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Abstract: A new generation of “molecular basket” sorbents (MBS) has been developed by the optimum
combination of the nanoporous material and CO2/H2S-philic polymer sorbent to increase the accessible
sorption sites for CO2 capture from flue gas (Postdecarbonization), and for CO2 and H2S separation from
the reduced gases, such as synthesis gas, reformate (Predecarbonization), natural gas, coal/biomass
gasification gas, and biogas. The sorption capacity of 140 mg of CO2/g of sorb was achieved at 15 kPa
CO2 partial pressure, which shows superior performance in comparison with other known sorbents. In
addition, an exceptional dependence of MBS sorption performance on temperature for CO2 and H2S was
found and discussed at a molecular level via the computational chemistry approach. On the basis of the
fundamental understanding of MBS sorption characteristics, an innovative sorption process was proposed
and demonstrated at the laboratory scale for removing and recovering CO2 and H2S, respectively, from a
model gas. The present study provides a new approach for development of the novel CO2/H2S sorbents
and may have a major impact on the advance of science and technology for CO2/H2S capture and separation
from various gases.

1. Introduction

The rapidly increasing concentration of greenhouse gas CO2

in the atmosphere has caused serious concern for the global
climate change. Carbon capture and sequestration (CCS) is
considered one of the key options for mitigating the greenhouse
gas emissions.1-4 CO2 can be captured from flue gas (Postde-
carbonization),5 separated from synthesis gas, coal/biomass
gasification gas, and reformate (Predecarbonization),6 or even
captured from atmospheric air (Air-decarbonization).7 In the
production of hydrogen,8-11 green synfuel,6,12 city gas, and
biomethane, one of the major processes is to separate and
remove CO2 and H2S from the reduced gases, such as synthesis
gas, reformate, natural gas, biogas, coal/biomass gasification
gas, and others. In addition to the greenhouse effect of CO2,
the presence of CO2 in the product hydrogen and fuel gas
reduces significantly the energy content of the gas and lowers
the efficiency in the transportation, storage, and application of

the product hydrogen and fuel gas. H2S is corrosive to equipment
and pipelines as well as poisonous to the downstream catalysts
and electrode catalysts in the solid oxide fuel cell (SOFC) and
proton-exchange membrane fuel cell (PEMFC).8,13 In both CCS
and the hydrogen/green-synfuel production, one of the great
challenges is to separate CO2 from flue gas or separate CO2

and H2S from various process gases more economically and
energy efficiently.

Amine scrubbing is a dominant technology currently used in
industry for removing CO2 and H2S from various gas streams,
as the amine solution has a higher capacity and selectivity for
removing acidic gases. However, there are some major problems
in this process: (1) high energy consumption, (2) low absorption/
desorption rate, resulting in a larger size scrubber for increasing
the gas-liquid interface,14 (3) the solvent loss due to the
degradation and evaporation in the process, (4) material cor-
rosion due to the liquid amine solution, and (5) difficulty in
removing sulfur to the level required for the fuel cell applica-
tions. On the basis of conventional technologies, the cost for
CO2 capture and separation from flue gas (Postdecarbonization)
is estimated to represent three-fourths of the total cost of a
carbon capture, storage, transport, and sequestration system.
Consequently, it is highly desired to develop a novel sorbent
material and a process with a high capacity, high selectivity,
high regenerability, and high energy efficiency for separation
of CO2 and H2S from various gas streams for CO2 capture and
for hydrogen, synfuel, and biomethane production.15
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In our previous study, we have developed a novel nanoporous
material-supported polymer sorbent, called a “molecular basket”
sorbent (MBS), for CO2 capture from flue gas16-19 and for H2S
removal from fuel gas.20,21 As shown in Figure 1, the idea is to
load a CO2/H2S-philic polymer sorbent, polyethylenimine (PEI),
on the nanoporous material, such as MCM-41, to increase the
accessible sorption sites per weight/volume unit of sorbent, and
to improve the mass transfer rate in the sorption/desorption
process by increasing the gas-PEI interface. Our previous study
has indicated that MBS has some potential advantages, including
a higher capacity (90 mg-CO2/g-sorb at a CO2 partial pressure
of 15 kPa),16 higher selectivity (CO2/N2 > 1000),17 no corrosion
as MBS is a solid, easy regeneration (at 100 °C),16,18,20 positive
effect of moisture on sorption capacity for both CO2 and
H2S,18,21 and high sorption/desorption rate.17,20 It is because
MBS combines the merits of both the solid nanoporous material
and the polymer sorbent as well as both the adsorbent and the
absorbent, which increases greatly the accessible sorption sites
on/in the sorbent and improves the mass transfer in the sorption/
desorption process.

As a part of our continuous effort in the development of MBS
for CO2 capture from flue gas and CO2/H2S removal from
various fuel gases, we have made some significant progress in
the present work in increasing the sorption capacity, finding an
exceptional dependence of MBS on temperature for CO2 and
H2S competitive sorption which has not been reported in the
available literature to the best of our knowledge, and developing
an innovative sorption process for removing CO2 and H2S,
respectively, from the gas streams on the basis of the funda-
mental understanding of the sorption mechanism.

2. Results and Discussion

2.1. Properties of New Generation of MBS. A new generation
of MBS has been developed in our laboratory by loading 50
wt% of polyethylenimine (PEI) on nanoporous SBA-15 (PEI/
SBA-15), denoted as MBS-2. MBS-2 is different from the first
generation of MBS (PEI/MCM-41), denoted as MBS-1, which
was developed in our previous study by loading 50 wt% of PEI
on MCM-41.18,19 Some physical properties of MBS-2 and its
support material SBA-15 are listed in Table 1 in comparison
with those of MBS-1 and its support material MCM-41. MBS-1

had a BET surface area of 11 m2/g with 97 v % of the pore
volume filled by PEI, while MBS-2 had a BET surface area of
80 m2/g, higher than that of MBS-1 by a factor of 7.3, with
85 v % of the pore volume filled by PEI, though both MBS-2
and MBS-1 had the same weight percent of the PEI loading.
SEM images of MBS-2 presented in Figure 2 show that there
are many large stacking (external) pores between the particles,21

which facilitates the diffusion of the gas from the bulk of the
gas phase to the surface of the sorbent. Both SEM and N2

physisorption results indicate that the PEI was loaded inside
the pore channels of the nanoporous material. In comparison
with the typical absorber using the amine solution, a significant
advantage of MBS-2 is the high surface area (80 m2/g of sorb),
which provides a gas-sorbent interface area of 4 × 107 square
meter per cubic meter of the sorbent bed (m2/m3). This specific
surface area is higher than that in the typical absorber in industry
((2-3) × 102 m2/m3) by ∼5 orders of magnitude and higher
than that of MBS-1 by more than 6 times. The high specific
area can result in the high sorption-desorption rate with MBS-
2, as the sorption-desorption rate per unit volume of sorber is
directly proportional to the specific surface area.

It should be highlighted that PEI is not simply loaded on
MCM-41 and SBA-15 through only a physical interaction.
Figure 3 shows the Diffused Reflectance Infrared Fourier
Transform (DRIFT) spectra of SBA-15 and MBS-2 at room
temperature in flowing N2 with KBr as the background. Both
of them were in situ pretreated in the DRIFT cell with flowing
UHP N2 at 75 °C for 2 h to ensure that it was “clean” prior to
the IR study. Two sharp bands at 3747 and 1634 cm-1 and a
broad band at ∼3500 cm-1 were observed over SBA-15, which
can be assigned to hydrogen bonding in molecular H2O and
the H-O-H bend on SBA-15. After PEI loading, these bands
either disappeared completely or were significantly reduced. The
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Figure 1. Principle for preparation of “molecular basket” sorbent (MBS).

Table 1. Physical Properties and Sorption Capacities of MBS-1,
MBS-2, and Support Materials for CO2 and H2S, Respectively

sample
BET surface

area
(m2 g-1)

pore
volume

(cm3 g-1)

pore
diameter

(nm)

CO2 cap.a

mg/g of
sorb

H2S cap.b

mg/g of
sorb

MCM-41 1229 1.15 2.7 6.3 -
PEI(50)/MCM-41

(MBS-1)
11 0.03 0 89.2 62.6

SBA-15 950 1.31 6.6 5.0 0.034
PEI(50)/SBA-15

(MBS-2)
80 0.20 6.1 140 70

a Sorption at 75 °C and atmospheric pressure for a gas with 14.9 v %
of CO2 and 4.3% O2 in N2. b Sorption at 22 °C and atmospheric
pressure for a gas with 4000 ppmv of H2S and 20 v % of H2 in N2

Figure 2. SEM images of MBS-2.
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results suggest that there is a chemical interaction between the
silanol groups on the surface of SBA-15 and the amine groups
in PEI, which may form Si-O-N+H3R and/or Si-O-N+H2R.
Such chemical interaction works as an anchor to the PEI
molecules on the surface of SBA-15 and keeps PEI in the pore
channel, resulting in an increase of the thermal stability of the
sorbent and decrease of the fluidity of PEI on the surface.

2.2. Sorption Capacity of MBS-2. The sorption of CO2 on
MBS-2 was conducted in a fixed-bed flow system at a
temperature range from 22 to 100 °C. It was found that MBS-2
at 75 °C gave the highest capacity, as also observed for MBS-
1.16 The measured sorption capacities of MBS-2 at 75 °C as a
function of CO2 partial pressure are shown in Figure 4, in
comparison with our previous results for MBS-1 and the data
reported in the literature for some commercial and laboratory
sorbents. The sorption capacity of MBS-2 is significantly higher
than those of MBS-116 and the state-of-the-art absorbents and
adsorbents. MBS-2 gave a sorption capacity of 140 mg of CO2/g
of sorb at 75 °C under a CO2 partial pressure of 15 kPa, which
is a typical value corresponding to the CO2 partial pressure in
flue gas (∼15 vol% of CO2). This capacity value is ∼50% higher

than that of MBS-1, more than 100% higher than the saturation
absorption capacity of the 15 wt% MEA aqueous solution22 and
30 wt% DEA aqueous solution,23 and more than 300% higher
than the saturation absorption capacity of the 47 wt% MDEA
aqueous solution24 at the same partial pressure. The capacity
of MBS-2 is higher than that of the hyperbranched aminosilica
sorbent (SBA-HA), reported recently by Hicks et al.,25 by
∼50%, as MBS-2 has an amine group density of ∼12.3 mmol/g
of sorb, which is higher than that (7.0 mmol/g of sorb) of SBA-
HA by a factor of 1.8. At the CO2 partial pressure of 15 kPa,
the weight-based capacity of MBS-2 is higher than that of the
state-of-the-artmaterialzeoliticimidazolateframeworks(ZIF-69)26,27

by a factor of 4 and of the metal-organic framework (MOF)28,29

by a factor of even more than 4, as shown in Figure 4. To the
best of our knowledge, MBS-2 has the highest weight-based
CO2 capacity at the partial pressure range from 10 to 100 kPa
and the comparable temperature range in all state-of-the-art
sorption materials reported in the literature.

The sorptive removal of H2S by using MBS-1 and MBS-2
was also conducted in the fixed-bed flow system at a temperature
range from 22 to 100 °C. Different from the CO2 sorption, both
MBS-1 and MBS-2 at 22 °C gave the highest H2S sorption
capacity in the temperature range examined.18 Before the
breakthrough, the H2S concentration at the outlet was less than
60 ppbv, which was the H2S detection limit of the instrument
employed in our laboratory, indicating that both MBS-1 and
MBS-2 are capable of removing H2S at least to a level of 60
ppbv, which can meet the stringent requirement for the fuel
cell applications. The measured saturation sorption capacities
of MBS-1 and MBS-2 at 22 °C as a function of H2S partial
pressure are shown in Figure 5 in comparison with 50 wt %
MDEA aqueous solution30 and methanol31 reported in the
literature. MBS-2 gave a sorption capacity of 70 mg of H2S/g
of sorb at a H2S partial pressure of 0.4 kPa. This value is ∼12%
higher than that of MBS-1, ∼6.7 times higher than that of the
50 wt% MDEA aqueous solution, and ∼10 times higher than
that of methanol at the same H2S partial pressure.

It is interesting to note that the sorption capacity of MBS-2
for CO2 is higher than that of MBS-1 by 50%, although the
loading amount of PEI in MBS-1 and MBS-2 is the same. It
indicates that the support material plays an important role in
determining the sorption performance. By comparison of the
difference in the physical properties between the two support
materials, a much higher capacity of MBS-2 than MBS-1 may
be ascribed to the two factors of the support materials: (1) the
pore diameter of SBA-15 is approximately twice that of MCM-
41, and (2) the pore volume of SBA-15 (1.31 cm3/g) is higher
than that of MCM-41 (1.15 cm3/g) by ∼14%, which allows the
MBS-2 prepared from SBA-15 to have a higher surface area

(22) Austgen, D. M.; Rochelle, G. T. Ind. Eng. Chem. Res. 1991, 30, 543.
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A. E.; Chen, B. J. Phys. Chem. C 2008, 112, 1575.
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G. F. J. Petrol. Sci. Eng. 2007, 55, 122.
(31) Fischer, K.; Chen, J.; Petri, M.; Gmehling, J. AIChE J. 2002, 48, 887.

Figure 3. DRIFT spectra of SBA-15 and MBS-2 under N2 atmosphere at
75 °C.

Figure 4. CO2 sorption capacities of MBSs as a function of CO2 partial
pressure in comparison with some data reported in the literature for some
typical commercial and developing absorbents and adsorbents. (a) 15 wt
% MEA/H2O at 40 °C by Austgen and Rochelle;22 (b) 30 wt % DEA/H2O
at 40 °C by Rebolledo-Libreros and Trejo;23 (c) 47 wt % MDEA/H2O at
40 °C by Sidi-Boumedine et al.;24 (d) SBA-HA at 75 °C by Hicks et al.;25

(e) MOF-508b at 30 °C by Bastin et al.;29 (f) ZIF-69 at 0 °C by Banerjee
et al.;27 (g) MBS-1 at 75 °C; (h) MBS-2 at 75 °C.
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than that from MCM-41 after the same PEI loading (50 wt %),
as shown in Table 1. Both higher surface area and larger pore
diameter of SBA-15 may significantly increase the total number
of the accessible sorption sites in MBS-2 and thus enhance the
CO2 mass transfer in the sorption process. It should be pointed
out that using SBA-15 as a support improved the sorption
capacity of CO2 more significantly than that of H2S, indicating
that the diffusion barrier of CO2 in the bulk of PEI held in the
pores may be higher than that of H2S, which will be further
discussed below via the computational chemistry approach.

The effect of the moisture in the gas on the sorption capacity
for CO2 is another important issue that needs to be clarified.
The moisture effect on the sorption capacity of MBS-2 for CO2

was examined by adding 3.0 v% of H2O into a simulated flue
gas with 15 v% of CO2 and 4.5 v% O2 in N2. It was found that
the presence of 3.0 v% of H2O increased the saturation capacity
of MBS-2 for CO2 sorption by ∼35%, which is consistent with
our previous finding for MBS-1.18 The result further confirms
that the presence of the moisture in the gas has a promoting
effect on the sorption capacity of MBS for CO2.

2.3. Regenerability and Stability of MBS-2. For practical
application, the sorbent should not only possess a high sorption
capacity and high selectivity but also have excellent regener-
ability and stability in the sorption-desorption cycles. Using a
TPD technique, 20 cycles of sorption-desorption experiment
were carried out. Figure 6 shows the measured sorption capacity
of MBS-2 for CO2 as a function of the number of the
sorption-desorption cycles. During the 20 cycles, the CO2

sorption capacity of MBS-2 was kept at ∼170 mg of CO2/g of
sorbent at the CO2 partial pressure of 100 kPa, and no significant
change in the CO2 sorption capacity was observed. The
desorption can be conducted by increasing the temperature to
110 °C, and the sorption capacity of the spent MBS-2 can be
recovered completely after the regeneration, which is consistent
with those observed in our previous studies in the regeneration
of MBS-1 for CO2 sorption16,18 and the regeneration of MBS-2
for H2S sorption.20 It should be mentioned that in our prelimi-
nary experiment we have found that the coexisting SOx and NOx

in the real flue gas caused the degradation of MBS-2 due to
formation of the heat stable amine salts with PEI in MBS-2, as

also observed in the sorption-desorption of CO2 over MBS-1
using real flue gas.18 It implies that the strong acidic gases, SO2

and NO2, need to be removed when using MBS-2 for CO2

capture from flue gas, which is the same as that in the amine
scrubbing process.

2.4. Dependence of MBS Sorption Performance on
Temperature. Figure 7 shows the breakthrough curves on
MBS-1 for CO2 and H2S, respectively, at 22 and 75 °C under
a gas hourly space velocity (GHSV) of 1011 h-1 in a fixed-bed
flow system using a model gas containing CO2 or H2S in N2.
For CO2 removal, the sorption at 75 °C gave a much higher
sorption capacity (70.8 mg of CO2/g of sorb) than that at 22 °C
(27.7 mg of CO2/g of sorb). In distinct contrast, H2S sorption
at 22 °C gave a significantly higher sorption capacity (87.0 mg
of H2S/g of sorb) than that at 75 °C (7.8 mg of H2S/g of sorb).
These results clearly revealed the significant differences in the
temperature dependences of MBS-1 for CO2 and H2S sorption,
respectively. In many practical cases, CO2 and H2S coexist in
the gas streams, such as fuel gas, syngas, and biogas. To clarify
whether the presence of CO2 in the gas streams inhibits the
sorption of H2S on the sorbent, a sorption experiment with a

Figure 5. H2S sorption capacities of MBSs as a function of H2S partial
pressure in comparison with data reported in the literature for some typical
commercial absorbents. (k) MBS-2 at 22 °C; (l) MBS-1 at 22 °C; (m) 50
wt % MDEA/H2O at 25 °C by Huttenhuis et al.;30 and (n) MeOH at 25 °C
by Fischer et al.31

Figure6. CO2 sorptioncapacityversus thenumberof thesorption-desorption
cycles over MBS-2 measured by TPD method. The CO2 sorption was
performed at 75 °C under a pure CO2 flow for ∼30 min. The desorption
was carried out at 110 °C under a helium flow at a rate of 5 °C/min for 20
min.

Figure 7. Sorption breakthrough curves for CO2 and H2S in single-stage
sorption process using a model gas with 1.00 v% of CO2 or 1.00 v% of
H2S in N2 over MBS-1.
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model gas containing 0.40 v % of H2S, 2.40 % of CO2, and
20 v % of H2 in N2 was performed at 22 °C and 1011 h-1 of
GHSV. It was found that at this condition both CO2 and H2S
broke through at the beginning, as shown in Figure 8, indicating
that MBS-1 failed to remove H2S and/or CO2 at this condition.

The questions that arose are why does MBS-1 performance
show a varying dependence on operating temperature for CO2

and H2S, why does MBS-1 have a lower sorption capacity for
CO2 than that for H2S at 22 °C but shows the opposite trend at
75 °C, and why does the presence of CO2 strongly inhibit the
sorption of H2S at 22 °C. To answer these questions, a
computational study was conducted by using a semiempirical
quantum chemical calculation method. It was hypothesized that
the sorption of CO2 or H2S on MBS involves two steps: the
adsorption of CO2 or H2S on surface of PEI and the diffusion
of the adsorbate from the surface into the bulk of PEI in pores.
The thermodynamic parameters of the heat of adsorption on
the PEI surface and kinetic barrier of the diffusion from site to
site in the PEI bulk for both CO2 and H2S were estimated,
respectively, by semiempirical calculations. The results show
that there are two types of sorption sites (site-I and site-II) for
both CO2 and H2S sorption on PEI. The adsorption conforma-
tions of CO2 and H2S on site-I and site-II are shown in Figure
9. On site-I, the H2S molecule interacts with a nitrogen atom in
the amine group through the H atoms in H2S, while the CO2

molecule interacts with the nitrogen atom through the C atom
in CO2. On site-II, sorption of H2S molecule is through an
interaction of the two H atoms in H2S, simultaneously, with
two N atoms in two amine groups (in two neighboring PEI
chains), while sorption of CO2 is through an interaction of the
C atom in CO2 with the two N atoms simultaneously in two
amine groups. The relative sorption heat of CO2 and H2S and
the diffusion barrier in the bulk of PEI are shown in Figure 10.
The results indicate that the heat of adsorption for CO2 on the
amine group is higher than that for H2S, as CO2 has stronger
acidity than H2S, which is consistent with the experimental heat
of absorption in the amine solution reported in the literature.32

It implies that the thermodynamics favors the adsorption of CO2

on the PEI surface more than that of H2S. On the other hand, it
is of interest to note that the estimated kinetic barrier for
diffusion of the sorbed CO2 from the surface into the bulk of
PEI is higher than that for diffusion of the sorbed H2S by a
factor of ∼3, indicating that the diffusion of the sorbed CO2

from the exposed surface of PEI into the bulk of PEI is much
more difficult than that of the sorbed H2S.

On the basis of the computational results, the lower CO2

sorption capacity at 22 °C than that at 75 °C can be ascribed to
the higher kinetic barrier for diffusion of the CO2 sorbed from
the surface into the bulk of PEI, which reduces significantly
the total number of the accessible sorption sites for CO2 at 22
°C, although low temperature thermodynamically favors the
adsorption of CO2 on the surface of PEI. The increase in
temperature facilitates the transfer of the adsorbed CO2 mol-
ecules from the surface into the bulk of PEI by overcoming the
kinetic barrier. This leads to a significant enhancement of the
total number of the accessible sorption sites at 75 °C, although
the increase in temperature does not favor thermodynamically
the sorption of CO2 on the surface and in the bulk of PEI. On
the other hand, the higher heat of sorption for CO2 makes the
sorption affinity at 75 °C high enough to capture CO2. As a(32) Posey, M. L.; Rochelle, G, T. Ind. Eng. Chem. Res. 1997, 36, 3944.

Figure 8. Sorption breakthrough curves for CO2 and H2S in single stage
and two-stage sorption processes using a model gas containing 0.40 v%
H2S, 2.40 v% CO2, and 20 v% H2 in N2 over MBS-1.

Figure 9. Computationally optimized sorption conformation of CO2 and
H2S on Site-I and Site-II in PEI.

Figure 10. Potential energy surface for sorption and transfer of CO2 and
H2S on Site-I and Site-II in PEI.
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result, MBS-1 exhibited a higher sorption capacity for CO2 at
75 °C than at 22 °C. A further increase of temperature above
75 °C reduces the CO2 sorption capacity, as the control of the
sorption shifts from the kinetic regime to the thermodynamic
regime.

For sorption of H2S, due to a lower kinetic barrier for the
transfer of the sorbed H2S in the bulk of PEI, the H2S molecules
adsorbed on the surface are easier to diffuse into the PEI bulk
even at 22 °C. On the other hand, the lower temperature
thermodynamically favors the increase in the equilibrium
sorption capacity. Consequently, MBS-1 exhibited a higher
sorption capacity for H2S at 22 °C than at 75 °C. Due to the
significantly higher heat of sorption for CO2 than for H2S, the
coexisting CO2 molecules preferentially occupy the sorption sites
on the surface and, thus, block the way for sorption of H2S on
the surface, as indicated in Figure 8. Both the thermodynamic
and kinetic factors work together to determine the exceptional
dependence of MBS performance on temperature for CO2 and
H2S sorption. The higher kinetic diffusion barrier for CO2 than
for H2S also explains why the sorption performance of MBS-2
is much better than that of MBS-1 for CO2, but the sorption
performance of both are almost the same for H2S. It is probably
because for CO2 sorption, but not for H2S sorption, the diffusion
is a primary factor that affects the total number of the accessible
sorption sites, and the higher surface area of MBS-2 and larger
pore diameter of SBA-15 in MBS-2 facilitate the diffusion of
CO2 in MBS-2.

2.5. Two-Stage Process for Respective Removal of CO2

and H2S. On the basis of the fundamental understanding of the
sorption mechanism, a novel two-stage sorption process was
proposed with two sorption beds in series for removing CO2

and H2S, respectively, from gas streams. The two-stage process
was demonstrated in our laboratory by using MBS-1 and a
model gas with 0.40 v % of H2S, 2.40 v % of CO2, and 20 v %
of H2 in N2 gas at a flow rate of 60 mL/min. A scheme of the
experimental two-stage process is shown in Figure 11. The first
stage with MBS-1 as a sorbent was operated at 75 °C for
removing CO2, and the second stage with the same sorbent at
room temperature (22 °C) for removing H2S. The CO2 concen-
tration at the outlet of the first stage and the H2S concentration
at the outlet of the second stage as a function of time are plotted
in Figure 8, for comparison. In the first stage, the CO2

breakthrough time was ∼95 min, corresponding to a break-
through capacity of 80 mg of CO2/g of sorb, indicating that the

sorption of CO2 at 75 °C is not affected by the coexistence of
H2S, as expected. In the second stage, the H2S breakthrough
time was ∼95 min, corresponding to a capacity of 19 mg of
H2S/g of sorb. This value was lower than the expected one,
because the CO2 that had broken through in the first sorption
bed entered the second sorption bed and inhibited the H2S
sorption in the second bed, resulting in the early H2S break-
through in the second bed. The results clearly show that the
two-stage process successfully removed CO2 and H2S, respec-
tively, from the simulated fuel gas. It indicates that the developed
process has a potential and wide application in the cleanup of
the reduced gases, including hydrogen, reformate, synthesis gas,
natural gas, biogas, coal/biomass gasification gas, and others.

3. Concluding Remarks

In summary, a new generation of “molecular basket” sorbent,
MBS-2, has been developed in our laboratory for CO2/H2S
capture. MBS-2 gives a high sorption capacity of 140 mg of
CO2/g of sorb at 75 °C under 15 kPa CO2 partial pressure, which
is ∼50% higher than that of the previously developed MBS
(MBS-1). MBS-2 shows the highest CO2 capacity under the
CO2 partial pressure range from 10 to 100 kPa in the comparable
temperature range among all the commercial and state-of-the-
art adsorbents, absorbents, and sorbents reported to date.

The exceptional dependence of MBS performance on tem-
perature for CO2 and H2S sorption has been found and explained
at a molecular level via the computational chemistry approach.
On the basis of the new findings, an innovative two-stage
process for removing CO2 and H2S, respectively, from gas
streams was proposed and demonstrated in a laboratory ap-
paratus. The sorbent and process developed in this work have
many distinct advantages: (1) high sorption capacity and
selectivity for CO2 and H2S, (2) capable of removing H2S to
less than 60 ppbv, (3) higher sorption-desorption rate due to
higher gas-sorbent interface area, (4) good regenerability and
stability in sorption-desorption cycles, (5) promoting effect of
moisture in the gas on the sorption capacity, and (6) ability to
remove and recover CO2 and H2S, respectively.

The present study provides a new approach for the develop-
ment of novel sorbents by the combination of a solid nanoporous
material and a polymer sorbent, of an adsorbent and an
absorbent, and of inorganic and organic materials, which may
have a major impact on the advance of science and technology
for CO2 capture from flue gas, CO2/H2S separation from various
reduced gases, and other gas separation.

4. Experiment and Calculation Method

4.1. Preparation of MBS. MBS-1 and MBS-2 were prepared
by loading polyethylenimine (PEI) on mesoporous molecular sieves
MCM-41 and SBA-15, respectively, using a wet impregnation
method. PEI used in the present study was a linear polymer, which
was purchased from Aldrich with an average molecular weight of
423 g/mol, boiling point of ∼250 °C, and viscosity of 200 cP at
25 °C. MCM-41 and SBA-15 were synthesized by a hydrothermal
method. MCM-41 was synthesized from a mixture with the
following composition: 50SiO2/4.32Na2O/2.19(TMA)2O/15.62CTAB/
3165H2O, which was established in our laboratory,33,34 based on
the method invented by Mobil researchers.35,36 The SBA-15 was

(33) Reddy, K. M.; Song, C. S. Catal. Lett. 1996, 36, 103.
(34) Reddy, K. M.; Song, C. S. Stud. Surf. Sci. Catal. 1998, 117, 291.
(35) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,

J. S. Nature (London) 1992, 359, 301.

Figure 11. Scheme of the experimental two stage process for removal of
CO2 and H2S from a model fuel gas. Inlet gas: 0.40 v % H2S, 2.40% CO2,
and 20% H2 in N2; sorbent in both the first and second stages: MBS-1.
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synthesized according to the procedure reported in the literature.37,38

Typically, a homogeneous mixture, which was composed of triblock
copolymer Pluronic P123 (EO20PO70EO20, MW ) 5800, Aldrich)
and tetraethyl orthosilicate (TEOS) in hydrochloric acid, was stirred
at 40 °C for 20 h and then further treated at 100 °C for 24 h. After
the synthesis, the resultant solid was recovered by filtration, washed
and dried at 100 °C overnight, and finally calcined at 550 °C for
6 h. The typical preparation methods of MBS-1 and MBS-2 were
reported in detail in our previous paper.20

4.2. Characterization of Sorbents. The pore structure and
surface area of the prepared MCM-41, SBA-15, MBS-1, and MBS-2
were characterized by adsorption/desorption of nitrogen at -196
°C using a Micromeritics ASAP2010 surface area and porosimetry
analyzer. Standard BET and DR models were respectively applied
to derive surface area and pore volume. The pore size distribution
was calculated according to the Barrett-Joyner-Halenda (BJH)
model.39 The scanning electron microscopy (SEM) images were
obtained on a Hitachi S-3500N instrument operating at 5 kV.

A Nicolet NEXUS 470 FT-IR spectrometer (Thermo Electron
Corp.) was used to obtain the DRIFT Spectra of the SBA-15 and
MBS-2 samples. The powder of each sample (∼20 mg) was placed
into the DRIFT cell and pretreated in flowing UHP N2 at 75 °C for
2 h. Then the DRIFT spectra were collected under N2 atmosphere
at 75 °C. KBr was used as the background at the same conditions.
The IR resolution was 4 cm-1.

4.3. Sorption Measurements. The sorption separation of CO2

and/or H2S from the model gases was performed in a fixed-bed
flow sorber (straight glass tube with inner diameter of 9.5 mm)
operated at atmospheric pressure. Special tubing and fittings coated
with a sulfur inert material (purchased from Restek Corp.) were
used for the sorption system to reduce the effect of adsorption of
H2S on the tubing wall. In a typical sorption process, ∼1.5 g of
the sorbent was packed into the bed (bed length was ∼75 mm),
and the empty spaces were filled with inert glass beads. Before the
sorption test, the sorbent bed was heated to 100 °C in nitrogen at
a flow rate of 100 mL/min and held overnight to desorb all
presorbed species. Then, the sorbent bed was cooled down to room
temperature, and the whole sorber was sealed and weighed to
calculate the real weight of the used sorbent. After the sorber was
connected back into the system, the sorbent bed was heated to the
desired sorption temperature, and then, the model gas was
introduced into the bed. The treated gas out of the sorber was
analyzed online by using an SRI 8610C gas chromatograph with
molecular sieve 5A and Porapak T columns and with a TCD
detector (GC-TCD), and an ANTEK 9000NS Sulfur Analyzer,
respectively, for CO2 and H2S. For the gas samples with H2S
concentration less than 1 ppmv, a gas detection system, Sensidyne/
Gastec, was used. The saturation capacity, which was denoted as
Cap, milligram of CO2 or H2S per gram of sorbent (mg/g of sorb),
was calculated by using the following equation:

Cap)
MW × FR ×∫o

t
(Co -Ct) dt

Wsorb
(1)

where t is the sorption time (min); FR is the flow rate (mmol/min);
Wsorb is the weight of sorbent (g); MW is the molecular weight
(g/mol) of CO2 or H2S; and Co and Ct are the inlet and outlet
concentration of CO2 or H2S.

4.4. Evaluation of Regenerability and Stability of MBS-2. The
temperature-programmed desorption (TPD) method was used to
measure the regenerability and stability of MBS-2 for CO2 sorption.
CO2-TPD was conducted by using a Micromeritics AutoChem 2910
instrument with a TCD. MBS-2 (∼100 mg) was loaded into a
U-shape quartz reactor and pretreated at 100 °C under pure helium
for 30 min. Then the temperature was cooled down to 75 °C, and
CO2 sorption was performed at this temperature under a pure CO2

flow for ∼30 min. After that, the temperature was decreased to
room temperature under CO2 flow. The desorption experiments were
then carried out by passing helium through the tube and ramping
the temperature from room temperature to 110 °C at a rate of 5
°C/min and holding at 110 °C for 20 min. The sorption capacity of
the regenerated MBS-2 was measured on the basis of the amount
of the desorbed CO2. The same sorption-desorption procedure was
conducted for 20 cycles to evaluate the regenerability and stability
of MBS-2.

4.5. Computational Method. All quantum chemical calculations
in this study were performed by means of the semiempirical PM5
method, using the CAChe program. To reduce the computational
cost, a simple model (a trimer of ethylenimine (TEI)):

NH2-CH2-CH2-NH-CH2-CH2-NH-CH2-CH3

which contains one primary amine group and two secondary amines,
was used to mimic PEI. The adsorption conformations of CO2 and
H2S on the secondary amine in TEI were optimized by the PM5
method. The pseudo heat of sorption was defined and estimated
on the basis of the following equation:

∆Hsorption )∆Hof,TEI-sorbate - (∆Hof,TEI +∆Hof,sorbate) (2)

where ∆H°f,TEI and ∆H°f,sorbate are the heat of formation of TEI and
sorbate, respectively. ∆H°f, TEI-sorbate is the heat of formation of TEI-
sorbate (heat of formation for whole TEI and sorbate after
interaction). In the present study, we only examined the interaction
between CO2 (or H2S) and the secondary amine group in PEI, as
we used a linear PEI for preparing MBS-1 and MBS-2, which had
a secondary-amine/primary-amine ratio of ca. 9 according to the
average molecular weight.

The kinetic barrier (Et) for transfer of the sorbed molecule from
one sorption site to the other was estimated by finding the transition
state and calculation according to the following equation:

Et )∆Hof,ST -∆Hof,TEI-sorbate (3)

where, ∆H°f, ST is the heat of formation of the transition state from
one site to the other.
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