach over the more conservative deterministic approaches.
The latter assumes worst-case scenario wind and demand con-
ditions to be as likely as those close to forecasted conditions.
On the other hand, the former, since it assigns probabilities of
occurrence to each wind-demand scenario, is biased more to-
ward the most likely forecasted conditions. This has the con-
sequence of permitting the improvement of the economic per-
formance of the market by taking advantage of the freely-avail-
able wind power and by reducing reserve scheduling and HTG
unit commitment costs. In addition, the stochastic approach, be-
cause it includes the extra flexibility provided by coordinated
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involuntary load shedding and wind spillage actions, permits
the expansion of the feasible space of the security-constrained
market-clearing problem. A collateral benefit of this is an incre-
ment in allowable WPG penetration levels. A simple case study
showed how the proposed formulation does that in comparison
to a worst-case-based deterministic technique.

Notwithstanding the higher efficiency and flexibility of the
proposed stochastic market-clearing approach, work on fitting
better wind forecast error models and scenario construction
should be conducted. This applies in cases where the normality
assumption of the error may not be valid—in regions with
poor geographic distribution of wind farms, for instance—and
where there is inter-hour correlation in wind and load levels.
The other important research needed is the improvement of its
computational tractability through the application of scenario
reduction and decomposition methods.

APPENDIX A
MARKET-CLEARING WITH STOCHASTIC SECURITY

Consider the following security-constrained market-clearing
problem formulated as a two-stage stochastic optimization
problem with recourse [31]. It allows for unit commitment
decisions to be made only in the first decision-making stage:

(8)

subject to, for all time periods of the market-clearing scheduling
horizon

(9)

(10)

(11)

The vectors and represent the first-stage decision vari-
ables taken prior to the revelation of uncertainty: is the vector
of discrete unit commitment decision variables and is the
vector of reserve scheduling decisions applying to period . The
second-stage variables, which are realized once uncertainty has
been revealed, include the controllable generation and load dis-
patch variables as well as the involuntary load shedding vari-
ables for period . The problem formulation is based on the
possible occurrence of scenarios for which we
associate individual probabilities of occurrence . We denote
the scenario indexed as the pre-disturbance (or, as in the
context of this paper, the error-free) scenario, whereas the sce-
narios indexed by are the post-disturbance (or, as
in the context of this paper, the error) scenarios.

The objective function (8) minimizes the expected social cost
of operating the power system under pre- and post-disturbance
operation, including any possible involuntary load shedding.
On the one hand, the function is a measure of the
net social cost—unit commitment and reserve scheduling—of
preparing to operate under the full collection of scenarios

and is thus incurred with a probability equal to one.

On the other hand, the net social cost under the uncertain sce-
narios , denoted by , includes the
costs of deploying generation-side and demand-side reserves
through dispatch decisions once the uncertainty is revealed. In
addition, under the disturbed states, the cost of any involuntary
load shedding used is included— for
only, where the vector represents the value of lost load [37].
Here, we impose that as we do not allow for load shed-
ding under the pre-disturbance (error-free) scenario, .

The vector constraint (9) represents the power balance under
the pre-disturbance scenario for which no load shedding is al-
lowed, while (10) represents the power balance conditions for
each of the disturbance scenarios wherein invol-
untary load shedding is permitted. The vector inequality (11)
gathers all the remaining network and technological constraints,
and it contains the constraints coupling the pre- and post-distur-
bance conditions.

One of the most important aspects of electricity market-
clearing with stochastic security is that reserves in the first
stage are scheduled in an implicit manner as dictated by the
power balance (9) and (10). The result of this is that there are no
needs for the a priori specification of minimal reserve levels for
the entire system. Instead, the levels of reserves are specified
for each generating unit and time period as a by-product of the
pre- and post-disturbance power balances. For example, the
provision of up-going spinning reserve provided by generator
during some period , satisfies the inequalities

(12)

(13)

(14)

where the variables represent the HTG generation levels
under the pre-disturbance state , the variables repre-
sent the post-disturbance generation outputs under the spectrum
of scenarios, , and the variables denote the unit
commitment status for generator during period — in-
dicates that unit is online during period ; otherwise, .
Finally, is the maximum amount of up-going reserve
offered by generator during period .

APPENDIX B
HTG AND DEMAND-SIDE CONSTRAINTS

Classical multiperiod market-clearing problems with unit
commitment include provisions for modeling restrictions on
the operation of HTG units. These restrictions include most
notably minimum/maximum power output limits, ramping
limitations, and minimum up- and down-time constraints [38].

As mentioned in the main text, HTG ramping limitations rep-
resent the most important limiting factor in the process of sched-
uling of tertiary reserves and its later deployment through gener-
ation re-dispatch. Ramp constraints set upper and lower bounds
on the amount of power a unit can deliver at a later time in re-
sponse to changing system conditions. For all scenarios , we
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define upper bounds on the generation coming from unit during
period

(15)

(16)

(17)

These are general enough and can apply for all HTG
and pairs . In (15)–(17), the pa-

rameters applying to generator , and ,
are, respectively, the HTG unit maximum loading capacity,
the runtime up-going ramp limit, the startup ramp limit, the
initial power output, and unit commitment status at time .
Likewise, lower bounds on for all HTG and
pairs are expressed as

(18)

(19)

(20)

where the parameters , and are the minimum
generation output limit, the runtime down-going ramp limit,
and the shutdown ramp limit, respectively. Minimum up- and
down-time restrictions are not as critical here, and we shall omit
them for the sake of brevity; the interested reader is referred to
[38].

The demand-side limits have to account for the fact that
only demand levels associated with the error-free scenario

are bounded by elasticity limits. That is, for
and

(21)

Like in the case of market-clearing with equipment contin-
gencies described in [22] and [23], the notion of reserve used
here is different from what is the current industry definition. In
the way illustrated in Appendix A, the levels of generation-side
tertiary reserve (up-spinning, , and down-spinning, ) as-
signed to particular HTG units satisfy

(22)

(23)

and

(24)

(25)

The levels of demand-side reserves are defined similarly.

TABLE VI
HTG DATA

APPENDIX C
HTG DATA

The HTG unit data for this paper are found in Table VI. We
assume here that the energy and reserve offers of the genera-
tors remain unchanged for all hours of the scheduling horizon.
Moreover, the generators are assumed not to incur any fixed
running costs, but they do incur constant-valued startup costs,

. The generation offering structure requires that each gener-
ator offers a single block of energy ranging between its tech-
nical minimum, , and maximum, , at the rate of
dollars per megawatt-hour. The bounds on the amounts of re-
serve services offered are set to be the largest possible; in other
words, the upper bound on both up- and down-spinning reserve
is . The generation-side reserve services are of-
fered at the rates, in dollars per megawatt-hour, for up-going
spinning reserve, and for down-going spinning reserve. The
demand offers (voluntary) reserve (both up- and down-going)
at the rate of $50/MWh, while its value of lost load (VOLL)
is $1000/MWh. The HTG minimum up- and down-time con-
straints are assumed to be inactive, and their ramping capabili-
ties are set to megawatts per hour. Finally, we assume that
all generators are in the off state at time .
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