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Abstract

The powder diffraction method, by using conventional X-ray sources, was devised
independently in 1916 by Debye and Scherrer in Germany and in 1917 by Hull in the
United States. The technique developed steadily and, half a century later, the ‘traditional’
applications, such as phase identification, the determination of accurate unit-cell dimensions
and the analysis of structural imperfections, were well established. There was then a
dramatic increase of interest in powder methods during the 1970s, following the introduction
by Rietveld in 1967 of his powerful method for refining crystal structures from powder data.
This has since been used extensively, initially by using neutron data and later with X-rays,
and it was an important step towards extracting 3-dimensional structural information from
1-dimensional powder diffraction patterns, in order to study the structure of crystalline
materials. Similarly, techniques which do not involve structural data have been introduced
for modelling powder diffraction patterns, to extract various parameters (position, breadth,
shape, etc.) which define the individual reflections. These are used in most applications of
powder diffraction and are the basis of new procedures for characterizing the microstructural
properties of materials. Many subsequent advances have been based on this concept and
powder diffraction is now one of the most widely used techniques available to materials
scientists for studying the structure and microstructure of crystalline solids. It is thus timely
to review progress during the past twenty years or so.

Powder data have been used for the identification of unknown materials or mixtures
of phases since the late 1930s. This is achieved by comparison of experimental data with
standard data in crystallographic databases. The technique has benefited substantially from
the revolution in the development of storage media during the last decade and from the
introduction of fast search/match algorithms. Phase identification sometimes precedes a
quantitative analysis of compounds present in a sample and powder diffraction is frequently
the only approach available to the analyst for this purpose. A new development in
quantitative analysis is the use of the Rietveld method with multi-phase refinement.

A major advance in recent years has occurred in the determination of crystal structures
ab initio from powder diffraction data, in cases where suitable single crystals are not
available. This is a consequence of progress made in the successive stages involved in
structure solution, e.g. the development of computer-based methods for determining the
crystal system, cell dimensions and symmetry (indexing) and for extracting the intensities
of Bragg reflections, the introduction of high resolution instruments and the treatment of
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line-profile overlap by means of the Rietveld method. However, the intensities obtained,
and hence the moduli of the observed structure factors, are affected by the overlap problem,
which can seriously frustrate the determination of an unknown crystal structure. Although
numerous structures have been solved from powder data by using direct or Patterson
methods, the systematic or accidental total overlap of reflections continues to focus the
attention of a number of crystallographers. New approaches for the treatment of powder
data have been devised, based on maximum entropy methods and ‘simulated annealing’,
for example, to generate structural models. Additionally, resonant diffraction (anomalous
scattering) is used as an aid to structure solution.

There has been spectacular progress in characterizing the microstructural properties
which arise from various types of structural imperfection. The principal advance has been
the 3-dimensional reconstruction of ‘anisotropic’ (direction- or hkl-dependent) features or
properties of polycrystalline materials. These include the shape of diffracting domains
and the distribution of the size, structural ‘mistakes’ induced during the formation or
subsequent treatment of a sample and dislocations or other forms of lattice distortion. The
main innovation here has been a comparison of experimental data with those derived from
a physical model based on data from other techniques or from prior knowledge of the
behaviour of the material.

Most aspects of powder diffraction are brought together in analysing data from
experiments carried out under non-ambient conditions, a field that continues to expand
as more intense sources of radiation become available. Such experiments can be carried out
over a wide range of temperature and at ever increasing pressures. Chemical or solid-state
reactions and other processes, such as phase transformations, can be followed in situ by
means of time-resolved diffraction.

For the benefit of the reader who is unfamiliar with powder diffraction, a résumé of the
basic principles underlying the various techniques and applications is included. Sources of
radiation, modern instrumentation and detectors are also considered, since these have played
a major ro le in the progress of powder diffraction during the past two decades. Numerous
examples are discussed throughout the review, in order to illustrate the main applications
and procedures. Powder diffraction is interdisciplinary and these are inevitably drawn from
various branches of science. However, it should be remembered that, in the main, the use
of powder diffraction is frequently a ‘means to an end’, albeit an important stage in a study
of polycrystalline materials.

This review was received in August 1995.
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1. Introduction

Diffraction of X-rays or neutrons by polycrystalline samples is one of the most important,
powerful and widely used analytical techniques available to materials scientists. For
most crystalline substances of technological importance, the bulk properties of a powder
or a polycrystalline solid, averaged throughout the sample, are required; in general a
single-crystal data, even if they can be obtained, are usually of little interest except for
determination of the crystal structure or for studying some other fundamental physical
property. In the main, powder diffraction is a means to an end, in that it frequently forms
part of a wider investigation of physical, chemical or mechanical properties of materials.
It is also interdisciplinary in nature, a technique which is equally applicable to a study of
the behaviour of semiconductors and superconductors, for example, as to alloys, catalysts,
minerals, pharmaceutical substances or polymers. Indeed, as will be evident from this
review, powder diffraction transcends the traditional, and increasingly artificial, subject
areas of science.

The basic difference between coherent scattering from planes of atoms of spacing d in
a single crystal and a random powder is that diffracted beams from individual crystallites
in the latter generate cones with semi-angle 2θ , where

2θ = sin−1(λ/2d) (1.1)

λ being the wavelength of the radiation used. In the reciprocal-space representation, the
lattices associated with individual crystallites are oriented randomly and points given by the
position vector

d∗ = ha∗ + kb∗ + lc∗ (1.2)

in the single-crystal case become spheres of radius |d∗|(= 1/d) for a random powder, where
a∗, b∗, c∗ are vectors defining the reciprocal unit-cell and hkl are the Miller indices, which
are proportional to the direction cosines of the planes in question. Thus:

d∗ = 2λ−1 sin θ. (1.3)

(It should be noted that the quantity Q (= 2πd∗) is often used in other areas of
materials science to denote the magnitude of the scattering vector.) In a powder-diffraction
experiment, a 1-dimensional representation of diffracted intensity as a function of the radial
distance d∗ is normally obtained. Two types of experiment are possible, angle dispersive,
in which monochromatic radiation is used, and energy dispersive for which the scattering
angle is fixed. In some applications, the variation of intensity as a function of d∗ is all that
is required. In others, it is necessary to reconstruct the 3-dimensional lattice.

The aim of this review is to give a résumé of the principal techniques of modern powder
diffraction and, through examples, an account of the information which can be obtained on
the character and properties of crystalline materials. A section on basic concepts (section
2) is followed by the modelling of powder diffraction patterns (section 3) and a discussion
of instrumentation and experimental strategy (section 4). An admirable account of the basic
principles of powder diffraction, and of the sources of radiation, instruments and detectors
used, is given in volume C of the International Tables for Crystallography (Wilson 1992). A
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valuable source for further information on practical considerations is Methods and Practices
in Powder Diffraction (Jenkins 1989a). The remainder of the review is concerned with
applications to materials science.

By far the most widely used application of powder diffraction is the identification of
unknown materials (section 5). This has undergone a revolution in recent years, with the
introduction of compact disks to store standard data and the development of greatly improved
software for accessing and searching databases. Phase identification was introduced early in
the history of powder methods, with the classic paper by Hanawalt, Rinn and Frevel (1938)
which contains powder data for 1000 substances. This was the forerunner of the Powder
Diffraction File (PDF), which is now administered and distributed by the International
Centre for Diffraction Data (ICDD). The PDF currently (1995) contains data for over 70 000
substances.

The second application to be considered is the refinement of crystal structures by
means of powder data (section 6). This was made possible by significant advances in
instrumentation and improvements to digital computers during the 1960s and was pioneered
by Rietveld (1967, 1969), whose name has since been associated with the method. Indeed,
the introduction of the Rietveld method for structure refinement was one of the main factors
which gave rise to the veritable renaissance of powder methods which took place during the
1970s (Langford 1981). Significant progress has also been made in the procedure known
as pattern decomposition , whereby a non-structural model is fitted to a complete diffraction
pattern to obtain parameters defining the individual Bragg reflections. This technique, which
is also discussed in section 6, is now applied routinely in modern powder diffraction and
the resulting diffraction line-profile parameters are used in a variety of applications.

In recent years, the ultimate stage in structural studies was achieved by the ab initio
solution of moderately complex structures from powder data (section 7) and it is a field
where significant progress continues to be made. This remarkable development has benefited
from greatly improved instrument resolution and advances in the methods used at each stage
in the analysis. These include the development of powerful indexing procedures, whereby a
3-dimensional reciprocal lattice can be reconstructed from 1-dimensional powder diffraction
data, the extraction of integrated intensities of overlapping Bragg reflections by improved
modelling techniques and the possibility of refining atomic co-ordinates by the Rietveld
method. Associated with structure solution is the exploitation of resonant diffraction
(anomalous scattering) from selected atoms, by selecting an appropriate wavelength or
energy (section 8). Although this technique is not new, it has only been possible to apply
it routinely with the advent of dedicated synchrotron-radiation facilities.

Traditional applications of powder diffraction, such as the quantitative analysis of
samples containing a mixture of phases (section 9) and studies of microstructural properties
(section 10) have also benefited from improved instrumentation and computing facilities.
The former profited from the introduction of the Rietveld method and the latter from
pattern-decomposition techniques. A wealth of information can now be obtained on the
microstructural properties of materials with low symmetry, whereas previously structural
imperfections could only be studied in detail for high-symmetry structures and diffraction
patterns with minimal peak overlap.

Finally, an exciting development of powder diffraction, made possible by advances in
the performance of detectors and other ancillary equipment, has occurred in the field of non-
ambient diffraction (section 11). Data can be obtained over a wide range of temperature
or pressure and dynamic experiments can be carried out while the sample environment is
changed. Thus ‘real-time’ studies can be made of changes in structure or microstructure
when a sample is subjected to some external perturbation. This has application in studying
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phase transformations or in following solid-state reactions.
All branches of science have benefited from the dramatic developments in computing

facilities in recent years and powder diffraction is no exception. In general, computing
requirements in this field are not unduly demanding and analysis can usually be carried
out by means of a Personal Computer (PC). Inevitably, software development has been
considerable and many earlier programs have been adapted for PC use. Some 650 programs
which are currently available are listed in the World Directory of Powder Diffraction
Programs (Gorter and Smith 1995), compiled under the auspices of the Commission on
Powder Diffraction of the International Union of Crystallographty (IUCr) and updated
regularly. Brief details of each program are given, together with information on where
it can be obtained. Many public domain programs are in fact obtainable through the
Program Exchange Bank†. Reference to the appropriate section of the World Directory
is made throughout this review and the directory is indispensable to anyone newly involved
in powder diffraction. Additionally, a Collaborative Computational Project in Powder
Diffraction (CCP14), sponsored by the Engineering and Physical Sciences Research Council
(EPSRC), was initiated in 1994 at the Daresbury Laboratory with a view to collecting
together a suit of core programs for analysing powder data. This is freely available to
academic users and it can be accessed via electronic mail.

Although all the main uses of powder diffraction have been covered in this review,
some applications have, due to space restrictions, necessarily been omitted or only treated
briefly. These are largely concerned with samples which are intermediate between being
truly polycrystalline and single crystals and include the important techniques of glancing-
angle and grazing-incidence diffraction, used to characterize thin films and multi-layers,
the study of texture and the measurement of residual stress. These have, however, been
reviewed elsewhere.

Of the many applications of powder diffraction, the most significant advance in recent
years has been the determination of crystal structures from powder data. The contribution
to our understanding of the behaviour of high-Tc superconductors and zeolites, for example,
or to elucidating the complexities of semiconductor structures at ultra-high pressures, has
been incalculable. Other important advances during the last decade or so have been the 3-
dimensional modelling of structural imperfections and in dynamic studies of non-equilibrium
phenomena, and a very recent development is the detection, by using a synchrotron source,
of the magnetic scattering of X-rays by a powder sample (Collins et al 1995). These are all
areas where further progress is likely to be made in future, as intense sources of radiation
and high resolution instruments become more widely available, but perhaps the most radical
development will be in analysing the structure and microstructure of individual particles or
grains in a polycrystalline sample.

2. Basic principles

2.1. Characteristics of powder diffraction patterns

The radial distribution in reciprocal space of the intensity scattered coherently from a given
set of planes within a powder sample, a Bragg reflection, can be characterized by parameters
defining its position, maximum intensity, area (integrated intensity), dispersion, shape and

† Details of the Program Exchange Bank and copies of the program can be obtained from Dr S
Gorter, Department of Chemistry, University of Leiden, NL-2333 CC Leiden, The Netherlands. E-mail:
GORTER S@rulgca.LeidenUniv.nl
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asymmetry. Powder diffraction techniques are based on the measurement of one or more of
these parameters for as many reflections as are required (or can be measured) in a particular
application. The Bragg reflections are superimposed on a slowly varying background due to
incoherent scattering, which mainly arises from thermal diffuse scattering (TDS), Compton
scattering and, if the energy of the incident radiation is sufficiently high, fluorescence from
the sample. Additionally, there is a small coherent TDS contribution associated with each
Bragg reflection. (See, for example, Suortti 1995.)

The number, disposition and intensity of reflections in a diffraction pattern depend
primarily on the symmetry and size of the unit cell and the arrangement of atoms within
it, but are also influenced by the nature and wavelength of the radiation used (section 4.1).
The basic equation for the integrated intensity I of the reflection hkl for a random powder
sample illuminated by a primary beam of intensity Ip is

I = IpKλ3V −2mhklPLF 2
hklv (2.1)

where K depends on whether X-rays or neutrons are used to collect the data, V is the volume
of the unit cell, mhkl is the multiplicity of the hkl reflection, P is the polarization factor,
L the so-called Lorentz factor, Fhkl is the structure factor, taking into account thermal
effects, and v is the effective diffracting volume of the sample, including the effects of
absorption. P is of the form (1 +C cos2 θ)/(1 +C), where C = 1 for an unpolarized beam
and C = cos2θm if an incident-beam monochromator is used, θm being the Bragg angle of
the monochromator. The Lorentz factor for a random powder, in reflection mode, is of the
form (cos θ sin2 θ)−1. The factor cos θ arises from the fact that spherical shells of diffracted
intensity in reciprocal space intersect the Ewald sphere at an angle which depends on θ .
Also, the surface area of the spherical shells increases as d∗2, which is embodied in the factor
sin2 θ . Fhkl is a function of the atomic scattering factor f which, in the X-ray case, depends
on the atomic number Z and decreases rapidly with increasing sin θ/λ. Neutrons, on the
other hand, are scattered by nuclei and the scattering lengths b in general are of similar
magnitude for all sin θ/λ. There are, however, measurable differences in b for different
elements and for isotopes of the same element. For example, b is −0.38 × 10−14 m for
hydrogen and is +0.65 × 10−14 m for deuterium. The neutron also has a magnetic moment
and magnetic structures can be studied by means of neutron-magnetic scattering. Further
information on the various factors in equation 2.1 is given in volume C (section 6.2) of the
International Tables for Crystallography (Wilson, 1992).

In general the degree of overlap of reflections becomes increasingly severe as d∗

increases and, especially in the X-ray case, the intensity decreases. These factors limit
the scope of powder methods, particularly for materials of intermediate or low symmetry,
and modern methods, such as maximum entropy, are being used to tackle the problem of
‘unscrambling’ overlapped reflections (e.g. David 1990). The theoretical number of lines
N for planes having a spacing greater than dN is given by the number of possible lattice
points in reciprocal space for which d∗ is less than d∗

N . This is approximately equal to the
volume of a sphere with radius equal to d∗

N divided by the volume V ∗ of the reciprocal unit
cell, or

N ∼ 4π(d∗
N)3/3V ∗. (2.2)

In practice, the actual number of observed lines is less, due to multiplicity and systematic
absences. For the triclinic system the number is about half that given by (2.2) and the
factors for other crystal systems have been evaluated by de Wolff (1961).
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The observed intensity y(xi) at some point xi in a powder diffraction pattern is the sum
of the contributions from all neighbouring reflections hj (xi), plus the background b(xi) at
that point, or

y(xi) =
∑

j

hj (xi) + b(xi). (2.3)

In an angle-dispersive experiment x is normally the scattering angle 2θ and in the energy-
dispersive case it is usually energy or d. The recovery of individual reflections, as is
required in some applications of powder diffraction, is thus a desummation operation and
this procedure is known as pattern decomposition (section 3.3.1). The breadth and shape of
individual diffraction lines, on the other hand, depend on the characteristics of the instrument
used and on any structural imperfections present in the sample. An observed diffraction
line profile h(x) is then the convolution of the contribution f (x) from the sample with an
instrument function g(x), or

h(x) = f (x) ∗ g(x). (2.4)

In studies involving the microstructure of a sample, f (x) is obtained by removing g(x)

from h(x), a deconvolution procedure, or by separating the breadths and other parameters
defining the individual convoluted functions.

Instrumental line profiles arise from the distribution of wavelength in the incident beam
(section 4.1), convoluted with several functions due to the geometry of the instrument
used (size of source, beam divergence, slit widths, residual misalignment, etc.). Both the
breadth and shape of instrumental line profiles vary continuously with sin θ/λ and, for the
angle-dispersive X-ray case, tend to be approximately Gaussian at low angles and become
progressively more Lorentzian as wavelength dispersion becomes increasingly dominant at
high angles (Louër and Langford 1988; Langford, Cernik and Louër 1991). Contributions
to h(x) from sample microstructure are considered in section 2.4.

It is always desirable to minimize the instrumental contribution, in so far as is
practicable. However, the optimum configuration in a particular application will inevitably
be a compromise between resolution and adequate intensity. If the breadth of reflections is
dominated by sample imperfections, it may be possible to improve resolution by annealing
the sample, provided that the microstructural properties of the specimen are not of interest.

2.2. Diffraction line profiles

The measure of location of a diffraction line profile most widely used in powder diffraction
is the position of the maximum intensity I0(2θ0 in an angle-dispersive experiment). The
simplest measure of dispersion (line breadth) is the full width of the intensity distribution at
half the maximum intensity (FWHM or 2w) if the distribution is symmetrical, or w1 +w2 if
it is not, where w1 and w2 are the widths, at half maximum intensity, on the left- and right-
hand side of the peak ordinate. A more useful measure of dispersion in some applications,
which includes all the data for a given line profile, is the integral breadth , defined as the
width of a rectangle having the same area A and height as the observed line profile, or

β = A/I0. (2.5)
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It is sometimes convenient to characterize the shape of a line profile by assuming that it
has the form of some analytical function and those commonly used in powder methods have
been reviewed by Young and Wiles (1982) and are listed in the appendix. Alternatively,
for some purposes it is sufficient to give an indication of the overall form of an intensity
distribution by means of the shape factor φ, defined as the ratio of the FWHM to the
integral breadth (Langford 1978, 1992), or

φ = FWHM/β. (2.6)

φ, for which no assumption is made regarding the actual form of the intensity distribution,
is always less than unity for diffraction line profiles. Larger values of φ indicate a rapid
fall-off of intensity in the tails of a line profile and smaller values are indicative of a slower
decrease. Asymmetry is frequently modelled by using ‘split functions’, with different widths
and/or shape parameters on each side of the peak ordinate. Simple measures of asymmetry
are then given by the ratios (w2 − w1)/(w1 + w2) or w2/w1.

Line profiles can be represented by Fourier series, for the purpose of deconvoluting the
contributions which give rise to an observed line profile and for the physical interpretation
of diffraction effects. This approach is mainly applicable to relatively simple diffraction
patterns, such as occur with high symmetry materials, and is considered below and in
section 10. Wilson (1963) applied the standard measures of position and dispersion used
in statistical analysis (i.e. the centroid and variance) to powder diffraction, since the central
moments of convoluted functions (section 2.3) can readily be separated. This approach has
been reviewed recently by Berti (1993).

2.3. Convolution and deconvolution

The convolution integral, implicit in (2.4) and given by

h(x) =
∫ +∞

−∞
f (y)g(x − y) dy (2.7)

can readily be evaluated for a given f (x) and g(x), but there is no unique mathematical
solution to obtaining f (x) from g(x) and h(x), except for simple analytical functions.
Instability of the solution arises from the perturbing nature of the noise associated with
experimental data; the problem is ill-posed, in that a small perturbation in h(x) gives rise to
an arbitrarily large perturbation in f (x). The problem of errors in deconvolution methods
has been considerred by many authors (e.g. Jones and Misell 1970; Price 1982) and various
ways for dealing with solution instability have been proposed.

A widely used procedure, first applied to powder diffraction by Stokes (1948), is to
express g(x) and h(x) as Fourier series, defined in the same interval, and then to use the
multiplicative property of the Fourier transforms of convoluted functions, or

F(t) = H(t)/G(t) (2.8)

where F(t), G(t), H(t) are equivalent to the (complex) Fourier coefficients F(n), G(n),
H(n)at discrete values of t . f (x) can then be obtained from the inverse of F(n). In this
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approach, due to random errors in h(x) and g(x), the quotient H(n)/G(n) can become very
large at high frequencies and the resulting f (x) can have large oscillations superimposed on
the true profile. The uncertainty is considerably less for low harmonic numbers (n small)
(see, for example, Louër, Coupé and Le Bail 1984). The corresponding Fourier coefficients
F(n) were used by Warren and Averbach (1950, 1952) for characterizing microstructural
properties from two or more orders of a reflection (section 10.2.2). A serious limitation of
this approach is that experimental line profiles are necessarily truncated at a finite range,
which can give rise to appreciable systematic errors (Young, Gerdes and Wilson 1967;
Langford et al 1988). A correction for truncation can be made by assuming that the line-
profile tails have a particular form (Delhez et al 1986; Vermeulen et al 1991, 1992), but the
method is restricted to powder patterns with well resolved lines and thus to high-symmetry
materials, in the main. Some practical aspects of Fourier deconvolution are discussed by
Cernansky (1983), e.g. the application of digital filters to suppress oscillations. A procedure
for obtaining the Fourier coefficients of f (x) directly, based on a truncation of the Fourier
series, was used by Le Bail and Louër (1976). This leads to a set of algebraic equations
which can be solved by means of a least-squares procedure.

An approach to deconvolution based on regularization algorithms (Phillips 1962;
Tikhonov 1963), to correct the observed diffraction line profile h(x) for instrumental
contributions, was introduced by Louër, Weigel and Louboutin (1969). From the quadrature
approximation to a convolution product, equation 2.7 is transformed to a set of linear
equations of the form

h = A′f (2.9)

where A′ is the convolution matrix. The solution having the minimum functional norm is
selected by minimizing a regularization scheme, e.g.

min(‖A′f − h‖2 + ε‖f‖2) (2.10)

where ‖f‖2 =
∑

i f (xi)
2. The instability is then replaced by a well-posed stable

minimization. The procedure incorporates a small and positive parameter ε, related to
the noise levels of h and g, which plays a weighting rôle between the smoothness of the
solution and the minimization. A procedure based on the minimization of an economical
function, based on the sum of the squared relative differences between the observed and
calculated line profiles, by using the flexible simplex method, has also been described
(Moraweck, de Montgolfier and Renouprez 1977). Wiedemann, Unnam and Clark (1987)
devised a method of deconvolution, based on Euler’s characteristic equation, which uses a
combination of least-squares, background and smoothing criteria to minimize the effect of
random counting errors.

The iterative method of van Cittert (1931) was applied by Ergun (1968) to correct the
X-ray diffraction patterns of carbon black. This is based on m successive convolutions:

fm = fm−1 + (h − fm−1 ∗ g) (2.11)

where f0 = h. This procedure can be shown to have the same form as the regularization
methods, with 1/m having a rôle similar to that of ε.
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Another class of deconvolution methods, applied to powder diffraction data, uses the
principles of information theory. The maximum entropy method (MEM) has been found to
be efficient with simulated profiles having various noise levels. For example, the intense
diffraction line profiles for an aluminium oxide (corundum) sample were deconvoluted from
the instrumental contribution without noticeable oscillations appearing in the tails of the f

profiles (Kalceff, Armstrong and Cline 1994).
Croche and Gatineau (1977) give practical rules for applying deconvolution procedures

to diffraction line profiles and show that deconvolution can readily be performed when the
width of the instrumental function g(x) is smaller than half the width of the observed line
profile h(x).

A different approach to deconvolution is to assume that g(x) and h(x) can be modelled
by analytical functions whose breadths can be separated. Such a function is the Voigtian, the
convolution of one or more Lorentzian and Gaussian functions, which is frequently a good
approximation to observed diffraction line profiles (Langford 1978). The corresponding
Lorentzian and Gaussian breadths can be obtained for g(x) and h(x), and hence for f (x).
This procedure, based on the integral breadth, has been summarized by Langford (1992).
Toraya, Yoshimura and Sömiya (1983) devised a procedure based on numerical methods
for the deconvolution of Pearson VII functions, as defined in the appendix, and Howard
and Snyder (1985) developed a numerical deconvolution procedure for a split Pearson VII
function, which models asymmetric line profiles. Since average values of quantities defining
the microstructural properties of interest are obtained, information on their variation in the
vicinity of a reciprocal-lattice point is lost. Nevertheless, procedures based on the breadths
of the constituent profiles can in principle be applied to data from any crystalline material,
regardless of structural symmetry or complexity of the diffraction pattern (section 10). The
main limitation at present is the inadequacy of pattern-fitting algorithms to model peak
clusters with severe overlap.

2.4. Structural imperfections

2.4.1. Analysis of diffraction line broadening. The definition of a crystal lattice is based
on the concept that the environment of all points is identical, but only in exceptional
circumstances does this occur in practice; ‘real’ materials contain structural imperfections
which give rise to a spread of intensity around each reciprocal-lattice point. There are
two categories of structural imperfection which can modify diffraction line profiles f (x)

by a measurable amount. The first is the finite size of domains over which diffraction
is coherent, measured in the direction d∗

hkl for a given reflection. This can be the mean
thickness of individual crystallites (or grains, in a polycrystalline sample), but it can also
relate to a sub-domain structure, e.g. the mean distance between structural ‘mistakes’, the
separation of regions bounded by low-angle grain boundaries, etc. Here, unless specified
otherwise, ‘size’ or ‘crystallite size’, will be used to refer to any of these effects. The
second category is based on a distortion of the crystal lattice, which amounts to a variation
of d spacing within (or possibly between) domains. This can arise from microstrain, due
to an applied or residual stress, or from a compositional gradient in the sample. It is not
possible to distinguish between these effects from diffraction data, but the distinction is
usually evident from the nature of the sample. For convenience, they are known as ‘strain’
effects. Dislocations contribute to both categories of line broadening; there will be a ‘size’
contribution due to their mean separation, inversely proportional to the dislocation density,
and microstrain arising from internal stress fields. Unlike strain broadening, which increases
with the order of a reflection, size broadening is constant in the direction d∗

hkl and this is
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Figure 1. V (t), the volume common to a crystallite and its ‘ghost’ displaced a distance t in
the direction [hkl] of the diffraction vector. V (t) is proportional to the Fourier transform of the
diffraction line profile due to crystallite size.

used to separate the two contributions to the overall breadth due to structural imperfections.
If s is the distance from the reciprocal-lattice point hkl at d∗

hkl from the origin, measured
in the direction of the scattering vector, the line profile due to the combined effects of
crystallite size and lattice distortion is, from Wilson (1970, equation 10-68).

f (s) = V −1
∫ +τ

−τ

V (t)Y (t) exp(−2π ist) dt (2.12)

where V (t) is the volume common to a crystallite and its ‘ghost’ (or double) displaced a
distance t in the direction d∗

hkl (figure 1) (see Stokes and Wilson 1942), τ is the value of t

for which V (t) = 0 and Y (t) is the mean value of the product FF ∗ of the structure factor
and its complex conjugate for unit cells a distance t apart. (See also Guinier 1963.) f (s)

is thus the inverse Fourier transform of the product V (t)Y (t), which is the basis of the
Warren–Averbach method for microstructural analysis (section 10.2.2).

If there are no lattice distortions (when Y (t) is constant), from (2.12) the integral breadth
β∗

S due to size effects is simply

β∗
S = V (0)

/∫ +τ

−τ

V (t) dt (2.13)

where V (0) is the mean volume of crystallites. The reciprocal of this quantity has been
defined by Wilson (1963) as the integral breadth apparent size εβ , or

εβ = β∗
S

−1. (2.14)

εβ is thus the volume-weighted thickness of crystallites measured in the direction [hkl].
Aside from the case of crystallites with parallel faces and reflections from planes parallel
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to these surfaces, this is clearly less than the maximum thickness τ . From Wilson (1963,
equation 19.26), the quantity V (0)/V ′(0), the reciprocal of the initial slope of the Fourier
transform of the normalized line profile, is also a measure of size. This is the Fourier
apparent size εF , which can be interpreted as the total area of projection of unit volume
of the crystallites on to the reflecting planes. In general, εF is also less than τ and is not
equal to εβ . Additionally, an important result derived by Bertaut (1949) is that the second
derivative of the Fourier transform V (t) is proportional to the distribution of the thickness,
measured in the direction of the diffraction vector, within and between crystallites and may
thus be regarded as a size distribution function.

Y (t) depends on the complexity of the model adopted for the variation of the structure
factor with position inside the crystal and its interpretation is not so straightforward as
that of V (t)—for further information, see Wilson (1962a, 1963, 1970). Frequently, some
average value of strain, based on the assumption that lattice distortion is independent of
t , will suffice. For this purpose, Stokes and Wilson (1944) introduced the concept of an
apparent strain ηβ (see also Wilson 1963, equation 20.10), where, for the integral breadth,

ηβ = 2β∗
D/d∗ (2.15)

where β∗
D is the breadth of the line profile due to strain (lattice distortion).

The quantities ε and η, whether derived from integral breadths or Fourier series, are
based solely on diffraction theory and in general they give little insight into the nature of the
microstructural properties which give rise to f (x). Values of such analytically-determined
parameters are, however, widely used in applications where their physical interpretation is
unimportant. These include obtaining an indication of changes in diffraction effects due
to sample preparation or treatment, or to varying experimental conditions. If physically
meaningful results are required to characterize microstructure, then a realistic model must
be introduced to account for the observed phenomena. This can sometimes be based on
the behaviour of ε and η, if data for a large number of reflections are available, or on
information obtained from complementary experiments, such as TEM or SEM.

2.4.2. Interpretation of apparent size and strain The information of interest in any study
of domain size by means of powder diffraction is usually an indication of the form of
crystallites and an estimate of their mean dimensions. τ must therefore be determined for
various directions [hkl], which amounts to generating a 3-dimensional representation of
crystallites from 1-dimensional diffraction data. If the domains are other than spherical, ε

will depend on the direction of the diffraction vector and the corresponding line breadths
are then said to be ‘anisotropic’, i.e. do not vary monotonically with 2θ or d. In order
to obtain τ from ε , a model corresponding to some ‘average’ shape is ascribed to the
diffracting domains, taking into account the approach used in the analysis. For example,
for domains which may be regarded as spherical, ε is constant for all [hkl] and the mean
diameter 〈D〉 is 4εβ/3 for the integral-breadth method or 3εF /2 from the Fourier approach.
ε, and hence the actual mean dimensions, can be obtained for different domain shapes by
evaluating V (t) and its derivatives (Wilson 1962a). ε and τ for cylindrical crystallites have
been evaluated by Langford and Louër (1982) and for hexagonal prisms by Vargas, Louër
and Langford (1983). These forms are particularly relevant to materials having hexagonal
symmetry and the case of parallelepipeds, applicable to other crystal systems, has been
considered by Langford (1992). Also, Grébille and Bérar (1985) have evaluated V (t) for
the more general case of crystallites having the form of convex polyhedra, by dividing each
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crystallite into regions over which the integration is tractable. These models, which include
acicular and plate-like crystallites as limiting cases, cover most domain shapes likely to be
encountered in practice.

Line broadening due to structural mistakes varies with hkl in a manner which depends
on the nature of the mistake (stacking or deformation faults, layer mistakes, twin or growth
faults, etc.) and on the crystal system. Additionally, there will be a ‘size’ contribution
arising from their mean separation and mistakes can also displace diffraction lines and
introduce asymmetry. Wilson (1962a) and Warren (1969) have discussed the interpretation
of these parameters in terms of structural mistakes.

A simple interpretation of η in terms of an actual strain e can be based on an assumed
stress model (Stokes and Wilson 1994). For example, if the stress is assumed to be isotropic
and the distribution of strain is approximately Gaussian, then

ηβ = 2(2π)1/2〈e2〉1/2 (2.16)
≈ 5〈e2〉1/2 (2.17)

where 〈e2〉1/2 is the r.m.s. strain. Alternatively, if all values of stress between zero and a

maximum value p̂ are assumed to be equally likely, then

ηβ = 4ê (2.18)

where ê is the corresponding maximum strain. The Warren–Averbach procedure for strain
analysis, considered in section 10.2.2, includes provision for a t-dependence of lattice
distortion.

The precision of ε and η depends only on the quality of the data and validity of the
procedure used for separating the breadths and other parameters of convoluted functions.
On the other hand, any derived quantities used to describe microstructural properties are
clearly model-dependent. Nevertheless, microstructural information should be meaningful,
and even accurate, if independent results from a large number of reflections are found to be
self-consistent.

3. Modelling of powder diffraction data

3.1. General considerations

The first step in analysing powder diffraction data is to extract from individual Bragg
reflections such information as is required in a particular application. If this is the
identification of unknown materials, then only the peak positions and heights are required
and these parameters can normally be obtained routinely and with sufficient accuracy by
using peak-search programs such as those provided by diffractometer manufacturers. (See,
for example, Mallory and Snyder 1979.) However, most other applications require a more
comprehensive characterization of individual peaks. A major development in modern
powder diffraction is the fitting of a calculated model to the entire, and often complex,
observed diffraction pattern, in order to overcome the problem of line overlap and to obtain
parameters which define each reflection. In this approach the calculated intensity y(x) may
be represented as
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ycal(x) =
∑

j

hjcal(x) + b(x) (3.1)

where hj (x) is the contribution at x from the j th peak, b(x) is the background and the
summation is again for all reflections which contribute to the intensity at x. The model
requires an analytical representation of individual peaks and the background variation.
Parameters defining the model are then refined, by the method of least squares or some
other procedure, until the quantity

S =
∑

[yobs(x) − ycal(x)]2 (3.2)

or a similar expression with an appropriate weighting factor w(x) [e.g. w(x) = 1/y(x)], is
a minimum, the summation being over all data points in the diffraction pattern. Maximum-
likelihood methods have also been used in powder diffraction refinement procedures and it
has been shown that, for low counting statistics, they can be more powerful than ordinary
least-squares fitting methods (Antoniadis, Berruyer and Filhol 1990).

3.2. Line-profile functions

A function used to model an individual diffraction line must clearly approximate closely to
the observed distribution of intensity. Additionally, it should be capable of deconvolution
and interpretation in terms of physical quantities, if information on microstructural properties
is required. There are numerous approaches to the modelling of diffraction lines, both
analytical and non-analytical (e.g. Young and Wiles 1982), but the functions most commonly
used at present are the Pearson VII (Hall et al 1977), the Voigt (Langford 1978) and
the pseudo-Voigt (Wertheim et al 1974). The form of these functions, together with the
Lorentzian (Cauchy) (L) and Gaussian (G), are given in the appendix. The Pearson VII
is simply [L]m, where m gives an indication of the shape of the profile, particularly the
rate of decrease of intensity in the tails. The Pearson VII clearly includes the Lorentzian
(m = 1) and it tends to a Gaussian as m → ∞. The Voigt function is the convolution of
Lorentzian and Gaussian components and can be characterized by the shape parameter φ.
The limiting values of φ are 2/π (= 0.6366) for L and 2(Ln2/π)1/2 (= 0.9394) for G.
The pseudo-Voigt is the summation of L and G functions in the ratio η/(1 − η), where η

is generally termed the pseudo-Voigt mixing parameter or Lorentzian fraction (η = 1 for L

and 0 for G). Wertheim et al (1974) have shown that the simpler pseudo-Voigt is a close
approximation to a Voigt, but it is of course a summation of its constituent functions, rather
than a convolution. It is customary to give equal widths to the L and G components of a
pseudo-Voigt, but there is no particular reason why this restriction should be imposed, other
than for convenience during refinement. Line profiles for which φ < 2/π are regarded as
‘super-Lorentzian’ (Wertheim et al 1974). The Pearson VII and pseudo-Voigt cannot readily
be deconvoluted analytically and, if they are used in line-profile analysis, the equivalent
Voigt parameters can be obtained (Delhez, de Keijser and Mittemeijer 1982).

The above functions are symmetrical; line-profiles displaying asymmetry are usually
modelled by means of ‘split’ functions, for which different parameters are refined on
each side of the peak ordinate. Brown and Edmonds (1980) introduced the split Pearson
VII function to model asymmetric line profiles. Howard and Snyder (1983) evaluated a
number of profile shape functions and concluded that this function was the most suitable
for modelling asymmetric g(x) profiles in the X-ray case. The numerical convolution of a
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symmetric f (x) using this split g(x) model is reviewed by Snyder (1995). This approach to
the modelling of skewness is semi-empirical and, for some powder diffraction applications,
e.g. the Rietveld method (section 3.3.2), a more precise description of asymmetry due to
axial divergence may improve the fit of the pattern. Studies based on diffraction optics
which give an accurate representation of diffraction profiles at low angles have been made
(Bérar and Baldinozzi 1993; Finger, Cox and Jephcoat 1994). Occasionally, high-resolution
data reveal line profiles for which the intensity in the tails decreases more slowly than a
Lorentzian (Hastings, Thomlinson and Cox 1984; Young and Sakthivel 1988; Marezio et al
1988; Plévert and Louër 1990). Such ‘super-Lorentzian’ profiles can be modelled by means
of a Pearson VII with m < 1 or a pseudo-Voigt with η > 1, but not by a Voigt.

A different approach was adopted by Pyrros and Hubbard (1983), who modelled
line profiles with rational functions. These are the ratio of two polynomials and are
generalizations of the Lorentzian, approximating well to a Pearson VII for small values
of m. Although excellent fits were obtained for single lines and doublets, the number of
parameters required to model a complete pattern may be prohibitively large.

A number of non-analytical profile functions have been proposed. These include the use
of the Learned Function (Hepp and Baerlocher 1988), whereby parameters ‘learned’ from
well-resolved lines, usually for small d∗, are extrapolated to model overlapped regions.
This approach can only be used in cases where the precise shape of individual lines is not
required, since no account is taken of any variation in shape with d∗ or lattice direction.
Toraya (1990) has introduced the Array Profile Function (APF) to describe diffraction lines.
This consists of an array of discrete parameters for representing yobs(x) which are adjusted
by the method of least squares until an optimum fit is obtained.

For many years well-resolved lines in powder diffraction patterns have been represented
by the 1-dimensional Fourier series

yobs(x) =
+∞∑

n=−∞
{An cos(2πnx) + Bn sin(2πnx)} (3.3)

since deconvolution can readily be carried out in Fourier space. This approach has been
used for the separation of Kα1 − Kα2 components (Kidron and De Angelis 1971) and
extended to the case of overlapping lines (Mortier and Costenoble 1973; Le Bail, Duroy
and Fourquet 1988).

Whatever approach to line-profile modelling is used, the observed intensity distribution
is necessarily truncated at a finite range, normally defined as ±k × FWHM relative to the
peak ordinate, whereas theoretical line profiles normally extend to ±∞, as do the analytical
functions used to model them. The maximum theoretical value of k is equivalent to d∗

hkl/2,
but in practice, owing to overlapping line-profile tails, this can only be achieved when
the pattern consists of a series of orders of a particular reflection, as can occur in cases
of extreme preferred orientation. (See Delhez et al 1986.) In general, systematic errors
in line-profile parameters due to truncation are inevitable. Toraya (1985) noted that, for
a Gaussian function and k = 3, more than 99% of the profile area is included, but for a
Lorentzian function the corresponding value of k is about 63. The choice of range in a
particular application depends on the character of the line-profile tails, but a value k in the
range 10 to 20 is normally acceptable for most purposes.
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3.3. Total pattern fitting

There are two approaches to the modelling of a complete diffraction pattern. In one,
pattern decomposition, the superposition of analytical line-profile functions and a suitable
background model are fitted to the observed data and in the other, the Rietveld method,
information on crystal structure is included.

A characteristic of diffraction patterns is that the density of lines, and hence the degree
of line overlap, increases as (d∗)3 (= 1/d3) (see equation 2.2). In general a pattern thus
becomes increasingly ‘scrambled’ as the scattering angle or energy increases. Also, the
intensity of lines decreases as d∗ increases. This is due to the influence of thermal vibrations,
which increases as (d∗)2, and, in the X-ray case, the decrease in atomic scattering factor with
increasing d∗. Pattern decomposition is concerned with ‘unscrambling’ overlapped peaks
and in general there will be an upper limit of d∗ beyond which meaningful line-profile
parameters cannot be obtained. However, sufficient data can normally be acquired from
lines at low and intermediate values of d∗ to predict the behaviour of line profiles at higher
values, if this is needed in a particular application. It should be noted that occasionally cases
of total overlap occur, i.e. lines have identical values of d∗, and these cannot be resolved by
pattern decomposition. Total overlap can be accidental or it can arise from lattice symmetry.
For example, the 333 and 511 reflections for cubic lattices have the same d∗.

3.3.1. Pattern decomposition. Many applications of powder diffraction do not require a
knowledge of the crystal structure and in such cases a diffraction pattern can be characterized
adequately by pattern decomposition, where the aim is to obtain quantities which describe
each individual Bragg reflection. The calculated intensity at point xi is given by

ycal(xi) =
∑

j

Aj*(xi − xj ) + b(xi), (3.4)

where Aj is the calculated area of the j th peak, * is the function used to model the peaks
(see appendix), normalized to unit area, and the summation is over all reflections which
contribute to the intensity at xi . The fitting of equation (3.4) is normally restricted to few
lines, typically up to 10 reflections, to limit the number of parameters to be refined. Pattern
decomposition is normally carried out in two stages; firstly, approximate peak positions
are obtained, usually by finding where the second derivative of yobs(xi) with respect to xi

changes sign, along with estimates of the peak height and width, and secondly the line-profile
parameters are refined for all peaks in a group (e.g. Taupin 1973a; Sonneveld and Visser
1975; Parrish, Huang and Ayers 1976; Hayakawa and Oka 1981; Langford et al 1986). If
the unit cell is known, the first stage can be avoided by using calculated starting values of the
peak positions (Pawley 1981; Toraya 1986; Le Bail, Duroy and Fourquet 1988). Programs
for carrying out pattern decomposition are incorporated in software packages marketed by
the main diffractometer manufacturers, e.g. the profile fitting PC-program PROFILE from
Socabim, in which the available functions include the Pearson VII, pseudo-Voigt and Voigt
together with their ‘split’ versions. Details of currently available programs are given in
Table 12 of Gorter and Smith (1995). An example of a Pearson VII function (see appendix)
fitted to a single experimental line profile for cold-worked tungsten is shown in figure 2(a).
Good agreement between the experimental data and the fitted function in the line-profile
tails, as indicated in the lower part of the figure, is essential if a systematic error in the
integrated intensity is to be avoided. The fitting of a Pearson VII function to a group of
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Figure 2. (a) Fitting of Pearson VII function to the 211 reflection for cold-worked tungsten
powder, Cu Kα1 radiation. The lower figure, with a ×30 scale expansion, shows the quality of
fit in the line-profile tails. Refined parameters are (see Appendix): 2θ0 = 73.206◦, I0 = 194.4
c/s, Area=158.6 c/s.deg, b = 1.4 c/s, FWHM = 0.577◦, β = 0.816◦, m = 1.21, φ = 0.708,
Rwp = 1.2%, Rexp = 1.3%. The scale factor for the difference plot is 5. (b) Part of the
diffraction pattern for a sample Y2O3, fitted with a Pearson VII function, Cu Kα1 radiation.
The line broadening is mainly due to crystallite-size effects. The ×20 scale expansion again
shows the ‘fit’ in the line-profile tails (Rwp = 1.4%) (Louër 1994).

peaks, part of the diffraction pattern for yttria (Y2O3), is shown in figure 2(b), again with
an expanded scale to show the degree of fit in the line-profile tails.
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Figure 2. Continued.

A different strategy, in which h(xi) is replaced by f (xi)∗g(xi), was proposed by Taupin
(1973a) and developed further by Huang and Parrish (1975). (See also Parrish, Huang and
Ayers 1976.) This incorporates the deconvolution of g(x), obtained in a separate experiment,
from h(x) to give f (x), written as Aj*(xi − xj ). Such a procedure, with a split Pearson
VII function for *(x), was used by Toraya, Yoshimura and Sömiya (1983) and Howard
and Snyder (1985). Enzo et al (1988) and Benedetti et al (1988) included a pseudo-Voigt
function to model f (x), with an exponential term to make allowance for any asymmetry
of g(x). The validity of the deconvolution operation then depends on how well f (x) is
represented by these functions.

3.3.2. Rietveld method. The method of total pattern fitting introduced by Rietveld (1967,
1969) requires two models at the start of the refinement, a structural model based on
approximate atomic positions and a non-structural model which describes the Bragg
reflections in terms of analytical or other differentiable functions. Both must be considered
in order to obtain an optimum representation of the observed pattern. The main aim of the
Rietveld method is to refine the positions of atoms by using powder diffraction data, but it
also provides estimates of line-profile parameters. The total intensity of reflections and, to
a first approximation, their positions, are determined by the structural model, but the form
of the Bragg reflections depends on the instrumental function (g profiles) and on the effects
of the microstructure of the sample (f profiles). These are included in the non-structural
model. In this approach the calculated intensity at xi is given by

ycal(xi) =
∑

j

IjGj*(xi − xj ) + b(xi) (3.5)

the summation again being over all reflections which contribute to the intensity at xi . In
equation (3.5), Gj is a preferred-orientation function, Ij is the integrated intensity of the j th
reflection, given by the well known relation (cf equation 2.1)
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Ij = smj (LP )jF
2
j (3.6)

where s is the scale factor, mj is the multiplicity and (LP)j is the Lorentz-polarization
factor. Fj is the structure factor given by

Fj =
∑

i

Nici exp[2π i(hxi + kyi + lzi)] exp(−Bi) (3.7)

where xi , yi , zi are the coordinates of the ith atom in the unit cell, expressed as fractions
of the cell edges, h, k, l are the Miller indices, Ni is the fractional occupancy for the ith
atomic site, ci is the X-ray scattering factor (fi) or the nuclear scattering length (bi) and Bi

is the temperature factor. The non-structural model is represented by the reflection profile
function * (see appendix), for which the various parameters are angle or energy dependent
and which will, in general, also have a lattice-direction dependence. In the simplest case for
angle-dispersive geometry, where the breadths of line profiles vary smoothly with d∗, the
variation of (FWHM)2 is usually expressed as a quadratic in tan θ , introduced by Caglioti,
Paoletti and Ricci (1958) to describe the behaviour of the Gaussian instrumental broadening
with neutron sources:

(FWHM)2 = U tan2 θ + V tan θ + W (3.8)

where U , V , W are refinable parameters.

3.3.3. Rietveld method programs. After the late 1960s the number of applications increased
rapidly (see Hewat 1986), limited initially to neutron diffraction data and later extended to
X-ray data obtained with a diffractometer (CuKα doublet) (Young, Mackie and Von Dreele
1977) or a Guinier camera (CuKα1) (Malmros and Thomas 1977). The popularity of the
Rietveld method led to the development of more sophisticated programs, usually based on
Rietveld’s original work (1969). A list of the main programs is given in Table 15 of Gorter
and Smith (1995). Among those most widely used are:

(i) the DBWS program (current version: DBWS-9411) written by Wiles, Sakthivel and
Young for main frame computers and later adapted for PC use. The latest version (Young
et al 1995) is an update of that described by Wiles and Young (1981). It operates with
X-ray or neutron diffraction data collected in the angle dispersive mode. This program is
the basis of other versions developed by different authors; e.g. LHPM (Hill and Howard
1986), ALFRIET1 (Howard and Snyder 1985) to refine only f (x) by deconvoluting a split
Pearson VII-modelled g(x) from the observed data, ALFREIT2 (Matheis and Snyder 1994)
to refine structures with incommensurate modulations and FULLPROF (Rodriguez-Carvajal
1990). The latter version has been written in to cover a variety of situations.

(ii) GSAS (Larson and Von Dreele 1987), which offers a high flexibility, runs on a
VAX-VMS machine and was recently adapted for PC use. It works with angle dispersive
and energy dispersive (time-of-flight) data. Single-crystal, X-ray and neutron diffraction
data can be used simultaneously or independently in a structure refinement. The program
includes provisions for applying constraints on bond lengths and angles.

(iii) XRS-82, The X-ray Rietveld System (Baerlocher 1982) is based on a collection of
crystallographic programs for the refinement of structures from single-crystal data. Apart
from extending the system to minimize S (equation 3.2), some additional features are
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incorporated, such as the Learned Function, used to describe the actual peak shape, and
geometric restraints based on stereochemical knowledge (soft constraints).

(iv) Others programs include RIETAN (Izumi 1995) and MPROF (Bendall, Fitch and
Fender 1983). RIETAN was developed for angle-dispersive X-ray and neutron data and
MPROF was the forerunner of a number of programs with provision for the refinement of
two or more phases simultaneously.

An approximate size-strain analysis, on the basis of order dependence and modelling of
anisotropy of microstructural effects, has been implemented in some programs. (See also
section 6.1.5) Also, most programs incorporate an iterative procedure for pattern matching
(Le Bail, Duroy and Fourquet 1988), by fitting a calculated pattern to the observed data
without the use of a structure model, but using constraints on the positions of reflections
allowed by the space group conditions. This facility is of importance in ab initio structure
determination for extracting a set of integrated intensities rapidly, for subsequent use as
input data for structure-solution programs (section 7.3).

3.3.4. Modelling of structural imperfections. Attempts to model patterns with various
types of imperfection and for poorly crystalline materials have been reported. For instance,
linear polymer structures are usually complex with many atoms per unit cell and their
powder diffraction patterns generally show poor crystallinity. For modelling purposes it is
appropriate to include in the model all structural and morphological parameters which are
known. Constrained least-squares refinements from the complete powder diffraction pattern
have been applied to isotactic polypropylene (Immirzi and Iannelli 1988). A program for
refining the molecular structure of the crystalline phase of polymers based on an analysis
of X-ray fibre diffraction patterns has been devised by Iannelli (1994). A non-linear least-
squares procedure applied to the diffraction pattern of myelin membranes isolated from intact
tissue was used for optimizing the structure factors and determining coherently diffracting
domain sizes and lattice distortions (Inouye, Karthigasan and Kirschner 1989). A least-
squares refinement procedure was used for comparing calculated and observed diffraction
patterns for disordered lamellar solids (de Courville-Brenasin, Joyez and Tchoubar 1981).
The 00l reflections are calculated by using parameters describing the mean number of
layers and spacing fluctuations and the asymmetric hk bands are calculated by means of
the theory of planar defects. The modelling of diffraction patterns for the 00l reflections
from randomly stratified clay minerals was discussed by Wood and Brown (1988). The
basis of this technique is similar to that of the Rietveld method and it includes the effects
of disorder and crystallite size. A computer program dedicated to the simulation of wide-
angle and low-angle scattering was introduced to provide a general description of complex
patterns of poorly crystallized materials (Espinat et al 1993).

3.4. Reliability, precision and accuracy

3.4.1. Discrepancy factors. All the variable parameters used in the pattern fitting method
are included in a refinement procedure that minimizes S (equation 3.2). An indication
of the agreement between the observed [yi(obs)] and the calculated [yi(cal)] intensity
distributions, and between the integrated intensities of the observed and calculated models
for reflections j , is given by discrepancy factors listed in table 1 (Young and Wiles 1982;
Hill and Fischer 1990). The weighted profile factor Rwp and the goodness of fit GoF , are
the most meaningful for following the progress of the refinement, since their numerator
contain the quantity S being minimized. On the basis of Gaussian statistics, the theoretical
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minimum value for Rwp is given by the expected factor Rexp (= Rwp/GoF). In addition,
graphical criteria of fit are also used, e.g. plots of the difference between observed and
calculated patterns. In the Rietveld method, the validity of the crystal structure model
is measured by the factors RB and RF , which are based on the integrated ‘observed’ Ij
(‘obs’) and calculated Ij (cal) of the individual j Bragg intensities. (The use of ‘. . . ’ is a
reminder that the observed intensities are generally obtained by partitioning the raw data on
the basis of the ratio of the contributing calculated intensities.) It should be noted that the
Rp and Rwp factors incorporate the observed y(xj ) discrete intensities, which include the
background contribution, in their denominator. By adding artificially a constant intensity to
a complete dataset, Eriksson, Louër and Werner (1989) showed that the profile indicators
Rp and Rwp can provide misleading values if they are obtained from datasets with different
background levels, the lower profile R values being obtained from the dataset having the
higher level. It was concluded that, in order to follow the progress of a structure refinement
with a particular dataset, the Rwp factor is appropriate, but for comparison of datasets only
the structure model factors RB and RF should be used. Similar discussions on the R factors
used in the analysis of powder diffraction data by the Rietveld method have been reported
(Maichle, Ihringer and Prandl 1988; Hill and Fischer 1990; Jansen, Schäfer and Will 1994).

Table 1. Numerical criteria of fit used in the Rietveld method and other pattern-fitting precedures.
wi is the observation weight, usually assigned the value yi(obs)−1. N is the number of
observations, P the number of adjusted parameters and C the number of constraints applied.

R-pattern: Rp = +|yi(obs) − yi(cal)|
+yi(obs)

R-weighted pattern: Rwp =
[

+wi(yi(obs) − yi(cal))2

+wi(yi(obs))2

]1/2

R-Bragg factor: RB = +|Ij (‘obs’) − Ij (cal)|
+Ij (‘obs’)

R-structure factor: RF = +|Ij (‘obs’)1/2 − Ij (cal)1/2|
+Ij (‘obs’)1/2

Goodness-of-fit indicator: GoF =
[

+wi(yi(obs) − yi(cal))2

(N − P + C)

]1/2

3.4.2. Precision and accuracy in Rietveld analysis. When the minimum value of S

(equation 3.2) is reached, the estimated standard deviations (e.s.d.s) σi associated with
the ith parameter are normally used as indicators of precision; they are given by the simple
relation:

σi = [M−1
ii S/(N − P + C)]1/2 (3.9)

where M is the matrix of the least-squares algorithm. The term S/(N−P +C) is an indicator
of the overall variance of the fit. The e.s.d. values are often used as indicators of precision
in a Rietveld analysis (see, for example, Taylor 1985). They can be artificially low and
should be interpreted with caution, as shown by extensive discussions on this topic (Sakata
and Cooper 1979; Prince 1981; Scott 1983; Hill and Madsen 1987). As noted by Young
(1995), a calculated e.s.d. is not the experimental probable error; it is the minimum possible
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probable error arising from random errors alone. In fact, some discrepancies between the
models used and the actual data, e.g. in the description of the line profiles, in the unit cell
parameter model for the peak positions, in the modelling of preferred orientation effects,
etc., can introduce a bias in the calculation of e.s.d.s and the precision and accuracy of
the parameter estimates cannot be validly assessed by statistical methods (Prince 1981). If
serial correlation is present, then none of the e.s.d. values is a valid measure of uncertainty.
To test for serial correlation between adjacent steps in a powder diffraction pattern, Hill
and Flack (1987) proposed the use of the Durbin–Watson dDW statistic. They used it in a
weighted form:

dDW =
∑N

n=2(wi-yi − wi−1-yi−1)
2

∑N
n=2(wi-yi)2

(3.10)

where -yi = yobs(xi) − ycal(xi) and wi is the weight assigned to each intensity. The ideal
value of dDW is 2.0. A simple correction for serial correlation was derived by Bérar and
Lelann (1991), which in practice increases the e.s.d. values by a factor of 2 to 3. Andreev
(1994) suggested the use of a function which takes into account local correlation, and
recommended its minimization in the final stage of the fitting procedure, after S (equation
3.2) has been reduced to a minimum. This two-step technique was tested with success on
two widely-distributed datasets, for PbSO4 (Hill 1992) and Ca5(PO4)3F (Wiles and Young
1981).

Some comparisons between single-crystal and Rietveld refinement results for the same
materials have been reported. However, for a meaningful comparison the data should
correspond to the same upper limit of sin θ/λ, which is rarely the case. Young, Mackie and
Von Dreele (1977) obtained e.s.d.s (not corrected for serial correlation) which were 2 or 3
times as large as in single crystal studies and the co-ordinate parameters generally were in
agreement within 2 or 3 combined e.s.d. values.

4. Instrumentation and experimental considerations

4.1. Sources of radiation

4.1.1. Sealed-tube X-ray sources. The most widely used source of radiation in powder
diffraction continues to be the conventional sealed X-ray tube, though neutron sources,
both continuous and pulsed, and synchrotron radiation are available world-wide at central
research facilities. The disadvantages of a conventional source are its low brilliance, non-
tunability and relatively high beam divergence, but these factors are more than offset by its
accessibility, low cost and high reliability. Target materials for angle-dispersive experiments
range from Cr (Z = 24) to Ag (Z = 47), corresponding to wavelengths in the range 2.9 Å
to 0.56 Å for Kα characteristic radiation. The choice of wavelength depends on the range
in reciprocal space to be probed in a particular application and on the composition of the
sample; it is clearly desirable to avoid the excitation of fluorescence from the specimen,
if possible. However, by far the most commonly used target material is Cu(Z = 29), for
which the generally accepted wavelength is currently 1.5405981 (10) Å for CuKα1 radiation
(Deslattes and Henins 1973).

The brightness of a conventional X-ray source is limited by the rate at which heat can be
dissipated from the target and a power rating of 3 kW (equivalent to about 600 W mm−2 for
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a fine-focus tube) is the maximum currently available commercially. By rotating the anode,
the rating can be increased to about 20 kW for a broad-focus tube. The corresponding
increase in the brightness of the source reduces the time taken to acquire data with a given
statistical quality by a factor of ∼ 2.5, but at the expense of resolution. However, when
operating in fine-focus mode, the powder density can be increased to ∼ 4500 W mm−2.
Rotating-anode sources are used to advantage in dynamical experiments, for studying non-
equilibrium phenomena on a time scale of seconds, or when only small samples are available,
as in ultra-high-pressure studies (section 11.2).

In addition to the Kα1–Kα2 doublet, with intensities approximately in the ratio 2:1
and a relative separation of about 2.5 × 10−3, there is a group of four or five satellite
lines, depending on the target material, on the high-energy side of the Kα1 line. The total
intensity of these ‘non-diagram’ lines is about 1% of that for the Kα1. For many years this
structured wavelength distribution for Kα radiation limited progress in a number of powder
diffraction applications, particularly for materials having low and intermediate symmetry.
Attempts were made at an early stage to remove the Kα2 component analytically (e.g.
Rachinger 1948). Improved procedures were introduced by Ladell, Zagofsky and Pearlman
(1970), Delhez and Mittemeijer (1975) and Platbrood (1983) and nowadays the ‘Rachinger
correction’ is usually included as standard in software packages for data reduction and
analysis provided by diffractometer manufacturers. However, the parameters used to model
the doublet are only approximate and normally do not take into account the differing
widths and asymmetries of the two lines, nor is provision usually made for the satellite
group. A more rigorous approach was introduced by Parrish, Huang and Ayers (1976) in
their procedure for pattern decomposition (section 3.3.1). They modelled the wavelength
distribution and other instrumental contributions to an observed line profile by means of
five Lorentzian functions, two for each side of the Kα1 and Kα2 components and one for
the Kα satellite group. Parameters defining these functions are refined in the usual way

Figure 3. The quartz triplet 212, 203, 301, CuKα radiation, showing the dramatic improvement
in resolution and pattern quality achieved with an incident-beam monochromator and CuKα1
radiation (left), compared with the Cu Kα1,2 doublet (right).
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until an optimum ‘fit’ is achieved.
The procedure devised by Parrish, Huang and Ayers is an improvement on ‘Kα2-

stripping’ techniques and is an adequate approximation in some applications of powder
diffraction. However, the introduction of systematic errors is inevitable with analytical
techniques currently available and, for the more demanding requirements of advanced
methods in modern powder diffraction, it is desirable to remove unwanted radiation at
source by means of a focusing monochromator (e.g. Louër and Langford 1988). This is
customarily placed in the incident beam, though a focusing monochromator in the diffracted
beam has the additional advantage of removing sample-induced fluorescent radiation. Such
monochromators can now be supplied as a standard item with commercial diffractometers.
There is some reduction in the intensity of the kα1 line, though a β filter and incident-beam
Soller slits (section 4.2.1) are no longer required. The resulting spectrum is essentially
monochromatic (-λ/λ ∼ 4×10−4) and the wavelength distribution can readily be modelled
by one of the analytical functions listed in the appendix. Also, the number of peaks in a
diffraction pattern is halved (figure 3), thereby significantly reducing peak overlap. Indeed,
the use of a focusing monochromator to remove the Kα2 component and Kα satellite
lines is an essential requirement for studying microstructural properties by means of pattern
decomposition (section 10.3), if high precision is required, and is highly desirable in most
other applications of powder diffraction, e.g. structure refinement by means of the Rietveld
method (section 3.3.2), powder pattern indexing (section 7.2) and extraction of structure-
factor amplitudes (section 7.3).

4.1.2. Synchrotron sources. The first synchrotron radiation facility was introduced in 1961,
when a beamline was incorporated in the 184 MeV synchrotron at the National Bureau of
Standards, Washington (Madden and Codling 1963), and there are currently about 60 such
facilities world-wide, operational or under construction (Hasnain, Helliwell and Kamitsubo
1994). Radiation from a synchrotron source can extend from ‘hard’ X-rays to the infra-red
region and beyond, with a high flux over a wide range of wavelengths. At the Daresbury
Laboratory 2 GeV Synchrotron Radiation Source (SRS), for example, commissioned in
1981 and the first of many ‘dedicated’ sources, the exploitable wavelength range is ∼ 10
pm (100 keV) to ∼ 1 cm (10−4 eV). Some storage rings, such as the Daresbury SRS,
are optimized for brightness, and others (e.g. the 6 GeV European Synchrotron Radiation
Facility (ESRF) at Grenoble, France), are designed to achieve high brilliance. The maximum
flux usually occurs at too low an energy for some diffraction experiments and magnetic
devices, such as ‘wigglers’ or ‘undulators’ are inserted between the bending magnets of
storage rings to shift the peak flux to higher energies. In addition to an increase in intensity
of several orders of magnitude, compared with a conventional source, a major advantage of
synchrotron radiation is the extreme parallelism of the beam; the divergence is ∼ 1 mrad
or less in the vertical direction and is only slightly more in the plane of the storage ring.
(The vertical divergence decreases, and the resolution thus improves, as the energy of the
source increases.) This means that powder-diffraction experiments with exceptionally high
resolution can be carried out. Among the many consequences of this feature is the recent
development of micro-diffractometry. There are two types of microdiffraction: data can be
collected from very small samples (e.g. section 11.2) and information can be obtained from
individual crystallites or grains in a polycrystalline material. For example, structure solution
has been carried out with data from ∼ 10–20µm crystallites (e.g. Harding and Kariuki 1994;
Harding et al 1994) and the variation in microstructure within grains of plastically-deformed
copper has been determined (e.g. Langford et al 1992). Another advantage of synchrotron
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radiation is tunability of wavelength; any value in the X-ray régime can be selected simply by
rotating an incident-beam monochromator, usually channel-cut Si or Ge, to the appropriate
angle. By this means, the wavelength can be finely tuned to exploit resonant diffraction
(anomalous dispersion: section 8), and it can be set to eliminate sample fluorescence,
adjusted for maximum intensity from the source or optimized to probe the region of interest
in reciprocal space. Another attribute of synchrotron sources is total linear polarization of
the beam in the plane of the storage ring and it tends to be circularly polarized out of the
plane, but these features are not yet widely exploited in powder diffraction.

In addition to high-resolution studies at fixed wavelength, synchrotron radiation is used
to advantage in energy-dispersive experiments. The very intense ‘white beam’ is ideally
suited to time-resolved diffraction, when a complete diffraction pattern can be obtained in a
few seconds, and to non-ambient experiments generally. Since scattering is at a fixed angle,
ancillary equipment, such as a cryostat, furnace or pressure cell, can readily be inserted
in the beam path. Access to synchrotron facilities is necessarily limited and experiments
usually have to be planned a year or so in advance, but the proliferation of dedicated sources
throughout the world has greatly extended the range of science which can be studied by
means of powder diffraction.

4.1.3. Neutron sources. Since neutrons behave as a gas with the usual Maxwell–Boltzmann
distribution of velocity, it follows from the de Broglie equation that the maximum (λ) of the
corresponding wavelength distribution depends on the inverse of the effective temperature
T , or

λ2 = h2/3mkT = 632.9/T (4.1)

where h, m and k have their usual meaning and λ is in Å. It is thus a fortunate coincidence
that the wavelength distribution for neutrons in thermal equilibrium at 273 K has a maximum
at 1.52 Å, remarkably close to that for CuKα characteristic radiation. Neutrons are thus
eminently suitable for carrying out diffraction experiments and for many years powder
diffraction has been practised at a dozen or so conventional reactors, mainly in the U.S.A.
and Europe. The range of wavelengths available at a beam port depends largely on the
temperature of the moderator which it views. Short wavelengths predominate if a graphite
moderator at temperatures up to almost 2000◦C is used, whereas a ‘cold’ source, such
as liquid hydrogen, gives long-wavelength neutrons. Such sources are mainly used for
angle-dispersive experiments, a narrow range of wavelengths being selected by means of a
monochromator. Somewhat more recently, the spallation source was introduced as a means
of producing neutrons (Carpenter 1977). The interaction of a high energy pulsed proton
beam with a heavy metal target produces bunches of neutrons by ‘spallation’ reactions and
these are moderated to thermal energies for use in diffraction experiments. Such sources are
used for powder diffraction at the Rutherford Appleton Laboratory (ISIS), the Los Alamos
National Laboratory (LANSCE) and the Argonne National Laboratory (IPNS).

Neutrons are distributed spatially according to their velocity, and hence wavelength, so
the time t taken to travel from the moderator to a detector is proportional to the wavelength
and the total flight path L or, again from the de Broglie equation,

t = λLm/h = 2dLm sin θ/h (4.2)
= 0.5055dL sin θms (4.3)



158 J I Langford and D Louër

if L is in metres and d in Å. Thus, if the distance from the moderator to the detector
is 10 m, then t ∼ 5 ms for d = 1 Å and a high scattering angle. This property led
to the introduction of time-of-flight (TOF) powder diffractometers (Jorgensen and Rotella
1982). Such diffractometers are effectively energy-dispersive instruments and the scattering
angle is usually high [> 90◦ (2θ )]. Advantages of a TOF diffractometer are that, for a
given scattering angle, the resolution (-d/d) is essentially constant, whereas it tends to be
inferior for larger values of d in the angle-dispersive case, and that a much greater region of
reciprocal space can be probed. The resolution mainly depends on the path length, which
is about 100 m for the ISIS high resolution powder diffractometer (HRPD).

The main advantages of the use of neutrons in diffraction experiments are that the
scattering cross-section does not vary with sin θ/λ and is thus constant for all scattering
angles or energies and, with a few exceptions, its magnitude is similar for all elements,
as noted in section 2.1. Accordingly, the main use of neutrons in powder diffraction has
been the refinement of crystal structures by the Rietveld method (section 6), particularly for
determining the positions of hydrogen atoms, which hitherto has rarely been accomplished
with X-rays, and the distribution of cations among various atomic sites. The former is
normally based on deuterated samples, since scattering from a hydrogen atom is dominated
by a very large incoherent component, which is not the case for deuterium. With neutrons
there is usually sufficient contrast between the scattering cross-sections for the site occupancy
of cations with similar atomic number, or of different isotopes, to be determined. The
diffracted intensity is considerably lower for neutrons than for X-rays and thus large samples
(typically 10–20 gm) are required in order to achieve comparable data quality. However,
an advantage of the low absorption of neutrons by most elements and isotopes means that

Figure 4. Geometry of the Bragg–Brentano (Parrish) powder diffractometer with a conventional
X-ray source (F) and incident-beam monochromator (M), short focal distance f1, long focal
distance f2 and focusing point F′. O is the diffractometer axis, D the detector and S2 the
receiving slit. S1 is an optional slit at F′.
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furnaces, cryostats and other ancillary equipment can be inserted in the beam path without
significant loss of intensity. Neutron and X-ray experiments are thus complementary and it is
sometimes advantageous to use both sources of radiation in structure solution or refinement
(section 7.5; see also Von Dreele 1995). Von Dreele (1989) also gives further information
on neutron sources in general and David and Jorgensen (1995) discuss TOF instruments
and their use in structure refinement.

4.2. Diffractometers and cameras

4.2.1. Powder diffractometers. The modern high-resolution powder diffractometer is the
result of continuous development, largely by the late William Parrish, since the late 1950s.
(See Parrish 1992.) The instrument most commonly used with conventional divergent-beam
X-ray sources is based on Bragg–Brentano parafocusing geometry (figure 4), whereby the
source, sample and receiving slit lie on the ‘focusing circle’, which has a radius dependent
on θ . Coherently scattered rays from a flat sample then converge (are ‘focused’) on the
receiving slit, which is placed immediately in front of the detector. The detector normally
rotates about the diffractometer axis through twice the angular rotation of the sample (θ/2θ

scans), though for some instruments the sample is stationary and the X-ray tube and detector
rotate (θ/θ scans). This configuration is mainly used to study liquid samples. Instruments
with horizontal or vertical axes are available. The former has some advantages, if automatic
sample changing is required, and for the latter the torque imposed by the detector is constant
at all angles. Samples are normally studied by reflection, but the transmission mode can also
be used. Monochromatic radiation can be obtained by inserting a focusing monochromator
in the incident or diffracted beams (figure 4 and section 4.1.1) and sample fluorescence can
be eliminated by means of a monochromator, usually graphite, in the diffracted beam. The
source size is typically about 0.05 mm in the plane of the instrument (the equatorial plane)
and about 10 mm axially. If there is no incident-beam monochromator, beam dimensions
are limited by a divergence slit, usually with an aperture of 1◦–2◦, in the equatorial plane
and by Soller slits, parallel foils with an aperture in the region of 2◦, in the axial plane. The
receiving slit normally has an aperture in the range 0.01◦ to 0.10◦, depending on the desired
resolution. The receiving-slit aperture in fact dominates the instrumental line width at low
and intermediate angles; typically this is about 0.06◦ for a 0.05◦ receiving slit, corresponding
to a resolution -d/d of ∼ 2 × 10−3. A feature of the Bragg–Brentano geometry is that the
resolution improves dramatically at higher angles, by an order of magnitude.

A less common type of powder diffractometer is based on the Seemann–Bohlin geometry
(Parrish and Mack 1967; Mack and Parrish 1967), in which the specimen is stationary and
is mounted on a radial arm, instead of on the axis of rotation. The detector rotates around
a fixed-radius focusing circle and is arranged to point towards the sample at all angles.
Diffraction is from planes inclined to the sample surface by different amounts, whereas
only planes which are nearly parallel to the surface contribute in the Bragg–Brentano case.
A third form of diffractometer is based on the Guinier camera (section 4.2.2). This has an
incident-beam monochromator and samples are viewed in transmission. Diffraction is then
from planes which are nearly normal to the surface. The effects of instrument geometry on
line position and breadth have been evaluated by Wilson (1963) for the Bragg–Brentano case
and are listed by Parrish and Wilson (1992) for Seemann–Bohlin geometry. The relative
merits of various diffractometer configurations, together with the associated experimental
procedures, have been reviewed by Jenkins (1989b).

The parallel-beam optics used with synchrotron radiation means that a variety of
diffractometer configurations is possible. The diffractometer axis is usually horizontal and
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the most widely used method in powder diffraction is standard θ/2θ scanning, with a rotating
flat specimen or a spinning capillary sample. Since there is no restriction on the path
lengths of the incident and diffracted beams, this is often termed Debye–Scherrer geometry,
by analogy with the standard powder camera. The resolution is largely governed by the
width of the incident beam, if this is greater than the sample size, and by the receiving-slit
aperture. The resolution can be improved somewhat if the receiving slit is replaced by an
analyser crystal which has a small mosaic spread (Cox et al 1983; Hastings, Thomlinson and
Cox 1984). 2θ scans with a fixed sample position are used for analysing texture, preferred
orientation and grazing-incidence diffraction. Energy-dispersive experiments are normally
performed with a fixed θ − 2θ setting and a solid-state detector coupled to a multichannel
analyser, but higher resolution can be achieved by rotating a monochromator in the incident
beam, to select the desired range of wavelengths.

A very recent development is the introduction of a parabolically-bent multilayer device
with a laterally-graded period (Schuster and Göbel 1995), to condense divergent X-rays
from a sealed-tube source to a parallel beam. This technique results in a gain by a factor of
100 in intensity and allows the use of parallel-beam geometry with conventional sources.

4.2.2. Powder cameras. Powder diffractometers have largely replaced film cameras in
laboratories where powder diffraction is practised. This is particularly true of the cylindrical
Debye–Scherrer camera, in which the sample is mounted in a thin glass capillary tube,
normally manufactured from light elements or silica. The other type which is still favoured
in some laboratories, is the Guinier focusing camera, with a flat transmission specimen and a
cylindrical film (Guinier and Dexter 1963). An advantage of this camera is that, by suitable
adjustment of the monochromator crystal, the Kα1 line can be selected. Werner (1992) has
discussed the relative merits of powder cameras and diffractometers.

4.3. Detectors

4.3.1. Photographic film. The use of photographic film for the detection of X-rays has
largely been superseded by electronic devices in powder diffraction. Aside from the
convenience factor, this is mainly due to the inherent low resolution of film and the difficulty
of obtaining digital data of the quality required in modern diffraction methods. Nevertheless,
a Guinier–Hägg camera, coupled with a densitometer to obtain a digital representation of
intensity, has been used successfully for pattern indexing and structure analysis (Werner
1986) and is still used in some laboratories to obtain standard data for the Powder Diffraction
File (section 5.1.1). It should, however, be remembered that photographic film is an
inexpensive 2-dimensional detector which gives a visual indication of the presence of
preferred orientation (section 6.1.3). Also, from the appearance of Debye–Scherrer rings
which may occur for different phases, film can be used as an aid to identifying a mixture
of unknown materials.

4.3.2. Counter detectors. The majority of detectors used with X-ray sources are of the
proportional or scintillation type, the former having a greater energy resolution (∼ 15%,
compared with ∼ 50% for the latter), but lower quantum-counting efficiency. Both produce
an output voltage proportional to the energy of the incident X-ray photon and, when used
with a pulse-height analyser, a degree of energy discrimination can be achieved. Far greater
energy resolution (∼ 2–3%) can be obtained with a solid-state detector, usually a Li-drifted
silicon crystal, though other materials are used. Such detectors have the added advantage
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that the quantum counting efficiency is ∼ 100%, but earlier versions needed to be held at the
temperature of liquid nitrogen at all times, to avoid loss of Li, which can be inconvenient
for routine use. This disadvantage was overcome in the early 1980s by the introduction of a
compact silicon detector with Peltier thermoelectric cooling. Solid-state detectors have been
reviewed by Bish and Chipera (1989) and further details of the construction and performance
of counter detectors have been given by Parrish (1992).

4.3.3. Position-sensitive detectors. If high-resolution data are required from an angle-
dispersive experiment, then scanning the diffraction pattern in small angular increments with
one of the above detectors is the best approach. However, the time taken to accumulate data
can be prohibitively long, if routine measurements for a large number of samples are to be
made or if the time-dependent behaviour of a sample is of interest. Such applications led
to the development of position-sensitive detectors (PSDs) in powder diffraction. These are
mostly based on the proportional counter and early versions were linear, with the subtended
angle limited to about 10◦. Thus, unless a narrow angular range is acceptable in a particular
application, the detector needs to be re-positioned throughout the range of interest. Göbel
(1981) introduced a method for repositioning a PSD which permits a very rapid automated
data collection by using approximate Bragg–Brentano geometry. The aberration introduced
by de-focusing of the diffracted beam was overcome by the introduction of curved detectors
in X-ray diffractometry in the late 1970s (Ortendahl et al 1978), which effectively takes
the place of a film in Debye–Scherrer geometry. A commercial version was developed for
use with an incident-beam focusing monochromator, which employs a gold-plated tungsten
anode confined magnetically to a radius of 130 mm and subtending an angle of 80◦ (Wölfel
1983). Included in the pressurized enclosure containing the anode wire and magnets is
a delay line with spatial resolution of 105 µm, corresponding to an angular resolution of
about 0.07◦ (2θ ). At about the same time, a more robust version, employing a stainless-steel
blade as the anode, was introduced (Ballon, Comparat and Pouxe 1983). This has a radius
of 250 mm, corresponding to an angular aperture of 120◦, and a resolution of 0.03◦ (2θ ).
A commercial version of this detector is also available.

The maximum counting rate for PSDs is less than for normal proportional or scintillation
detectors by an order-of-magnitude or so, but in most applications this is not a serious
limitation. Also, the instrument resolution is somewhat inferior, which may be a
disadvantage in cases where line breadths are not dominated by sample broadening. A
more serious problem is that the response, both spatially and in terms of intensity, is not
necessarily linear throughout the length of the detector. Curved PSDs in particular require
careful calibration and the data are subjected to somewhat elaborate correction procedures
(e.g. Shishiguchi, Minato and Hashizume 1986). Nevertheless, the introduction of curved
PSDs in angle-dispersive experiments, whereby a complete pattern can be obtained without
moving the detector, has revolutionized time-dependent studies (section 11.1) and even
routine work where high resolution is not the main consideration. Further information on
the design and performance of various types of PSD has been provided by Arndt (1992).

4.3.4. Area detectors. In general there is no particular advantage in using a 2-dimensional
detector in X-ray powder diffraction, if a sufficient quantity of an ‘ideal’ sample (section
4.5.1) is available. However, there are some applications where area detectors are proving
to be indispensable, notably in studies of texture and in quantifying preferred orientation,
or in ultra-high-pressure work, when the sample volume is small (section 11.2). The most
widely used area detector in powder diffraction at present is the image plate, introduced
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Figure 5. Powder diffraction pattern obtained with an image-plate detector and synchrotron
radiation (Daresbury SRS). (a) 2-dimensional image from InSb-IV at 5.1 GPa, 0.4445 Å, 8
hr exposure time. (b) Integrated profile of the 2-dimensional image. The inset shows, on a
common scale, an enlarged view of the low-angle region recorded at 0.4635 Å, far (f) from the
In K-edge (0.4439 Å), and at 0.4445 Å, near (n) the K-edge (Nelmes and McMahon 1995).

by Fujii et al (1988) for energy-dispersive high-pressure experiments carried out with a
diamond anvil cell. This uses a storage phosphor, such as a Eu-activated Ba halide, which
is exposed in the same way as photographic film and then scanned with a laser beam. The
intensity of the light emitted is proportional to the energy of the original X-ray photon and
this is measured with a photomultiplier. The image plate is used repeatedly, since the image
can be erased. It has a low background, a large (∼ 105) dynamic range and a reasonable
spatial resolution.
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The extension of the use of the image plate detector to angle-dispersive experiments
transformed high pressure research, since the problem of small sample volume, inherent with
diamond anvil cells, is then overcome by recording and integrating the intensity around a
substantial part of each Debye–Scherrer ring. This technique was pioneered at the Photon
Factory (Kikegawa 1992) and was further developed at the Daresbury Laboratory SRS (Piltz
et al 1992; Nelmes and McMahon 1994) (figure 5). The combined advantages of the image
plate and the high resolution attainable with angle-dispersive system means that data of
sufficient quality for structure solution or refinement can now be obtained at pressures up
to about 200 Gpa (2 Mbar). The use of the image-plate detector with synchrotron radiation
has been reviewed by Amemiya (1995). Charge-coupled devices (CCDs) and fast-scanning
television monitors (Arndt 1992) have not hitherto been widely used as 2-dimensional
detectors in powder diffraction, but this is likely to change in future, particularly with high
brightness synchrotron sources.

4.3.5. Neutron detectors. Neutrons can be detected in powder-diffraction experiments by
inducing a nuclear reaction with a highly absorbing isotope, such as 3He or in 10BF gas, and
then detecting the resulting γ ray or heavy-particle emission in a proportional counter in the
usual way. Alternatively, detection can be achieved by interaction with a scintillator which
is coupled by means of a light guide to a photomultiplier. This arrangement is more efficient
than a proportional counter and an area detector can be formed by mounting scintillators
in a 2-dimensional array. The HRPD at ISIS has a ring of such scintillators, each being
connected to three out of a total of 64 photomultipliers. The detection of light in all three
then identifies the location of the incident neutron unambiguously.

4.4. Non-ambient diffraction

4.4.1. High-temperature diffraction and reaction cells. Furnaces for carrying out in situ
diffraction studies of phase changes and other phenomena at temperatures up to 2500◦C
have been available for many years and the different designs and desirable features have
been reviewed by McKinstry (1970). A significant advance during the last decade or so has
been the development of high-temperature cells for in situ characterization of samples in
reactive gas environments or for following solid-state reactions. The impetus for this work
has largely been catalyst development and, in addition to the reaction cell, the apparatus
consists of a gas mixing rig and some means of analysing the product gases, usually a gas
chromatograph and a mass spectrometer. Two main types of cell have emerged. In one the
gases are passed over the surface of the sample (e.g. Mamott et al 1988; Terblanche 1989)
and in the other they pass through the sample (e.g. Moggeridge, Rayment and Lambert 1992).
An example of the latter type, which incorporates the best features of earlier equipment,
is the cell devised by Puxley, Squire and Bates (1994) to study heterogeneous catalysts
under simulated reaction conditions at temperatures up to 1000◦C. A feature of the cell
is optimization of the interaction between gas and sample, an essential requirement if a
measurable degree of gas conversion is to be achieved. The cell was mainly intended for
studying the catalytic oxidative coupling of methane, but it was also used to investigate
solid-state reactions and phase transitions.

The increased use of in situ powder diffraction has in fact led to the development of
a variety of cells for studying samples under special environmental conditions and also
to the design of powder diffractometers to accommodate large attachments (e.g. Arnold
et al 1989). An autoclave cell has been devised for time-resolved analysis, by means of
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neutron diffraction, of dynamical processes occurring during hydrothermal syntheses under
hostile conditions (Polak et al 1990). Electrochemical cells have been designed for use
with neutrons and synchrotron sources and a cell for in situ energy dispersive X-ray powder
diffraction of intercalation reactions has been described by Clark et al (1994).

4.4.2. Low-temperature diffraction. Experiments at low temperature have been carried out
since the early days of powder diffraction and the considerable number of cryogenic devices
which evolved have been described in detail by Rudman (1976). Any temperature down
to ∼ 1 K can be obtained by using different coolants and methods of cooling. The sample
can be cooled by means of a stream of cold gas, conduction, Joule–Thomson expansion or
immersion, or by enclosing the sample or entire apparatus in a cold environment. The choice
of cooling mechanism depends to some extent on the radiation used and the nature of the
experiment, but increasing use is being made of the ‘cryostream’ system for temperatures
down to 77 K (Cosier and Glazer 1986). This embodies a continuous nitrogen-flow cooling
device. The disadvantages of thermal instability and high coolant consumption which were
inherent in earlier devices are overcome by a combination of precise control of gas flow and
a large thermal capacity of the heat exchanger/evaporator. The temperature at the sample
is stable to within ±0.1 K and the ‘cryostream’ only consumes 0.5 lhr−1 of liquid nitrogen.
The system can be used with any type of diffractometer or camera.

4.4.3. High-pressure cells. Experiments at non-ambient pressure, which are frequently
carried out at non-ambient temperature, can be broadly classified as low, medium and high
pressure, according to the type of cell used. Low-pressure studies, up to 0.7 GPa (7 kbar),
can be carried out with gas- or oil-driven cells. These can accommodate a large volume of
sample, the pressure throughout the cell is hydrostatic and temperatures as high as 1500◦C
can be produced. Such cells are particularly suited to the study of organic materials.

For the next régime, to about 20 GPa, a Bridgman anvil cell can be used. This consists
of two opposed anvils made of a hard material, such as tungsten carbide, with flat parallel
surfaces between which the sample is compressed as the anvils are driven together. The
sample volume is limited to a few mm3 and sample temperatures up to 2000◦C have been
reached with these cells. Other cells used in powder diffraction are the belt device, which
employs a tapered piston, and the Drickamer cell (Häusermann, Daghooghi and Sherman
1990, 1992).

Multi-anvil cells, whereby a single ram induces a compression of the sample along
the three axial directions, are used to pressures of about 30 GPa. The sample size can
be ∼ 10mm3 or more, with temperatures up to 2500◦C. Multi-anvil cells have been used
for energy-dispersive diffraction (EDD) since the early 1980s, but the advantages of large
sample volumes and high temperatures are offset by their size and weight, the latter being in
the region of 0.5 to 1 tonne. Their use has thus been restricted to central research facilities,
for example, the MAX80 press at the Photon Factory, Japan, to which MAX90, operating at
higher pressures, was added a decade later (Kikegawa 1992), and the SAM85 device at the
National Synchrotron Light Source (NSLS), Brookhaven (Weidner et al 1992a). The latter
has a 250 tonne hydraulic ram which simultaneously drives an assembly of six anvils into the
sample. Although mainly intended for use in the energy-dispersive mode, fixed wavelength
data can be obtained over a restricted range of scattering angle. A more compact (50 kg)
cell of the Bridgman type, employing a torroidal anvil arrangement, has been developed by
Besson et al (1992) for EDD experiments with synchrotron and neutron sources at pressures
of 3 GPa or more. A problem inherent with multi-anvil cells is non-uniformity of stress
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throughout the sample and also a temperature gradient, if the sample is heated. Although the
stress exerted by a cubic-anvil arrangement is essentially hydrostatic, the sample geometry
is normally cylindrical and the stress distribution within it is uniaxial. This departure from
hydrostatic conditions, known as deviatoric stress, can be monitored by including a cubic
material whose equation of state is known, such as NaCl or Au, with the sample. The effect
is not large at lower pressures, since only a small region of the sample is available for
diffraction, due to the parallel-beam optics of synchrotron radiation, but it is nevertheless
measurable and it increases at higher pressures. Weidner et al (1992a, b) have thoroughly
investigated the precision of pressure measurement, the deviatoric stress and temperature
gradient for a cubic-anvil press.

Pressures in excess of 400 GPa (4 Mbar) have been obtained by means of the diamond
anvil cell (DAC). The different types of DAC used in high pressure investigations of physical
properties have been described by Jayaraman (1983) and the deviatoric stress for this type
of cell has been considered by Meng, Weidner and Fei (1993). Temperatures of about
2000◦C can be attained with resistive heating, or more if a laser is used, but only very
small quantities of sample can be studied. Even higher pressures can be induced by shock
waves, but this technique is not widely used in powder diffraction. Further information on
pressures cells is given in Chapter 1 of Liu and Bassett (1986).

4.5. Sample preparation and experimental strategy

4.5.1. Sample preparation. A careful and systematic procedure for sample preparation is
always desirable and is an essential requirement in many applications of powder diffraction.
Failure to observe basic criteria for preparing powder samples can influence the position,
intensity and shape of reflections, leading to frustration at the analytical stage and the
likelihood of significant errors in the results. In order to achieve a uniform distribution
of intensity around each Debye–Scherrer ring there needs to be ∼ 106 crystallites/cm2

and ideally the greater part of the crystallites should thus have sizes in the range 5–
10 µm (Parrish and Huang 1983; see also Cline and Snyder 1983, Jenkins et al 1986).
Smaller crystallites introduce measurable line broadening and larger sizes degrade crystal
statistics and give rise to extinction effects (Sabine 1985, 1988; see also section 6.1.4).
Also, large crystallites can introduce an unacceptable displacement of reflections; with
focusing geometry the peak shift for 50 µm particles is ∼ 0.01◦ (2θ ). If a limiting size of
about 10 µm cannot be achieved directly by sieving, sedimentation or some other means
of fractionation, then grinding or milling can be used, if sample microstructure is not of
interest. However, it should be borne in mind that some substances undergo a phase change
when subjected to mechanical treatment (Smith, Snyder and Brownell 1979a). In structure
solution or refinement, line-profile overlap can sometimes be reduced, and the quality of
data improved, by annealing the sample.

In most cases it is important to avoid preferential orientation of crystallites when
preparing specimens and there are various ways in which this can be achieved. If a flat
sample is used, it is customary to load the sample holder from the side rather than the front, in
order to reduce the effects of preferred orientation. A general method for the elimination of
preferred orientation, spray drying, was introduced by Smith, Snyder and Brownell (1979b).
Spray drying consists of atomizing a slurry of the powder containing a small amount of
adhesive. The droplets (∼ 50µm) are dried in air and form spherical agglomerates. Details
of this procedure are given by Cline and Snyder (1987). The sample surface must be
coincident with the axis of rotation, perpendicular to the diffraction vector and smooth,
since roughness also introduces peak displacement. Specimen-surface displacement is the
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commonest and often the largest source of error in peak position with focusing geometry;
typically, a surface displacement of 10 µm displaces peaks by ∼ 0.01◦ (2θ ) in a direction
which depends on whether the sample is behind or in front of the diffractomerter axis.
Further information on sample preparation is given in Methods & Practices (Jenkins 1989a).

4.5.2. Experimental strategy. Experimental conditions are optimized to obtain the best
quality data in the time available for a particular task, but are invariably a compromise
between resolution and intensity; for example, the use of wider slits increases the latter, but
degrades the former. In the majority of angle-dispersive experiments, the step length should
be between 1/5 and 1/10 of the FWHM, but a smaller step (∼ FWHM/20) is needed if a
Fourier representation of line profiles is required. Unless software for subsequent analysis
requires a constant step throughout a dataset, it is convenient to increase the step length
for broader reflections at higher angles. For a single receiving slit the choise of aperture in
principle depends on the breadth of line profiles and ideally should be approximately equal
to the step length. However, in practice it is customary to use a fixed aperture, typically
∼ 0.05◦, for most applications, since the zero error usually has to be redetermined each time
the receiving slit is changed. An overview of experimental strategy has been discussed by
Parrish and Huang (1980) and further information is again included in Methods & Practices
(Jenkins 1989a).

The precision of line-profile parameters depends on counting statistics and this in turn
is determined by the maximum intensity and the background level. Various authors have
considered random errors in the measurement of line-profile position, intensity and breadth
due to counting statistics (e.g. Wilson 1967; Langford 1980; van Berkum et al 1995). In
practice it has been found that ideally, in applications based on pattern decomposition, a
maximum count of at least 10 000 (a precision of 1%) should be accumulated for each
reflection, but this may well be impracticable for weak lines. For phase identification,
counting statistics are decided by the desired level of detection for minor phases, relative
to the background level.

4.6. Instrument characterization and Standard Reference Materials

Well characterized standard materials play an important rôle in every aspect of powder
diffraction, from determining the performance of instruments to improving the precision of
experimental data. The most widely used standards are those produced and marketed by the
US National Institute of Standards and Technology (NIST, formerly the National Bureau
of Standards), based in Gaithersburg, Maryland. These are known as Standard Reference
Materials (SRMs) and, depending on the application, they are used as an independent
specimen (external standard) or are mixed with the sample of interest (internal standard).
Various other standards are available commercially and they are also produced in individual
laboratories to suit particular applications.

It is important that the crystallite sizes for standard materials should mostly lie within
the range 5–10 µm, for the reasons stated in section 4.5. A high linear absorption coefficient
µ is desirable, though not essential. (In the following, the values given for µ correspond
to the wavelength of CuKα radiation. µ−1 is also included, to give an indication of the
penetration depth at this wavelength.) Also, materials with high crystal symmetry (cubic
or hexagonal) are normally used, to avoid undue overlap of reflections when they are used
as internal standards. In general, materials with a tendency to exhibit preferred orientation
should be avoided, an esential requirement for intensity standards. Examples of the use of
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standards are given by Wong-Ng and Hubbard (1987) and full specifications of SRMs and
other information are included in Methods & Practices (Jenkins 1989a).

4.6.1. d-spacing standards. The main SRM marketed by NIST for the precise
determination of the position of line profiles is Si 640b (a0 = 5.430940 (11) Å at 25◦C). In
addition to acting as a d-spacing standard, this SRM is also widely used for determining the
wavelength in angle-dispersive experiments with synchrotron radiation. NIST also provides
fluorophlogopite (SRM 675, a synthetic mica with d001 = 9.98104 (7) Å at 25◦C) for
calibration at low angles or large d spacings. Unlike other SRMs, this standard has relatively
large particles (up to 75 µm), to encourage total orientation of platelets, so that only 00l

reflections are observed. Both these standards introduce measurable peak displacements due
to sample transparency, unless thin (‘smear’) specimens are used. µ for Si is 133 cm−1

(µ−1 = 75µm) and is considerably less for mica. For a ‘thick’ specimen of the former,
the 422 reflection (CuKα radiation) is displaced by −0.01◦ (2θ ). Ag (a0 = 4.08651 (2) Å
at 25◦C; µ = 2500 cm−1, µ−1 = 4µm), for which the corresponding peak displacement is
only about −0.0005◦ for a ‘thick’ specimen, is also widely used as a d-spacing standard.

The first reflection with CuKα1 radiation for SRM 675 occurs at 8.853◦ (2θ ) and a
material which extends the coverage of SRMs down to very low angles is silver behenate
(Huang et al 1993). The long spacing for this material, obtained with synchrotron radiation
and by using SRM 640a as an internal standard, is d001 = 58.380 (3) Å and, for CuKα1
radiation, there are 13 well defined and evenly spaced 00l reflections in the range 1.5◦ to
20◦ (2θ ). Additional information is given in the report of a ‘round robin’ organized by the
ICDD on the measurement of this large d spacing (Blanton et al 1995). This material is
suitable for use as an external or an internal low-angle calibration standard for the analysis
of materials with large unit-cell dimensions and modulated multilayers with large layer
periodicity.

4.6.2. Intensity standards. The primary intensity standard is α-Al2O3 (corundum) and its
main use is in quantitative analysis. Data in the Powder Diffraction File often include
the ratio of the intensity of the strongest peak to that of the corundum 113 reflection, the
Reference Intensity Ratio (RIR), which is listed as I/Ic. (See section 9.) This greatly
facilitates the quantitative analysis of phases for which I/Ic is known, since an internal
standard in then not required. It should, however, be remembered that the RIR is based
on maximum intensities, whereas weight fractions are proportional to line-profile areas
(integrated intensities). Four secondary standards are also supplied by NIST, ZnO (wurtzite,
I/Ic = 5.17 (13) for 101 line), TiO2 (rutile, I/Ic = 3.39 (12) for 110 line), Cr2O3 (corundum
structure, I/Ic = 2.10 (5) for 104 line) and CeO2 (fluorite structure, I/Ic = 7.5 (2) for 111
line). These five standards are marketed as SRM 674.

4.6.3. Instrument line-profile shape standards. The need for standard reference materials
to calibrate instrumental line profiles arose from the increased emphasis in recent years
on the use of complete diffraction patterns in several applications of powder diffraction
(section 6 et seq.). There are in fact two reasons for having instrumental standards. One
is to characterize instrument resolution, as a check that alignment has been optimized or to
compare the behaviour of different diffractometers, and the other is to obtain sample line
profiles f (x) from the observed data h(x) (section 2.3). Different standards may therefore
be required if samples of interest do not have a high absorption coefficient for the radiation
used.
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In addition to the usual requirements for standard reference materials, suitable substances
for instrument characterization should clearly not exhibit any measurable sample broadening,
even when used with high resolution diffractometers. Also, unless very thin samples are
used, they should have a high linear absorption coefficient. With Bragg–Brentano geometry,
for example, the contribution to line breadths due to transparency from a sample with
µ = 1000cm−1 [µ−1 = 10µm] typically has a maximum value of only ∼ 0.002◦ (2θ ).
Various materials were considered by the Technical Committee of the ICDD, in association
with NIST, and lanthanum hexaboride (LaB6) (µ = 1138cm−1; µ−1 = 9µm) was selected
for use as an instrumental standard (Fawcett et al 1988). This was subsequently marketed
by NIST as SRM 660 and it also serves as a line position standard (a0 = 4.15690 (5) Å
at 26◦C). Other materials used as instrumental standards include BaF2 (µ = 1394cm−1;
µ−1 = 7µm) (Louër and Langford 1988) and KCl (µ = 247cm−1; µ−1 = 41µm) (Scardi,
Lutterotti and Maistrelli 1994). Both are low cost materials, are available in large quantities
and can readily be annealed to minimize sample broadening. Although KCl may introduce
a measurable breadth contribution due to sample transparency, it can be used to advantage
for correcting data from materials having a similar absorption coefficient, such as many
ceramics.

A different approach was adopted by van Berkum et al (1995), who selected a 5–10 µm
size fraction from the NIST Si SRM 640a and deposited about 1.5 mg cm−2 uniformly on
a (510) oriented Si single-crystal wafer. The whole assembly was then annealed. At angles
below about 100◦ (2θ ) the resulting line-profile widths were found to be slightly less than
for LaB6 which had been prepared in the same way, but without heat treatment. However,
the time taken to acquire data with sufficient precision for the Si sample, more than a week,
would be prohibitively long for routine instrument characterization. van Berkum et al give a
useful overview of the criteria for preparing an optimum instrumental standard and describe
their optimization procedure in detail.

Line profiles arising from geometrical and physical aberrations were calculated in the
early days of powder diffractometry (e.g. Klug and Alexander 1974), but recently there
has been a revival of interest in convoluting these functions with a wavelength spectrum
to obtain instrumental line profiles g(x). This was carried out by Cheary and Coelho
(1992) for Bragg–Brentano geometry and later (1994) extended to include a linear position-
sensitive detector. In a similar approach, Kogan and Kupriyanov (1992) synthesized the
overall instrumental line profiles by obtaining the Fourier coefficients of the profiles due
to individual aberrations. However, not all the relevant aberration functions are known
precisely, or can be described analytically, and at present g(x) is normally obtained by
means of a suitable SRM.

The characteristics of a diffractometer are normally represented by the Instrument
Resolution Function (IRF), the variation of the FWHMg of the standard line profiles g(x)

with 2θ , in the angle-dispersive case. Typical IRFs for a conventional and synchrotron
X-ray sources are given in figure 6. The nature of this curve depends on the geometry and
dimensions of the instrument and slit system and on the radiation used. For a conventional
diffractometer with an incident-beam focusing monochromator and a receiving-slit aperture
of 0.05◦, the IRF typically has a shallow minimum of ∼ 0.07◦ (2θ ) at intermediate angles,
this being largely due to the width of the receiving slit, increasing to twice this value at
∼ 120◦–125◦ (2θ ), as the contribution from the wavelength spectral distribution increases.
At low angles the instrumental line broadening increases rapidly, due to the effects of axial
divergence. The influence of the apertures of the divergence, receiving and Soller slits on
the form of the IRF and on the symmetry of g(x) has been considered by Cheary and
Cline (1994). This work clearly demonstrates the importance of selecting an optimum slit
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Figure 6. Typical Instrument Resolution Functions (IRFs) (a) for a conventional Cu Kα1 X-ray
source, incident-beam monochromator and Bragg–Brentano diffractometer, 0.05◦ receiving slit,
and (b), the high resolution station 9.1 powder diffractometer at the Daresbury Laboratory SRS,
0.026◦ receiving slit.

configuration if reasonably symmetrical instrumental line profiles are required. In order
to obtain interpolated values of width in a particular application, a quadratic in tan θ is
normally fitted to (FWHMg)

2 (equation 3.8), but a function which models the form of the
IRF more closely at lower angles and makes allowance for sample transparency (‘thick’
specimen) is (Langford 1987)

(FWHMg)
2 = A tan2 θ + B + Ccot2θ + D sin2 2θ. (4.4)

Equation (4.3), which is based on the variances (mean square breadths) of the individual
contributions to instrumental line profiles (Wilson 1963), can also be used to model the
variation of the integral breadth βg with angle. The fourth term can be omitted for highly
absorbing samples.

5. Databases and phase identification

5.1. Databases

Ordered collections of crystallographic data have been available since the early days of
powder diffraction, but their use increased steadily after the introduction of magnetic
storage media and dramatically since the mid 1980s, with the advent of the CD-ROM
and PC systems, together with general access to world-wide communication networks. A
list of currently available crystallographic databases, with the type of storage medium used,
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Figure 7. Data for fully oxygenated ‘YBCO’, YBa2Cu3O7, No. 38-1433 in the Powder
Diffraction File (PDF-2). c©1994 JCPDS-ICDD. All rights reserved.

source and other details, is given in Table 1 of Gorter and Smith (1995). The more important
datasets, in so far as powder diffraction is concerned, are considered below.

5.1.1. The Powder Diffraction File. The principal method for the identification of unknown
materials is based on a comparison of experimental data with standard d spacings and peak
intensities (‘ds and I s’) contained in a database known as the Powder Diffraction File (PDF).
This database was introduced in the late 1930s by Hanawalt, Rinn and Frevel (1938) and
has been issued annually since 1950. It is currently maintained, updated and marketed by
the International Centre for Diffraction Data (ICDD). Two versions of the file are available
and a third is under development. In addition to ‘ds and I s’, a typical entry in the main
database, known as PDF-2, contains hkl values for each reflection if the pattern has been
indexed, the chemical name and, if appropriate, the mineral name, the chemical formula,
cell dimensions and the space group, selected physical properties, a chemical analysis and
other details of the sample, references and an indication of the quality of the data. Originally
supplied on 3′′ × 5′′ cards, the database is currently provided in book form, as microfiche,
on 9-track magnetic tape or on a CD-ROM. The last was introduced in 1987 (Jenkins and
Holomany 1987) and it is by far the most convenient storage medium. A new set with
about 2000 entries is added each year and in 1995 the PDF contained data for over 70,000
substances, occupying about 200 MByte of storage. A typical entry in the database, PDF
No. 38-1433 for fully ogygenated ‘YBCO’ (YBa2Cu3O7), is shown in figure 7, which was
obtained as a ‘card image’ from the CD-ROM. For convenience, the database has organic
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and inorganic materials as main categories, but it is also divided into other subsets; cements,
corrosion products, explosives, forensic materials, high Tc ceramics, minerals, metals and
alloys, pharmaceuticals, pigments, polymers and zeolites are available and other subsets can
be obtained by the user to suit a particular application. Although PDF-2 is invaluable as a
database, it can be unwieldy for on-line identification, even if a search is restricted to one
or other of the above subsets, and a version containing only d spacings, intensities, name
and chemical formula, known as PDF-1, is available and this only requires about 10 MByte
of storage. Another database, PDF-3, containing full digitized patterns in addition to the
information in PDF-2, is under development by the ICDD. (See section 5.2.2.)

5.1.2. Other databases. There are several other crystallographic databases of interest in
powder diffraction. Of these, the most widely used is the Crystal Data File (CDF) (Stalick
and Mighell 1986; see also Allen, Bergerhoff and Sievers 1987, pp 133–43), a compilation
of unit cell data which have been reported in the literature. Each entry includes unit-cell
parameters, crystal system, space group, chemical name and formula and literature references
and there are currently (1995) data for about 200 000 unit cells. The CDF can be used
as a means of identifying an unknown substance if the crystal system and cell dimensions
are known. The Inorganic Crystal Structure Database (ICSD), developed by Bergerhoff and
Brown (1987) and based at the Fachsinformationzentrum-4 in Karlsruhe, contains structural
information for inorganic compounds other than metals. The Metals Structures Database
(MSD) (Rodgers and Wood 1987) contains similar data, but for metals and alloys and their
corrosion products. The MSD is based at the National Research Council of Canada in
Ottawa. The Cambridge Structural Database (CSD) (Allen, Bergerhoff and Sievers 1987,
pp 31–132) has data for organic and organo-metallic materials. The ICSD, MSD and CSD
are primarily of interest in single-crystal work, but they can be used to calculate powder
diffraction patterns or to generate a starting model, based on an isostructural compound, for
structure refinement by means of the Rietveld method. Also, if a structure is unknown, but
the unit cell has been found from powder diffraction data (section 7.2), these databases can
be consulted to ascertain if an isostructural material exists. All these databases except the
last are, or will be, available in CD-ROM form. The CSD can be accessed through Internet.

5.1.3. Crystallographic Information File Format. In order to meet the need for a universal
mechanism for the archiving and electronic transmission of data, text and other material,
the IUCr developed the Crystallographic Information File (CIF) format (Hall, Allen and
Brown 1991). A CIF file is completely self-descriptive, in that data items are identified by
unique names which are listed in a dictionary of core definitions. It is composed of ASCII
characters and can thus be edited in the usual way by using any computer operating system.
Various programs are available free of charge from the IUCr for producing and handling
CIF files. Although CIF format is already used widely by the single-crystal community,
its application to powder diffraction is a relatively recent development. A supplement to
the core dictionary, which contains definitions pertaining to data obtained from all types of
powder diffractometer and any of the sources of radiation used in diffraction experiments,
has been compiled (Toby, Langford and Hall 1993). CIF format has been adopted by the
ICDD for the PDF-3, which is in fact its first major application in powder diffraction.
The use of CIFs by crystallographers is increasing steadily and, in order to facilitate the
archiving, transmittal and publication of information, all who generate and analyse powder
data are encouraged to use this format.
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5.2. Phase identification (Search/Match)

The set of d spacings and intensities obtained from an X-ray diffraction pattern for a random
powder sample of a given material is unique and it was appreciated early in the history of
powder diffraction that this provided a means of identifying unknown substances or of
confirming materials present. Compounds with the same chemical formula, but different
structures, such as polymorphs of SiO2, TiO2 or ZnS, can readily be distinguished. Data for
compounds having the same structural arrangement, but containing different elements, are
similar and the differences are sometimes small (e.g. lanthanide compounds). Nevertheless,
such materials can again be distinguished by means of diffraction data. Indeed, powder
diffraction is frequently the only means available for the identification of unknown materials,
particularly if only small quantities (e.g. a few mg) of sample are available, and X-ray data
are extensively used world-wide for this purpose.

5.2.1. Manual Search/Match. In order to identify an unknown phase, the PDF is searched
until an entry is found which matches the experimental ds and I s, a procedure thus known
as Search/Match. If this is carried out manually, it is clearly impracticable to search the
entire database and an index is used. Various indexes have been devised over the years,
but the one most widely used is that introduced by Hanawalt, Rinn and Frevel (1938). The
Hanawalt Index (or the Hanawalt Search Manual) is based on the d spacings of the strongest
lines in the diffraction pattern. The database is divided into groups containing the strongest
line, regarded as having a maximum intensity of 100%, and within each group the spacing
of the second strongest line is listed in descending order of d. The eight most intense
lines are included for each entry and, to minimize the effects of preferred orientation, each
pattern can occur up to four times, according to certain permutation rules. The section of the
Hanawalt Search Manual which contains the data for fully oxygenated ‘YBCO’ is shown
in table 2(a). This is taken from the Hanawalt group for d100 in the range 2.74 to 2.70 Å.
The Hanawalt Index is updated and issued annually by the ICDD. Again, indexes to various
subsets of the PDF are published from time to time. An alphabetical listing of all entries
in the PDF is also published and this sometimes provides the quickest means of identifying
phases. The section of the Alphabetical Index which includes ‘YBCO’ is shown in table
2(b). A comprehensive account of the strategy employed in manual search/match is included
in Methods & Practices (Jenkins 1989a). It is usually evident from prior knowledge (sample
origin and history, chemistry, etc.), experience or simply intuition, whether or not a match
is the correct solution, but various Figures of Merit (FoMs) have been devised to quantify
the result. (See, for example, Smith, Hoyle and Johnson 1993, 1994.) The quality of data
contained in the PDF also needs to be considered when assessing the validity of a match.
Modern diffractometers are capable of producing high quality data routinely, whereas many
of the earlier datasets, particularly those obtained with a Debye–Scherrer camera, are less
accurate. So that allowance can be made for this, an indication of the quality of data is given
for each entry in the PDF. One such indicator is the figure of merit FN , given by equation
7.3 (Smith and Snyder 1979). Additionally, during the 1980s all earlier datasets were
assessed by the ICDD for accuracy and precision and, if necessary, upgraded or replaced.
The observed ds and I s can be influenced by instrumental aberrations, preferred orientation
and sample imperfections, so there is unlikely to be an exact match with standard data,
even if these do not contain significant errors. Minerals belonging to isomorphous series
and alloys require special treatment, since d spacings will depend on composition, over a
limited range, and the PDF only contains data for ‘end members’ and selected intermediate
cases. However, such errors and differences in ds and I s are taken into account by the



Powder diffraction 173

experienced user when comparing the experimental pattern with standard data. In order
to characterize further such materials, PDF data are used to index the reflections and a
least-squares lattice-parameter program (tables 8 and 9 in Gorter and Smith 1995) is used
to obtain precise cell dimensions. The position of the sample within a series, and hence its
composition, can then often be deduced.

In addition to being an invaluable and readily accessible source of powder data, the CD-
ROM version of PDF-2 provides a powerful means of carrying out a computer-aided manual
search (Jenkins 1994). In addition to ds and I s, most of the information stored for each entry
in the database can be included in the search, up to 19 items in total (table 3). With each
CD-ROM PDF-2, the ICDD supplies a program for this purpose and, since the attributes
can be linked by the operators ‘AND’, ‘OR’ or ‘NOT’, the procedure is known as a Boolean
search (Jenkins and Holomany 1987). An equivalent procedure is available for searching
the CDF and again the ICDD supplies the necessary software. Additionally, an experimental
program PC-QUEST to greatly extend the scope of computer-aided search/match is under
development by the ICDD (Jenkins 1994).

5.2.2. Computer Search/Match. Manual search/match can be laborious and time-
consuming, if the sample contains a mixture of several phases, though the effort involved is
greatly reduced if carried out in conjunction with the CD-ROM version of PDF-2. However,
search/match is largely a matter of pattern recognition, a procedure which can be carried out
rapidly and exhaustively by means of a computer, and some 20 programs for this purpose
are currently available (table 6 in Gorter and Smith 1995). About two thirds of these are
suitable for use with PCs or equivalent computers and a third are commercial products,
mainly supplied with Automatic Powder Diffractometers (APDs). The first search/match
program was that developed by Frevel (1965), which used a database containing about
300 commonly occurring phases. This was followed by the programs of Nichols (1966)
and Johnson and Vand (1967). Both carry out a ‘reverse search’ of the entire database,
whereby each standard value is compared with the experimental data, rather than vice
versa. The Johnson–Vand program uses a sequential file structure and produces an ordered
list of best matches, together with figures of merit, from which the user decides which
is the correct solution. The strategy adopted by Nichols, on the other hand, employs an
inverted file, in which the d spacings for the reference data are ordered by decreasing
relative intensity. Nichols only included d values for the strongest lines, but otherwise the
procedure is analogous to the Hanawalt method. When a component has been identified,
the corresponding standard pattern can be subtracted and the procedure repeated until all
lines in the measured pattern have been identified.

Many subsequent search/match programs are based on one or other of the above
strategies. An improved program, SEARCH, based on inverted files and the Hanawalt search
strategy, was developed by Snyder (1981) for use with laboratory-based minicomputers,
which were widely used in the 1970s and 1980s. In order to overcome the problem of poor
quality reference patterns which existed at that time, he adopted a hierarchical approach, as
had been used earlier by Frevel. A MICRO file containing the 300 most common phases
was searched first. If this did not provide a solution, then a MINI file containing 2500 entries
designated as frequently encountered phases was searched. Finally, if necessary a search
was made of a MAXI file containing the full PDF, then up to set 28. A match criterion
based on a figure of merit was adopted, the acceptance level depending on whether or not
elemental information was included in the search. Cherukuri and Snyder (1983) compared
the performance of the program with one based on the Johnson–Vand approach. It was found
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Table 2. (a) Entry for fully oxygenated ‘YBCO’, No. 38-1433, in the Alphabetical Indexes to
the Powder Diffraction File, Sets 1-44. c©1994 JCPDS-ICDD. All rights reserved.
(a)

o Barium Copper Yttrium Oxide: YBa3Cu4Oz 3.11x 2.97x 1.87x 41–455
o Barium Copper Yttrium Oxide: Ba3Cu7Y2Ox 3.08x 3.03x 2.663 41–454
∗ Barium Copper Yttrium Oxide: BaCuY2O5 2.99x 2.937 2.835 38–1434
o Barium Copper Yttrium Oxide: Ba3Cu2YOx 2.88x 2.915 1.673 41–456
∗ Barium Copper Yttrium Oxide: Ba6YCu3O11 2.87g 2.94g 2.98g 41–62
o Barium Copper Yttrium Oxide: YBa2Cu3O9−z 2.87x 2.478 3.125 41–453
Barium Copper Yttrium Oxide: YBa3Cu2Ox 2.85x 2.877 2.033 41–16
i Barium Copper Yttrium Oxide: Ba4YCu3O9 2.85g 1.65g 2.02g 41–61
o Barium Copper Yttrium Oxide: Ba3Cu2YOz 2.83x 1.668 1.656 42–443
∗ Barium Copper Yttrium Oxide: Ba2Cu3YO6 2.76x 2.735 1.933 39–1496
∗ Barium Copper Yttrium Oxide: Y2Ba4Cu7O15 2.75x 2.72x 2.635 43–410
o Barium Copper Yttrium Oxide: Ba2Cu3YO6.5 2.74x 2.717 1.584 42–11
i Barium Copper Yttrium Oxide: YBa2Cu3O9−x 2.74x 2.342 1.582 40-411
i Barium Copper Yttrium Oxide: Ba0.4Y0.1Cu0.5Ox 2.74x 1.947 2.336 40–1058
Barium Copper Yttrium Oxide: Ba0.3Y0.3Cu0.4Ox 2.73x 2.756 1.594 40–1059
∗ Barium Copper Yttrium Oxide: Ba2Cu3YO6.8 2.73x 2.756 1.583 39–486
i Barium Copper Yttrium Oxide: Ba4Cu7Y2O14 2.73x 2.756 1.582 40–199
i Barium Copper Yttrium Oxide: YBa2Cu3O6.1 2.73x 2.756 1.583 43–545
∗ Barium Copper Yttrium Oxide: Ba2Cu3YO6.56 2.73x 2.749 2.758 39–1434
i Barium Copper Yttrium Oxide: BaYCuO3 2.73x 1.586 1.945 41–1081
∗ Barium Copper Yttrium Oxide: Ba2Cu3YO7 2.72x 2.756 1.583 38–1433
∗ Barium Copper Yttrium Oxide: YBa2Cu4O8 2.71x 2.747 1.933 43–402

(b) Part of Hanawalt Group 2.74–2.70 (±0.01) Å, which includes fully oxygenated ‘YBCO’,
from Hanawalt Search Manual (Inorganic Phases), Sets 1-44. c©1944 JCPDS-ICDD. All rights
reserved.
(b)

2.73x 2.756 1.594 2.343 1.572 1.952 1.912 1.372 Ba0.3Y0.3Cu0.4Ox 40–1059
∗ 2.73x 2.75x 1.596 1.955 3.903 2.233 1.583 1.573 DyBa2Cu3O7 40–211
∗ 2.73x 2.758 1.582 2.242 1.592 1.572 1.942 2.331 Ba2Cu3YO6.56 39–1434
i 2.73x 2.756 1.583 2.242 1.942 2.341 1.571 1.951 YBa2Cu3O6.1 43–545
i 2.73x 2.756 1.582 2.232 1.942 3.891 2.331 1.571 Ba4Cu7Y2O14 40–199
c 2.73g 2.75g 1.58g 2.23g 1.57g 1.94g 1.91g 11.7g Ba2YCu3O7 40–159
∗ 2.73x 2.756 1.583 1.942 2.232 1.951 1.911 1.571 Ba2Cu3YO6.8 39–486
∗ 2.73x 2.755 1.583 1.942 1.572 1.372 1.921 2.241 YBa2Cu3−xPdxOz 43–269
2.728 2.75x 2.798 1.948 1.578 1.587 3.476 1.596 Na3AlH6 20–1072
∗ 2.72x 2.75x 2.635 1.944 1.953 2.843 2.232 1.922 Y2Ba4Cu7O15 43–410
∗ 2.72x 2.757 1.583 1.953 1.943 2.232 3.892 2.342 Ba2Cu3HoO7 39–1400
∗ 2.72x 2.756 1.583 1.952 1.942 2.231 2.341 1.571 Ba2Cu3YO7 38–1433
∗ 2.72x 2.756 1.583 1.942 3.882 1.952 1.572 1.911 Ba2Cu3ErO7 39–1404
i 2.71x 2.758 3.865 1.935 1.573 2.523 2.263 2.223 BaCa2Mg(SiO4)2 31–129
∗ 2.71x 2.75x 2.74x 2.73x 3.518 3.498 4.907 2.606 LiCu(PO3)3 23–358
2.71x 2.756 2.686 1.56x 1.36x 1.21x 1.926 1.916 SmGaO3 21–1060
c 2.709 2.75x 2.596 3.135 2.814 2.912 1.572 1.512 GaPr2 33–566
2.709 2.75x 2.238 1.608 5.516 3.986 1.996 1.906 (NH4)2NiCl4 · 2H2O 21–32
i 2.708 2.75x 2.047 1.827 2.086 5.435 2.014 1.834 NiRh2Se4 22–742
2.70x 2.755 1.965 3.854 3.034 1.914 1.664 2.993 Cd2GeO4 34–585

that the inclusion of chemical information in the Hanawalt approach made little difference
to performance, except for a significant reduction in the search time, whereas elemental data
resulted in a dramatic improvement to the behaviour of the Johnson–Vand method. It was
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Table 3. Data which can be included in a Boolean search of PDF-2.

No. PDF data included in search No. PDF data included in search

1 PDF number 11 Mineral Group Code
2 Subfile 12 Reduced unit-cell parameters
3 Inorganic chemical name 13 Principal author
4 Mineral name 14 Year of journal
5 Organic chemical element 15 Journal CODEN
6 Chemical element 16 Colour
7 Three strongest lines 17 Density
8 Chemical Abstracts Service number 18 Volume of reduced unit cell
9 Organic chemical name 19 ‘Long’ Lines (largest d values)
10 Inorganic chemical name fragments

found that solutions from the Hanawalt approach were seldom wrong, but the list produced
by the Johnson–Vand program required user evaluation to select correct solutions.

A significant advance in computer search/match was the introduction of the series of
interactive programs PDIDENT by Goehner and Garbauskas (1983, 1984). For the first time
the user could control the search/match strategy interactively, in a manner similar to that
carried out manually by an experienced analyst. As in earlier programs, optional chemical
constraints were incorporated, there was provision for varying the 2θ error window and the
number of strongest lines required for a match could be set. Another important feature was
a facility for displaying ds and I s from the database, along with the experimental pattern,
for visual verification of a match. Toby, Harlow and Holomany (1990) later produced a
suite of programs based on that of Goehner and Garbauskas. The main improvement was
in accessing and searching the database and entries can be selected by means of chemical
information, peak positions and name. Two modes of operation are available, ‘novice
friendly’ with simple menus and a more advanced, and versatile, mode for the experienced
user. Also, The Powder Suite was designed to be expandable by adding additional programs
or subroutines to suit particular applications.

All the programs considered so far were developed for mainframe machines or mini-
computers, mostly VAX/VMS, though a PC version of SEARCH is now available, and are
public-domain software. Version 20 of the Johnson–Vand program (PDIDENT) and The
Powder Suite are supplied by the ICDD free of charge to purchasers of the VAX/VMS
version of PDF-2.

Perhaps the most important innovation in search/match procedures in recent years is the
use of complete digitized diffraction patterns, after removal of the background, rather than
simply a list of ds and I s (Caussin, Nusinovici and Beard 1988, 1989). This procedure
is less dependent on the quality of data than is the use of peak location programs and
it is particularly effective for patterns containing a large number of unresolved lines, as
frequently occurs with complex multiphase samples. The program which incorporates these
features, developed by Socabim as part of the Siemens DIFFRAC-AT package, was also
the first to incorporate a search of a PC version of the complete PDF, which is currently
achieved in less than 8 s with an Intel 486/66-based PC (Nusinovici and Winter 1994).
The most reliable method for deciding whether or not the sample contains a particular PDF
entry is to compare data for the latter with regions of zero intensity in the pattern for the
unknown. Subtraction of the background, including any amorphous contribution, is thus an
essential step and this is achieved interactively, by fitting a parabolic function tangentially to
appropriate points in the pattern. No other treatment of the raw data is carried out; smoothing
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of the data to reduce ‘noise’ is neither necessary nor desirable. The program employs the
Johnson–Vand strategy and lists possible matches in order of increasing FoM, a low value
being indicative of a likely solution. (This is in contrast to some other figures of merit,
where a high value is used, but unambiguous interpretation is then less straightforward.) The
FoM in the Socabim program is in fact based on that used in standard pattern-recognition
methods. The criteria for ascribing ‘bonus’ or ‘penalty’ factors can be controlled by the
user, depending on whether the pattern for the unknown is regarded as simple, average
or complex. As with earlier programs, possible matches are displayed as ‘stick diagrams’
(ds and I s) superimposed on the experimental pattern, for visual selection of the correct
solution. These can be derived from the PDF, or can be generated by the user, a valuable
facility when dealing with solid solutions. As each phase is identified, its diffraction lines
can be removed and the procedure repeated by using the remaining lines until all have been
identified.

The error window associated with search/match based only on ds and I s is normally
∼ ±0.02◦ (2θ ) (Jenkins and Schreiner 1986), but Nusinovici and Bertelmann (1993)
demonstrated that, by using the full-pattern approach of DIFFRAC-AT search/match,
unambiguous identification of pure phases is still possible if the window width is increased
by an order of magnitude. In fact, the width of a diffraction line profile provides a convenient
and logical error window in this approach. Another feature of using the complete pattern
is the ability to detect impurities at a much lower level than previously an intensity as low
as 0.1% of that of the strongest line can be detected if the data are of sufficiently high
quality (Nusinovici and Winter 1994). To date, no search/match program has proved to
be completely satisfactory in all cases, but the interactive and versatile Socabim program
appears to emulate the technique of a skilled analyst undertaking manual search/match, but
in a fraction of the time.

Before powder-diffraction laboratories were equipped with APDs, a common form of
search/match, in cases where a limited range of materials was of interest, was based on a
visual comparison of the unknown data with chart recordings for selected standard patterns.
These were obtained by the analyst, by using identical experimental conditions throughout,
and they provided a convenient and rapid means of identifying certain classes of material,
such as clay minerals, cements, catalysts, etc. This approach has been revived recently
by applying it to complete experimental patterns in conjunction with the digitized-pattern
database PDF-3 (Smith, Johnson and Hoyle 1991; Smith, Hoyle and Johnson 1993). The
program MATCHDB is used for this purpose and, although PDF-3 so far only contains about
500 phases, initial results are promising. A limitation is that the instrumental contributions
to the unknown pattern and the standard data will usually differ. Ideally, instrumental
effects should be eliminated from both datasets by the deconvolution of data obtained from
an instrument standard, such as LaB6 (section 4.6.3), but this is not practicable at the
present time. Additionally, there may well be differences due to sample imperfections or to
a variation in chemical composition, such as occurs with solid solutions. These limitations
are considered further by Smith, Hoyle and Johnson (1994). Nevertheless, the use of PDF-3
for the identification of unknown samples may well become a standard technique at some
time in the future.
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6. Crystal structure refinement from powder data

6.1. Factors affecting precision and accuracy

6.1.1. Experimental considerations. Factors governing the choice of experimental
conditions for structure refinement have been considered in detail by Hill and Madsen
(1987), as part of a general discussion of accuracy and precision in the Rietveld method.
A basic requirement in angle-dispersive experiments is the choice of a suitable wavelength.
Complex structures with a large number of structural parameters require a considerable
number of resolvable peaks, but the use of a short wavelength to achieve this impairs the
peak separation. The optimum wavelength will thus be a compromise between resolution,
which may be dominated by sample-induced broadening, and maintaining a reasonable
observations-to-parameters ratio. The latter will depend on various factors, but a value in
the region of 10 is probably adequate for most purposes. (See section 2.1 for the approximate
number of reflections in a powder pattern up to a given value of d.)

Hill and Madsen noted that, for published Rietveld analyses at fixed wavelengths, step
lengths ranged over two orders of magnitude and maximum intensities over almost three and
there is clearly a need to optimize these parameters. Although it is desirable to have a small
step and good counting statistics for the successful application of pattern decomposition
(section 3.3.1), this is not necessarily the case for the Rietveld method. Hill and Madsen
(1987) determined the optimum values of step length and counting time per step beyond
which no additional structural information is obtained by further increasing the number of
observed discrete intensities yobs(xi) or by improved counting statistics. Their systematic
study of diffraction data from materials with orthorhombic or higher symmetry indicated
that the optimum value of the maximum intensity at each step is only a few thousand
counts and that the optimum step length is between one-fifth and one-half the minimum
FWHM of well resolved diffraction lines. Poor counting statistics is usually observed at
high angles for X-ray powder diffraction data, as a consequence of the combined effects of
the fall-off in scattering factor with increasing sin θ/λ, the Lorentz-polarization factor and
thermal vibrations. These contribute to a ‘scrambling’ of the pattern and are a significant
source of imprecision in Rietveld refinement. The quality of the data is improved by using
a longer counting time per step for the high angle region. A procedure has been described
which uses a systematic variable-counting-time strategy (Madsen and Hill 1992, 1994); the
counting time at each step is increased in a manner that is inversely proportional to the
decrease in line profile intensity.

6.1.2. Background and truncation. During the decade or so following its introduction,
the Rietveld method was mainly applied to relatively low-resolution neutron data, obtained
at a fixed wavelength. In these experiments the line profiles were usually dominated by
instrumental effects and were closely Gaussian in form. As instrument resolution improved,
the reporting of erroneous thermal parameters became common place and even negative
values were given in some cases. Also, when X-ray data came to be used, it was soon
evident that instrumental line profiles are not even approximately Gaussian. Ahtee et al
(1984) compared structure refinements from observed and simulated data for NaTaO3 and
Ni. They used Gaussian and Voigtian profile functions truncated at different ranges, in
order to ascertain the influence of the function used, and its range, on the estimated thermal
parameters and background. They found that the intensity ‘lost’ to the background in the
Gaussian case, truncated at the customary range of ±3FWHM , had the effect of increasing
the values of the thermal parameter substantially. For simulated data, modelled with a Voigt
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function, the correct thermal parameter for Ni was obtained for a range of ±40FWHM ,
though the structural parameters were barely affected by this increase in truncation range.
Also, by modelling the profile tails correctly, the background was constrained to a level
which was close to the true value. Thus, if meaningful thermal parameters are required in a
particular application, an accurate representation of the diffraction line profiles is essential
and the function must be fitted over an adequate range. Smrcok (1989) used the theory of
error propagation to compare structure refinements of Y2O3, by using the rigid modified
Lorentzian and the more flexible Pearson VII functions (see appendix).

6.1.3. Preferred orientation. The grains or crystallites in many powder samples tend to
have a shape which does not approximate to a sphere, due to cleavage or growth mechanisms.
When compacted into a sample holder or deposited on a flat surface, such crystallites tend
to orient preferentially in a particular crystallographic direction. The same can be true of
capillary samples, though the effect is usually less severe. In general two habits can occur;
crystallites can approximate to platelets, having one shorter dimension, or they can have an
acicular habit, with one longer dimension. Ideally, the Rietveld method, and indeed most
other applications of powder diffraction, require data from a random sample, since preferred
orientation clearly has a marked influence on the relative intensities of Bragg reflections.
An extreme case is the mica group of minerals, where all reflections other than 00l have
zero intensity unless steps are taken to randomize the sample. Simple sample preparation
techniques can be used for reducing preferred orientation (section 4.5.1).

The present treatment of preferred orientation in the Rietveld method is less rigorous
than other corrections for extraneous factors and it is highly desirable to minimize its effect
by careful sample preparation. However, it should be noted that the problem is usually
less severe in the neutron case than with X-rays; larger sample volumes are used and the
tendency for crystallites to align preferentially is less. The effect can be reduced in the
X-ray case if a capillary sample is used and is rotated about its axis. At the outset, Rietveld
(1969) introduced a ‘preferred orientation function’, Gj in equation 3.5, of the form

Gj = D2 + (1 − D2) exp(−D1α
2
j ) (6.1)

where D1 and D2 are refinable parameters and αj is the angle between d∗
j and the preferred-

orientation direction. This approach has since been implemented in most Rietveld programs.
For asymmetric diffraction, as in the Seeman–Bohlin geometry, for example, and cases of
inclined texture, additional empirical corrections have been proposed (Cerny, Valvoda and
Chladek 1995). Dollase (1986) introduced an improved treatment based on the March
function (March 1932):

Gj = (D2
1 cos2 αj + D−1

1 sin2 αj )
−3/2. (6.2)

This correction, known as the March–Dollase function, is now incorporated in several
Rietveld programs.

Another approach to correcting for preferred orientation, based on a harmonic expansion,
is that of Ahtee et al (1989), for which an improved model has been described by Järvinen
(1993). These authors modelled the effects of an orientation distribution by means of
spherical harmonics. It was found that quite large corrections could be applied successfully,
but this potentially important approach is less straightforward and so far has not been widely
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implemented. Another approach for obtaining information about the presence of preferred
orientation effects, based on a statistical analysis of normalized structure-factor moduli,
has been described by Altomare et al (1994). The method was found to be useful and
efficient when applying direct methods to determining the structural model (section 7.4).
The influence of preferred orientation on the statistical precision of normalized structure
factors, for the case of disc-shaped crystallites and a spinning sample, has been considered
by Peschard, Schenk and Capkova (1995). A technique based on an exponential preferred-
orientation model exp(−D1 sin2 αj ) was derived to correct integrated intensities before
structure determination.

6.1.4. Extinction. An important component of the model used in the Rietveld method is
provision for extinction. In the context of a polycrystalline material, this is a reduction in
the intensity of a Bragg-reflected beam by re-scattering in the direction of the incident beam
as it passes through successive planes in a crystallite. Extinction is thus dependent on the
size of coherently-diffracting domains. Sabine (1985) made a systematic study of extinction
effects in structure refinement. By using fixed wavelength neutrons, he obtained data for
samples of MgO with mean grain sizes in the range 0.7 µm to 20 µm and found that
the reduction in intensity due to extinction was about 40% for the 20 µm grains, but was
negligible for sizes of 1–2 µm. Over this range the estimated thermal parameters increased
by a factor of two. Sabine also devised a correction for extinction based on spherical grains
of diameter D, whereby each ordinate of a Bragg peak is multiplied by a factor (1+x)−1/2,
where

x = (3/4)2(NFλD)2 (6.3)

N being the number of unit cells in the crystal and F the structure factor per unit cell.
He obtained good agreement between theory and experiment to a level at which extinction
reduces the intensity by a factor of two. However, it is better to minimize the effect
whenever practicable by using a sample containing small grains (section 4.5.1); clearly the
optimum size depends on the nature of the material, but a diameter of about 5–10 µm is
probably suitable in most cases. Although each grain is likely to be a single crystal for
brittle materials, it should be noted that in many instances the domain size may well be less
than that of the grains. However, Cline and Snyder (1987) showed that, in the X-ray case,
the effects of extinction are detectable for crystallites as small as 1 µm.

6.1.5. Line breadth and shape. Both the shape and breadth of line profiles vary with d∗

and for most materials there is likely to be an additional lattice-direction dependence due
to sample imperfections (section 2.4.2). In some cases it may be possible to minimize
the latter by annealing the sample, but otherwise both effects should be modelled in the
Rietveld method. An essential preliminary stage is to examine the variation of the FWHM
(or integral breadth) with 2θ or d∗ and to compare this with the resolution curve for the
instrument used. If the two curves are identical, indicating that sample effects are negligible,
then some polynomial describing the instrumental resolution function (IRF) can be used to
model the breadth variation. The nature of this is unimportant and the function normally
used in Rietveld programs is a quadratic in tan θ (equation 3.8; see also equation 4.3). If
the curves differ, but the scatter for the sample curve is no greater than would be expected
from counting statistics or there is no marked ‘anisotropy’, on average, then (3.8) can
again be used, but with U , V and W as refinable parameters. However, the sample curve
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Figure 8. Variation of FWHM with scattering angle 2θ for ex-oxalate ZnO, Cu Kα1 radiation,
showing marked ‘anisotropy’ of breadth due to the presence of stacking faults. Also included
is the IRF, obtained with a BaF2 standard (Langford et al 1993).

frequently exhibits a scatter which is d∗-dependent and may be large (e.g. figure 8). The
nature of this ‘anisotropic’ breadth variation must then be ascertained and the dependence
of breadth on hkl modelled (see below). A similar approach is adopted for the variaion of
line-profile shape. In many cases the shape factor appropriate to the fitted profile function
varies smoothly, and sometimes linearly, with 2θ or d∗ and a suitable polynomial is then
used to model the variation. Otherwise, the hkl dependence should be ascertained and
modelled.

As noted in section 2.4, a variety of microstructural phenomena can exist in a powder or
polycrystalline sample, giving rise to complex diffraction effects, and these are considered
further in section 10. In general, sample-induced line broadening includes contributions
which are independent of d∗, known as ‘size effects’, and which depend on d∗ (‘strain
effects’). There have been various attempts to make allowance for smoothly varying
(‘isotropic’) microstructural effects in Rietveld programs. David and Matthewman (1985)
modelled experimental line profiles by means of a Voigt function and assigned the Lorentzian
and Gaussian components to ‘size’ effects and the instrumental broadening respectively. A
different approach was introduced by Howard and Snyder (1989) in the program SHADOW,
who convoluted Lorentzian sample line profiles, assumed to be due to crystallite size and/or
microstrains, with experimentally-determined instrumental profiles, to match the observed
data. The simultaneous presence of isotropic ‘size’ and ‘strain’ effects has also been
considered by Thompson, Cox and Hastings (1987). These authors used a pseudo-Voigt
function to model the overall line broadening and assigned the Lorentzian component of
the equivalent Voigt function to ‘size’ effects and the Gaussian component to the combined
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‘strain’ and instrumental contributions. Such procedures are unlikely to yield accurate
estimates of microstructural parameters, but are probably adequate for the purpose of
structure refinement, provided that there is a reasonably smooth variation of the breadth
and shape of line profiles with d∗.

An early attempt to model anisotropic line broadening in the Rietveld method was made
by Greaves (1985), who assumed that crystallites had the form of platelets with thickness H

and infinitely large lateral dimensions. In this case the contribution to the integral breadth
of reflections from planes parallel to the surface, in reciprocal units, is simply 1/H . In
order to allow for the direction dependence of microstrain, some assumption must be made
regarding the stress distribution. If this is assumed to be statistically isotropic, then the
anisotropy of elastic constants leads to an hkl dependence of strain. Thompson, Reilly
and Hastings (1987) expressed microstrain as a function of hkl and refined appropriate
strain parameters based on elastic compliances. Simultaneous anisotropic ‘size’ and ‘strain’
broadening was incorporated in the Rietveld method by Le Bail (1985) and Lartigue, Le Bail
and Percheron-Guégan (1987). The hkl-dependent nature of these quantities was modelled
by means of ellipsoids and Fourier series were employed to represent line profiles. The
number of microstructural parameters to be refined was restricted by adopting a Lorentzian
function for ‘size’ contributions and an intermediate Lorentz–Gauss function for ‘strain’
broadening. In a similar approach, Lutterotti and Scardi (1990) included crystallite size and
microstrain as refinable parameters, in the place of the usual angular variation of line-profile
width (equation 3.8). Microstructural analysis was then based on the approximate single-line
Fourier method introduced by Nandi et al (1984). (See section 10.2.2.) The program LS1
based on this approach (Lutterotti, Scardi and Maistrelli 1992) was applied to data from
Ni(OH)2 and CeO2-stabilized zirconia, which both exhibited anisotropic line broadening.
In addition to obtaining microstructural data for these samples, modelling of direction-
dependent broadening improved the agreement between the observed and calculated patterns
and yielded positive temperature factors for light atoms, which would otherwise have had
spurious negative values.

At present no Rietveld program makes allowance for all possible cases of sample-
induced modifications to the g profiles and it would be difficult to make such a provision.
If plots of breadth and shape parameters versus 2θ or d∗ exhibit significant ‘anisotropy’,
then it is better to adopt a two-stage approach (Delhez et al 1995). In the first stage the
position, intensity, breadth and some shape parameter (e.g. Lorentzian/Gaussian fraction,
Pearson VII index or Voigt parameter; see appendix) of individual lines are obtained by
pattern decomposition (section 3.3.1), for which no structural information is required. From
these parameters the dependence of breadth and shape on radial distance and direction
in reciprocal space (i.e. d∗ and hkl dependence) can be determined for all peaks. The
corresponding quantities can then be predicted for reflections not found during pattern
decomposition, owing to extreme overlap or too low intensity. If desired, the results of
pattern decomposition can be interpreted in terms of microstructural properties. Also, the
pattern can be indexed, if the unit cell is not already known, and precise cell dimensions
can be obtained from selected reflections, after line positions have been corrected for
systematic errors. These are likely to be more accurate than are obtained from Rietveld
programs, since refinement of cell dimensions along with other parameters merely absorbs
peak displacements due to any instrumental aberrations for which no allowance has been
made and also to shifts due to lattice imperfections. If the cell parameters are known,
a constrained pattern-decomposition method can be applied. Another advantage of using
pattern decomposition is that intensities of indexed Bragg reflections can be used in ab initio
structure determination (section 7.3) or for structure refinement by the conventional least-
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squares approach based on separate Bragg intensities (section 6.4). In the second stage,
(semi-) empirical relationships describing the behaviour of breadths, shapes and perhaps
position of lines as functions of d∗ and hkl, obtained from stage 1, are used in the Rietveld
refinement.

6.2. Current practices with the Rietveld method

In order to evaluate errors related to the practical application of the Rietveld method, the
Commission on Powder Diffraction of the IUCr undertook a comparison of the use of
the method in various laboratories by means of a round robin. The aims of the project
were: (i) to evaluate a cross section of currently used Rietveld refinement software; (ii) to
examine the range and effect of various refinement strategies; (iii) to assess the precision
and accuracy (spread) of the parameters derived by a Rietveld analysis; (iv) to compare
and contrast various instruments and methods of data collection. Results concerning the
refinements from two constant-wavelength X-ray and neutron powder diffraction patterns
for PbSO4, which had been distributed to participants, were reported by Hill (1992). In a
second report (Hill and Cranswick 1994), results from data collected by the participants on
a sample of monoclinic ZrO2, using their in-house instruments, were reported. The major
factors limiting the accuracy of the derived PbSO4 crystal structure were carefully analysed.
Rietveld analysis of the PbSO4 X-ray powder diffraction data provided atomic coordinates
and isotropic thermal parameters for the Pb and S atoms which were in reasonable agreement
with the values derived from a single-crystal study, but the ‘light’ O atomic parameters had
a wide spread of coordinates about the weighted mean. For the neutron diffraction data,
crystallographic parameters for Pb and O atoms were precise, with a narrow distribution
relative to the single-crystal results. This is in agreement with a previous comparison
between powder neutron diffraction and single-crystal investigations of fosterite Mg2SiO4,
in which comparable uncertainties in positional parameters were found (Lager et al 1981). In
the second part of the round robin, in which participants collected their own data for a sample
of monoclinic zirconia, the results revealed worker-to-worker disparities which were greater
than anticipated. In addition to the difference in refinement strategies, the discrepancies
were largely related to the quality of data collected by the participants. This is illustrated
in figure 9, where a complex section of the diffraction patterns provided by the participants
is shown. Figures 9(a), 9(b) and 9(c) are data collected with conventional sources (CuKα

radiation), with markedly different counting statistics, corresponding to a maximum count
of 29, 420 and 4000 respectively. The poor quality of the data in figure 9(a) means that it
is difficult to distinguish between the individual reflections and to determine the background
level. A comparison between figures 9(b) and 9(c) indicates the substantial improvement
in resolution for the former, for which the data were obtained by using an incident-beam
focusing monochromator to remove the Kα2 component (section 4.1.1). An immediate
consequence is a better stabilization of the refinement procedure and an improvement in
background determination. Figures 9(d ), 9(e) and 9(f ) show analogous angular ranges for
neutron data. The intensities and angular resolution again differ significantly.

6.3. Some applications of the Rietveld method

The Rietveld method has been used for structural investigations of polycrystalline materials
having a variety of properties, e.g. solid electrolytes, intercalates, zeolites, superconductors,
hydrides, non-stoichiometric phases etc. (For a review of early applications, see Hewat
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Figure 9. Parts of powder diffraction patterns for ZrO2 provided by six participants in the
Rietveld method ‘round robin’. (a) and (c) CuKα1,2 radiation; (b) monochromatic CuKα1
radiation; (d), (e) and (f ) neutron data with wavelengths of 1.0505 Å, 1.1126 Å and 1.0907 Å
respectively. (Hill and Cranswick 1994).
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Figure 9. Continued.
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1986.) Among the more complex structures reported is the simultaneous refinement
of 161 parameters for the triclinic structure of UO2DAsO4.4D2O at 4 K from powder
diffraction data (Fitch, Wright and Fender 1982). In this study, the sample investigated was
contaminated by ice and its structure was refined simultaneously. An important application
of the Rietveld method is the study of materials which undergo phase transitions and which
often disintegrate when subjected to thermal treatment or produce multi-domain crystals not
suitable for single-crystal studies. The method is also a powerful tool for investigating phase
transformations in solids as a function of temperature. The detailed structure of deuterated
Cu(II) Tutton’s salt has been determined at low temperatures, from 5 to 295 K, by neutron
powder diffraction (Hathaway and Hewat 1984) and it was possible to determine the structure
and bond lengths at many more temperature values than is customary with single-crystal
methods. From an accurate study of the bond lengths in CuO6 polyhedra, the results were
interpreted as order-disorder transitions of Jahn–Teller type, with an elongated Cu–O axis.
Additionally, the strong libration of the (ND4)

+ ion was observed from neutron diffraction
data. X-ray powder diffraction has also been used for studying the structures of fast ionic
conductors as a function of temperature. At elevated temperatures, Bragg reflections are
superimposed on a background arising from ion disorder. The study of the three polymorphs
of Ag2Te between ambient temperature and its melting point at 1233 K has recently been
reported (Schneider and Schulz 1993). β-Ag2Te crystallizes with the space group P 21/c,
whereas the α modification has the space group Fm3̄m with a statistical distribution of
Ag ions. The structure of γ -Ag2Te was also refined with space group Im3̄m and it is
isostructural with α-AgI.

Perhaps the most noteworthy recent success of the Rietveld method has been
its contribution to an understanding of the structures of the high-temperature oxide
superconductors, due to the lack of suitable single crystals and the need to locate oxygen
atoms, and their occupancy, in the presence of heavy metal atoms such as Ba, Tl and
Bi. In the case of YBa2Cu3O7−x, X-ray single-crystal diffraction had already located the
heavy atoms, but the work was inconclusive concerning oxygen, because crystals were
microscopically twinned. Neutron powder diffraction experiments were carried out in
atmospheres with controlled oxygen partial pressures (Jorgensen et al 1987). From the
data, the occupancies of particular oxygen sites were obtained by Rietveld method and
it was shown that there is a structural transition at high temperature to a tetragonal non-
superconducting phase as oxygen is removed from the CuO-chains. A number of studies of
metal ordering and oxygen non-stoichiometry has been reported for this class of materials,
e.g. in (Nd, Sr, Ce)2CuO4−y (Izumi et al 1989). One of the first uses of combined X-ray
and neutron diffraction data in Rietveld refinement was the study of cation disorder in this
high Tc superconductor (Williams et al 1988). The crystal structure of a number of copper
oxide superconducting phases has been investigated from powder neutron diffraction data
and the earlier applications have again been reviewed by Hewat (1990). Also, considerable
effort has been devoted to solving the crystal structure of BaBiO3, since superconducting
phases occur in the BaPb1−xBixO3 system. High-temperature crystal structures of BaBiO3−x
were studied in situ by neutron and X-ray powder diffraction by using controlled oxygen
pressures (Kusuhara et al 1989). Rietveld refinement of the neutron data for BaBiO3 at
900K revealed that the structure is cubic, with large anisotropic thermal vibration amplitudes
of the O atoms in the direction perpendicular to the Bi–O bonds. For oxygen-deficient
BaBiO3−x, it was shown that the system is not a single phase. The Rietveld method has
also been used for the refinement of incommensurate structures (Elsenhans 1990; Matheis
and Snyder 1994). The calculation of peak positions and structure factors for 1-dimensional
incommensurate structures is based on four integers, hklm. The incommensurate structure
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of the superconductor Bi2(Sr1−xCax)3Cu2O8+z was refined by combining X-ray and TOF
neutron powder diffraction data (Yamamoto et al 1990).

Figure 10. Example of a typical Rietveld plot. The observed intensity data for fluorapatite are
plotted as points and the calculated pattern is shown as a continuous line. The short vertical
bars indicate the positions of possible Bragg reflections and below these is the difference plot,
observed minus calculated data (Young 1995; by permission of Oxford University Press).

The Rietveld method has been applied, by using neutron diffraction data, to structural
studies of the recently discovered class of carbon-cage molecular compounds known as
fullerenes. At room temperature the C60 molecules are orientationally disordered and their
centres are located on a face-centred cubic lattice. Below 249 K, powder diffraction has
revealed that the molecules become orientationally ordered (David et al 1991). Recent
results for the structure and dynamics of ‘buckyball’ C60 molecules have been reviewed
by Copley, David and Neuman (1993). The structures of RbC60 and KC60 have also been
analysed through Rietveld refinement from X-ray synchrotron powder diffraction data. A
covalent bonding between neighbouring C60 molecules has been confirmed, demonstrating
the existence of polymeric chains in these compounds (Stephens et al 1994). New phases of
C60 have also been synthesized at high pressure (Iwasa et al 1994). However, experimental
diffraction patterns exhibited significant line broadening and only patterns calculated from
structural models by using the computer program LAZY-PULVERIX (Yvon, Jeitschko and
Parthe 1977) were reported.

The studies of magnetic structures is a typical application of neutron diffraction, since,
unlike X-rays, neutrons interact with the magnetic moments of atoms. The powder method
is a primary and simple tool for obtaining information on the arrangement of magnetic
moments in crystals. Advances in magnetic structure determination by means of neutron
powder diffraction were reviewed recently by Rodriguez-Carvajal (1993).

The determination of site occupancy in minerals, and in inorganic materials generally,
has been carried out by the Rietveld method for compounds with simple structures, such
as that of farringtonite and graphtonite, in which cations are found in five- and six-
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coordinated sites (Nord 1986). Compared with spectroscopic methods, the diffraction
technique gives information on inter-atomic distances and angles. Also, the site-occupancy
factors can be refined, if the cations scatter with sufficient contrast. Cation distributions in
(Fe1−xMnx)3(PO4)2 solid solutions were determined by combining neutron diffraction and
Mössbauer spectroscopy (Nord and Ericsson 1982). The study of four (Zn, Mg)3(PO4)2
solid solutions from X-ray powder diffractometer data demonstrated that the Zn/Mg cation
distribution is ordered, with zinc preferring the five-coordinated sites and magnesium the
six-coordinated metal sites (Bénard et al 1992). Similar results of almost constant cation
distribution factors, irrespective of composition, were found in isostructural series of Fe-
containing materials from Mössbauer spectroscopy.

The sensitivity of the Rietveld method to structural detail has been revealed in a number
of studies, but attention must be paid to the possibility of false minima during the refinement.
For example, the orientation of the two inner hydroxyl ions in kaolinite was uncertain from
X-ray data (Suitch and Young 1983) and neutron data suggested that the H atoms of these
ions were positioned differently. Consequently, the space group P 1 was proposed (Young
and Hewat 1988). However, a Rietveld refinement of non-hydrogen atomic positions in
kaolinite by Bish and Von Dreele (1989) favoured of the presence of C-centring and previous
results were explained by false minima due to a poor modelling of preferred orientation and
to the presence of dickite as a second phase. The sensitivity of the Rietveld method was also
demonstrated by a comparison of X-ray powder diffraction data from a 2.2 wt% antimony-
substituted calcium fluorapatite (0.185 Sb atoms per unit cell) with those from an undoped
sample. This indicated a substitution of one of the Ca atoms by Sb (Deboer et al 1991).

Structure refinement from powder diffraction data is widely used in the study of zeolites.
Once a reasonable model has been generated (see section 7.4.3.2), a comparison between the
calculated and observed patterns will indicate whether or not the model is likely to be correct.
Rietveld refinement of the zeolite ZSM-12 structure from synchrotron data revealed the true
symmetry (C2/c) although the topological symmetry was C2/m (Fyfe et al 1990). The
structure of VPI-5, an aluminophosphate, was found to have a low symmetry; in a structure
refinement from synchrotron data the correct space group P63 was proved, the suggested
framework was confirmed and interesting structural features were revealed (McCusker et
al 1991). In order to stabilize the early stages of refinement and to facilitate refinement of
complex zeolite structures, geometric constraints can be included as additional information.
McCusker, Baerlocher and Nawaz (1985) determined the structure of the zeolite mineral
gobbinsite from X-ray data, refining 64 structural parameters and using 50 soft constraints
on bond distances and angles. For further information the reader is referred to a review
by McCusker (1991). In the complex structure of ZSM-5, details of the arrangement of
the organic cation tetrapropyl-ammonium were revealed by including restraints (distances
and angles) in the refinement data from a conventional CuKα1 source (Baerlocher 1984).
Neutron diffraction is also used for locating light atoms in zeolites, e.g. Li+ cations in Li–X
and Li–Y zeolites (Forano et al 1989).

Least-squares Rietveld refinement has been used for the study of intercalation or
insertion phenomena in layered materials. Neutron diffraction with samples of FeOCl and
FeOCl(TTF)1/8.5 established that tetrathiofulvalene (TTF) molecules intercalated between
FeOCl layers contribute to the diffraction pattern and exhibit a long-range order (Kauzlarich
et al 1986). The electrochemical insertion of lithium in potassium tungsten bronze was also
investigated from neutron diffraction data, to localize Li in the structure of LixKyWO3
(Slade et al 1989).
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6.4. Pattern decomposition and structure refinement

An alternative approach to the Rietveld method, based on a two-stage procedure, has also
been used for structure refinement. In the first step, estimates of the Bragg intensities
are extracted from the diffraction pattern by means of a pattern-decomposition method
in which the peak positions of individual reflections are constrained by the unit-cell
parameters. Programs have been adapted for producing integrated intensities and their
standard deviations, as for a single crystal data set (Pawley 1981; Jansen, Schäfer and Will
1988). In the second step, the indexed Bragg intensities thus derived are used as input data
for a subsequent structure refinement. W. Hamilton wrote the first least-squares program
for two-stage structure refinement from powder diffraction data in the early 1960s. This
program, known as POWLS, was not published (see Will 1989), but it was subsequently
updated by Will (1979). The procedure has been used for the refinement of simple structures,
such as silicon, quartz and corundum, after correcting for preferred orientation and collecting
data from suitably prepared specimens (Will, Parrish and Huang 1983). A direct comparison
of the atomic parameters of monoclinic Na2Al2Ti6O16 refined under the same conditions
with both a two-stage analysis and the Rietveld technique has shown that the results agree
within the estimated standard deviations (Toraya 1995). Additional comments on integrated-
intensity methods and the Rietveld method, and estimates of parameters and their standard
deviations, have been reported by Cooper, Rouse and Sakata (1981), Prince (1981), Taylor,
Miller and Bibby (1986) and Will et al (1990). The pattern-decomposition method was
also used to calculate electron-density maps directly from the observed diffraction data for
orthorhombic Mg2GeO4 (Will et al 1988) and CeO2 (Sakata et al 1990; see section 7.4.3.1).

7. Ab initio structure determination

7.1. Historical overview

Single-crystal X-ray diffraction is the technique most frequently used for solving and refining
crystal structures. A basic requirement of the technique is that data for individual reflections
are uniquely indexed and intensities measured accurately. In experiments with a powder
material, the 3-dimensional location of each reciprocal lattice point is lost by projection on
to a single dimension, which results in a considerable loss of information. Consequently,
observed diffraction lines are partially or totally superimposed. The situation is further
aggravated by the number of lines, which increases as d∗3 (see equation 2.2) and by the
intrinsic line broadening arising from structural imperfections (section 2.4). The geometric
reconstruction of the reciprocal lattice and the treatment of the overlap of diffraction lines
are the central problem for structure determination from powder data. In the last two
decades, the advent of powerful indexing methods and the Rietveld structure-refinement
approach to overcome the line overlap problem, combined with the new generation of
high-resolution powder diffractometers, have contributed to significant advances in ab initio
structure determination from powder data. The pioneering efforts of Swedish workers (see
Werner 1986), combining ab initio indexing, structure determination and Rietveld refinement
for data collected by means of Guinier–Hägg cameras, were the basis for subsequent intense
activity in this field. In 1977, Berg and Werner (1977) solved ab initio the crystal structure
of monoclinic (NH4)4[(MoO2)4O3](C4H2O5)2. H2O from powder diffraction data. A 3-
dimensional Patterson function was calculated from 120 integrated intensities, from which
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were derived the Mo atomic positions, and the localization of light non-hydrogen atoms
was revealed by a series of Fourier calculations. In 1980, the crystal structure of a new
tricline modification of MnP4 was solved by means of direct methods (Noläng and Tergenius
1980). After these early results, solutions of a variety of new structures have been reported
for data collected with different instrumental configurations and sources of radiation,
e.g. ZrNaH(PO4) with a conventional diffractometer and CuKα1,2 radiation (Rudolf and
Clearfield 1985), Nd(OH)2NO3.H2O with a diffractometer using monochromatic CuKα1
radiation (Louër and Louër 1987), α-CrPO4 with synchrotron X-rays (Attfield, Sleight and
Cheetham 1986), FeAsO4 from TOF neutron data (Cheetham et al 1986), Al2Y4O9 and
I2O4 from combined synchrotron X-ray and neutron diffraction data (Lehman et al 1987),
LiB2O3(OH).H2O from data collected by means of a curved position sensitive detector,
Debye–Scherrer geometry and CuKα1 radiation (Louër, Louër and Touboul 1992). A partial
compilation of the earlier structures to be solved from first principles from powder data has
been made by Cheetham (1995). Many examples have been reported for various classes of
material, mainly inorganic, but also for a few organic structures (e.g. Cernik et al 1991)
and molecular inorganic compounds (e.g. Lightfoot, Glidewell and Bruce 1992; Petit et al
1993).

Ab initio structure determination from powder diffraction data involves a series of
discrete steps from the collection of raw data to the refinement stage: (i) a careful sample
preparation is required to reduce preferred orientation of crystallites and data are collected
by means of a high resolution instrument; (ii) the powder pattern is indexed, including
the derivation of the space group from systematic absences; (iii) the integrated intensities,
and hence structure factor amplitudes |Fhkl|, are extracted from indexed reflections; (iv) the
structure solution is determined using direct, Patterson, Fourier or other methods; (v) the
atomic coordinates of the crystal structure are refined by means of the Rietveld method.

Compared to single-crystal data, the phase problem poses further difficulties in the case
of powder data, owing the the limited number of measured unambiguous Bragg intensities
available. This is currently the subject of intensive study. Indeed, although a number of
structure solutions of powder materials with low symmetry have been solved successfully by
means of standard direct or Patterson methods, the problem of exact overlap (e.g. the 550,
710 and 543 reflections for cubic material) encountered in cases of high symmetry poses
additional problems for which new algorithms have been developed. These are based on
the maximum entropy technique and the Sayre squaring method, to evaluate the intensity
of overlapping reflections (David 1987). There is currently considerable interest in the
application of these principles to the phase problem (see sections 7.4.2 and 7.4.3.1).

7.2. Powder pattern indexing

The indexing of powder diffraction patterns, i.e. the determination of crystal symmetry, unit
cell dimensions and hkl indices of each reflection, is an essential step in ab initio structure
determination. Compared to single crystal data, where the problem can easily be solved
from the 3-dimensional location of the nodes of the reciprocal lattice, the solution from
powder data can only be found from the lengths of the diffraction vectors, since the angles
between the vectors have been lost in the rotational projection of the reciprocal lattices.
Efficient methods are now available for indexing a powder pattern, regardless of crystal
symmetry; these are computer-based and their use requires that errors are minimized (see
Shirley 1980 and Louër 1992). The rôle of data quality was clearly shown by de Wolff
(1957), who noted that indexing should be quite an easy puzzle if errors of measurement
did not exist. He also proposed a figure of merit for selecting the correct result from false
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solutions (de Wolff 1968); this important contribution can be considered a milestone in the
field of powder pattern indexing.

7.2.1. Basic principles and solution reliability. The underlying physical principle of
indexing is the reconstruction of the 3-dimensional reciprocal lattice from the radial
distribution of the lengths d∗ of reciprocal-lattice vectors. The basic relation used for
indexing a powder diffraction pattern is obtained by squaring the d∗ vector (equation 1.2):

Q(hkl) = d∗2 = h2A + k2B + l2C + 2klD + 2hlE + 2hkF (7.1)

where A = a∗ · a∗, B = b∗ · b∗, C = c∗ · c∗, D = b∗ · c∗, E = c∗ · a∗ and F = a∗ · b∗.
The solution to this equation is not unique and it was recognized that the indexing problem
cannot be solved by ordinary algebra because, however many equations are taken, the
number of unknown variables is always greater than those known (see Vand and Johnson
1968). Moreover, the solution strongly depends on the precision and completeness of data.
It has been shown that the interdependence of these features and the reliability of a solution
can be evaluated by a figure of merit which takes into account the average discrepancies
between Qobs and Qcal, 〈-Q〉, or the average angular discrepancy, 〈-(2θ)〉, and the size of
the unit cell, through the number of calculated lines Ncal up to the N th observed line. This
should not include lines disallowed by the space group, if the latter is known. Although the
most widely used criterion for indexing is the de Wolff (1968) figure of merit:

MN = QN/2〈-Q〉 Ncal (7.2)

another factor, the FN index (Smith and Snyder 1979), is also used:

FN = N/〈-(2θ)〉 Ncal. (7.3)

In addition to these figures of merit, a criterion based on the principles of information theory
has been proposed by Taupin (1988). From a consideration of the respective merits of MN

and FN (Shirley 1980; Werner 1980), it was considered that the index FN is more appropriate
for evaluating the quality of a powder diffraction dataset whereas MN is preferable for
indexing purposes. In general, both are reported with the indexing results. The figure
of merit M20, should not be lower than about 10 (de Wolff 1968) in order to accept a
solution with confidence. Nevertheless, values greater than 20 give a higher probability of
correctness of the solution. An interesting point concerning the FN figure of merit is the
form used for reporting results: FN = value(〈-(2θ)〉, Ncal). Indeed, the average angular
discrepancy, 〈-(2θ)〉, is another evaluation of the quality of the fit between observed and
calculated 2θ values. Examples of the magnitude of figures of merit have been reported
and discussed by Louër (1992) for various situations. For instance, the presence of a
dominant zone, due to one cell edge being significantly shorter than other two, introduces
a complementary degree of freedom. The pattern is then characterized by the presence
of a common zero Miller index for all the first lines of the pattern and pseudo solutions
with high figures of merit can be produced by a search strategy based on the first lines in
the pattern. Geometrical ambiguities have been discussed by Mighell and Santoro (1975).
These can occur if the lattice has high symmetry, e.g. the pattern of a solid with hexagonal
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symmetry can be indexed by an orthorhombic unit cell with half the volume of the hexagonal
cell. Additional information contained in a powder diffraction pattern, based on equation
2.2, is concerned with an estimate of the volume of a triclinic unit cell. Smith (1977)
derived an empirical relation for the cell volume based on the d value of the 20th observed
line (V = 13.39 d3

20). Attempts to generalize the estimated cell volume to higher crystal
symmetries have been reported (Paszkowicz 1987).

7.2.2. Indexing methods and computer programs. Various computer programs have been
introduced for indexing the powder diffraction patterns for materials with unknown crystal
structures (table 7 in Smith and Gorter 1995). The main programs, and an evaluation of
their success rates, were reviewed by Shirley (1978, 1980). Three principal procedures,
regardless of the crystal symmetry, are used in these programs:

(i) The Runge–Ito–de Wolff method is based on specific relations in reciprocal space.
For example from two Q(0kl) and Q(0k̄l) values the inter-axial angle α∗ is calculated and
similar relations exist for other pairs. A program using these principles was written by
Visser (1969) and it is particularly efficient for low symmetry cases.

(ii) The method based on a permutation of Miller indices for base lines, proposed by
Werner (1964). This is a semi-exhaustive trial-and-error method, for which several computer
programs have been written (Werner, Eriksson and Westdahl 1985; Taupin 1973b; Kohlbeck
and Hörl 1976; Wu 1989).

(iii) The dichotomy method based on the variation, in direct space (except for triclinic
symmetry, for which Q-space was found to be preferable), of the lengths of cell edges and
inter-axial angles over finite ranges, followed by a progressive reduction of these intervals by
means of a dichotomy procedure. This method was introduced by Louër and Louër (1972).
The strategy is exhaustive, within input parameter limits. A recent optimized program,
DICVOL91, is available (Boultif and Louër 1991). The strategy for indexing starts from
the cubic end of the symmetry sequence and finishes with the triclinic case. This method
is not strongly sensitive to the presence of a dominant zone (Louër 1992).

Precise and accurate data are required for all programs. The absolute error on the peak
positions has to be lower, on average, than 0.03◦ (2θ ). Such precision can be obtained by
a good adjustment and calibration of the instrument (section 4.6; see also Louër 1992). A
comparison between powder pattern indexing from data collected by means of a conventional
powder diffractometer and a synchrotron source has recently been reported, demonstrating
the high precision of data collected in the latter case (Cernik and Louër 1992).

For indexing purposes, only the first (generally 20) diffraction lines of the pattern
are used. In order to derive possible space groups, all reliable lines available in the
pattern must be used. Programs for reviewing complete powder diffraction datasets are
useful for this analysis, e.g. NBS ∗ AIDS83 (Mighell, Hubbard and Stalick 1980). Some
additional techniques which are sensitive to symmetry can also be used for space group
determination, e.g. electron diffraction, NMR (see, for example, Bell et al 1994; Fyfe et
al 1991). From an interpretation of intensities corresponding to superimposed reciprocal-
lattice points, Ohmasa and Ohsumi (1995) have shown that Laue classes of polycrystalline
materials with high symmetry can be identified from concentrations of vectors in vector
space, i.e. from distributions of Patterson peaks. As a final resort, intuition taking into
account the symmetry of Wyckoff sites according to the chemical formula of the compound
can help space group determination.
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7.3. Extraction of integrated intensities

The number of available unbiased integrated intensities is the major factor in circumventing
the phase problem. This number can be increased experimentally by collecting data with
the highest possible resolution. Pattern decomposition methods, based on fitting procedures
(see section 3.3.1), are used for extracting the intensity of Bragg components. In reported
ab initio structure determinations two strategies have been employed.

In the first results reported, Bragg intensities with unambiguously indexed reflections,
including low intensity and non-observed lines, but allowed by space group, were used.
The number of available data is limited and depends on the instrument used, the
symmetry of the material and its microstructure. For instance, 120 integrated intensities
(Guinier camera data, CuKα1) were used for the calculation of a Patterson function in a
study of (NH4)4[(MoO2)4O3](C4H3O5)2.H2O, from which the heavy-atom positions were
obtained (Berg and Werner 1977); 40–50 data were used in the case of Zr(HPO4)2.H2O
(diffractometer data, CuKα1,2) (Rudolf and Clearfield 1985); 68 well-resolved peaks were
used to generate a Patterson map which yielded two heavy-atom positions in the structure
of α-CrPO4 (synchrotron X-ray data) (Attfield, Sleight and Cheetham 1986); 92 intensities
were employed in the case of KCaPO4.H2O (Louër, Plévert and Louër 1988) and, from
136 integrated intensities, Zr atom positions were found in the structure of triclinic
Zr(OH)2(NO3)2.4.7H2O (Bénard, Louër and Louër 1991a). CuKα1 diffractometer data
were used for the last two examples.

A second approach for extracting Bragg intensities is the use of symmetry information
and unit-cell dimensions to generate intensities for all possible reflections in the pattern
(Pawley 1981). The problems of least-squares ill-conditioning due to substantial correlated
overlapping reflections are overcome by additional slack constraints. The whole-pattern
decomposition of symmetry-allowed reflections yields a list of reflections with their intensity
and estimated standard deviations. Rather than using an empirical restraint algorithm,
a Bayesian approach including the requirement of positive intensities has been proposed
(Sivia and David 1994). The least-squares procedure with slack restraints has been used for
extracting the structure-factor amplitudes in a number of ab initio structure determinations,
e.g. Sigma-2 zeolite from synchrotron powder diffraction data (McCusker 1988) and
cimetidine (Cernik et al 1991). A convenient improvement of this basic principle is the
incorporation in Rietveld programs of an iterative fitting procedure without knowledge of
a structure model (Le Bail, Duroy and Fourquet 1988; Le Bail 1992). This is a rapid and
efficient approach to total pattern decomposition, by using space-group constraints on Bragg
reflection positions. It is based on a simple modification to the approximate procedure used
by Rietveld (1969) for the extraction of integrated intensities at the end of the structure
refinement. An arbitrary set of structure factors is used as input and only the parameters
of the non-structural model are refined. These values are then inserted as calculated values
and the refinement is repeated until the best fit between observed and calculated patterns is
achieved. The procedure generates a list of ‘observed’ intensities by using an equipartition
of the overall intensity of overlapping reflections, easily used as input data with programs
for direct and Patterson methods; see also Altomare et al 1995. The equipartition principle
is acceptable if there are not too many overlapping reflections in the pattern. Otherwise, a
more realistic partitioning of intensities is required and more recent alternative approaches
are discussed in the following sections.
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7.4. Structure solution

7.4.1. Traditional methods. Most of the ab initio structure determinations from powder
data reported in recent years have been based on methods traditionally used for structural
investigations from single-crystal data. Once integrated intensities have been extracted,
the phase problem is analysed by Patterson and direct methods, combined with a Fourier
analysis. Nevertheless, the overlapping of reflections, arising accidentally from the
diffraction geometry or as a consequence of point-group symmetry, is a major obstacle
in the determination of unknown crystal structures. With both ‘noisy’ and incomplete data,
structure solution can be an ill-posed problem. The success of structure determination from
conventional crystallographic techniques depends on the degree to which reflections overlap
and the complexity of the structure. The integrated intensity datasets used for obtaining the
phase can be divided into three categories: (i) the limited number of strictly unambiguous
reflections, used in the earlier studies (ii) the ‘complete’ dataset of extracted intensities
after equipartitioning the overall intensity for overlapping reflections and (iii) the complete
dataset after evaluating the intensity of overlapping reflections through approaches based
on probability.

The relative strength and robustness of the Patterson method in the case of small datasets
has been demonstrated in a number of structure determinations. This has also been verified
in a more systematic manner through selected dataset types, including single-crystal data
in which the experimental structure factors have been altered in some random fashion,
very small datasets with as few as ten reflections and small datasets comprising a subset
with |Fhkl| values estimated to be equal (Wilson 1989; Wilson and Wadsworth 1990). A
comparison between Patterson-map calculations from a single-crystal dataset and a small
number of unambiguous |Fobs| values has also revealed the relative insensitivity of the
Patterson function to large errors (Bénard, Louër and Louër 1991b). Rius and Miratvilles
(1988) have proposed a strategy to assist in the determination of structures with large known
molecular fragments. This is based on an automated Patterson search method developed to
orient and position molecular fragments with rigid geometry in the unit cell. It allows one to
use available ‘molecular-skeleton’ geometries, e.g. from crystal structure databases, to solve
undetermined structures containing similar fragments. The method is suitable for solving
crystal structures of organic molecular solids, for which the number of measurable intensities
at high angles is considerably reduced and the absence of strong scatterers prevents a direct
interpretation of the Patterson function from being carried out. The method, combined with
rigid-body Rietveld refinement, has been applied to the determination of molecular packing
in a ‘hydrogen-bonded’ molecular solid formed from a dihydroxyphenyl-nitronyl nitroxide
radical (Cirujeda et al 1995) and to obtaining the structure of the zeolite RUB-10 from
low-resolution data (Gies and Rius 1995). Determination of the structures of zeolites and
layered materials by using multi-solution direct methods has been considered by Rius et al
(1995). A new phase-refinement function derived by Rius (1993) was applied successfully
to the tetragonal zeolite ZSM-11 and to the silicate RUB-15.

7.4.2. Improvement of existing methods. A promising development in structure solution
from powder data based on the heavy-atom method is certainly the use of the maximum
entropy technique to evaluate, from first principles, the intensities of overlapping reflections.
This method has been used successfully in image reconstruction in a wide variety of fields.
The maximum entropy solution is described as the ‘most honest choice’ because it is the
one that is ‘maximally non-committal’ about the unknown information. David (1990) has
applied this algorithm to the Patterson function obtained from powder diffraction data. The
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Patterson function must faithfully represent the observed intensities of clusters of Bragg
reflections. This is expressed through the χ2 constraint. If the Patterson function Pk is
divided into N ‘pixels’, the functional description of the observation may be expressed as
a linear form of the ‘Patterson entropy’

S = −
N∑

k=1
Pk ln(Pk/Qk) (7.4)

where Qk is a normalization factor. This relationship is then maximized in an iterative
manner consistent with χ2 criteria. An application to diffraction data for rutile (TiO2) has
been described by David (1990).

A fast iterative Patterson squaring method (FIPS) (Estermann and Gramlich 1993)
has been developed for improving the Patterson function. Each point of a Patterson
map calculated from the equipartitioned observed data is squared. The resulting map is
back-transformed, leading to new Fourier coefficients which are extrapolated to give a
new distribution of fractional intensity for overlapping reflections. This iterative technique
enhances the peak and eliminates negative values. The structure of the aluminophosphate-
based molecular sieve (SAPO-40) has been solved ab initio after a redistribution of the
intensities by the FIPS method, for a pattern in which 65% of the reflections overlap
severely (Estermann, McCusker and Baerlocher 1992).

Approaches based on probability theory have been devised for the evaluation of the
fractional intensity contribution of exactly overlapping reflections (Jansen, Peschar and
Schenk 1992; Cascarano, Favia and Giacovazzo 1992; David 1987). These are based on
the derivation of intensity statistics and of probability relations between structure factors.

7.4.3. New methods

7.4.3.1. Entropy maximization and likelihood estimation. In contrast to the previous
techniques, the maximum entropy (ME) method attempts to solve the overlap and phase
problems simultaneously. The theoretical basis of the maximum entropy method has
been presented by Bricogne (1984), who later described the adaptation of this approach
to solving crystal structures from powder diffraction data (Bricogne 1991). The multi-
solution method of phase determination, combining entropy maximization and likelihood
evaluation, was extended to structure determination by Gilmore, Henderson and Bricogne
(1991). In this method, overlapping data are treated in a rational manner. The method
consists of considering an unknown structure as being composed of chemically identified
atoms with unknown positions. The latter are initially considered as random with a uniform
distribution in the asymmetric unit cell and the technique consists of a gradual removal
of this randomness. The method has been applied successfully to the determination of the
structure of LiCF3SO3 (Tremayne et al 1992). Detailed procedures for solving small crystal
structures ab initio by means of ME and powder-diffraction data were reviewed recently by
Sudo, Hashizume and Carvalho (1995). As a test of the technique, the multi-solution method
was applied to the determination of the structure of a low pressure phase of magnesium
boron nitride Mg3BN3.

It is worth noting the ME analysis is also widely applied to drawing the electron
or nucleus density distribution map for known structures from X-ray or neutron powder
diffraction data (Sakata et al 1990; Sakata et al 1993). For example, it has been used to
recover the precise electron density distribution from accurate structure factors (Sakata et
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al 1990) and applied to obtain a high-quality electron-density distribution for CeO2 from
X-ray diffraction data, the structure factor being represented as the Fourier transform of
the electron density in the unit cell. The differences of the electron density distribution
and the chemical bonding between d-electron type Y2O3 and f -electron type Tm2O3 and
Yb2O3 have been examined by a combination of pattern decomposition and MEM from
X-ray powder diffraction (Ishibashi, Shimomoto and Nakahigashi 1994). It was found that
the valence electron distribution for the three compounds is nearly the same though neutral
Tm and Yb have 30 and 31 electrons more than Y (Z = 39).

7.4.3.2. Direct space methods. For facilitating the solution of crystal structures, model-
building methods which combine chemical, geometric, MAS NMR and electron microscopy,
the unit cell size, symmetry and diffracted intensity information can be used. Once a model
has been created, it can be optimized for the observed symmetry and unit-cell dimensions by
means of commonly used distance and angle least-squares (DALS) methods, where atomic
coordinates are adjusted to give ideal bond lengths and angles. This method is useful for
studies of complex structures for which the ratio between the number of observations and
variables is considerably less than ten. The use of restraints (also known as soft or slack
constraints) increases the number of observations. Although the nature of the two sets of
observations (diffraction intensities and geometric restraints) is quite different, they share
the same variables and can be included in a common least-squares matrix. In a restrained
Rietveld refinement, two minimization functions are combined, S (equation 3.2) and SR

(Baerlocher 1995):

SR =
∑

ω[R0 − Rcal(x)]2 (7.5)

where R0 can be an expected bond length or angle, Rcal(x) is the value calculated from
atomic positions and ω is a weighting factor. A number of methods used for the study
of zeolite materials have been reviewed by McCusker (1991) and similar principles were
reviewed by Bish (1992). In an example of the use of high-resolution TEM images to
elucidate the structure of an unknown material, Post and Bish (1988) recognized similarities
between the chain structure of hollandite, BaMn8O16, and romanechite, BaMn5O10.H2O,
and TEM images of todorokite. They derived a starting model for the last compound by
using a DALS refinement. The model building method is not strictly structure determination,
but is the creation of a plausible structure. Another representative example is the structure
of zeolite-23 (Marler et al 1993), for which the use of complementary methods, such as
29Si magic-angle-spinning, nuclear-magnetic-resonance spectroscopy, electron diffraction
and DALS refinement were necessary to determine the symmetry. An initial set of atomic
coordinates of the framework atoms used for the refinement was then optimized by the
DALS procedure.

Another method for generating realistic framework models is that of simulated annealing.
This has been applied to zeolites (Deem and Newsam 1989) and also to predict simple
inorganic crystal structures (Pannetier et al 1990). A model is automatically generated
when the plausibility of a given atomic arrangement is quantified by cost functions or in
energy terms. These may include constraints on ideal interatomic distances, bond angles,
coordination features and Pauling’s principles for ionic compounds. Models are created
from an initially random distribution of the atoms within the determined unit cell and
their optimization is accomplished by Monte Carlo techniques by using simulated annealing
methods (Newsam, Deem and Freeman 1992). Structural models generated by the random
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movement of a collection of atoms within the unit cell, and the acceptance or rejection
of trial configurations based on comparison between experimental and calculated patterns,
have also been considered by Harris et al (1994) and applied to known structures.

The atom–atom potential method (Kitaigorodskii 1973; Pertsin and Kitaigorodskii
1987) has also been employed to obtain crystal structure models for organic solids. A
computational study was used for the structure solution of a metastable phase of piracetam
(Louër et al 1995). This was carried out by minimization of the crystal-lattice potential
energy, calculated with semi-empirical atom–atom potentials. In this study, the geometric
parameters (bond distances, valence and torsional angles) of the piracetam molecule in
known structures of polymorphs were used and the packing calculations were made using
the PMC (Packing of Molecules in Crystals) program (Dzyabchenko, Belsky and Zorkii
1979).

Once a model has been created by these direct space procedures a comparison of
the powder diffraction pattern generated from the optimized atomic coordinates with the
observed pattern will indicate whether or not a model is likely to be correct and a successful
Rietveld refinement may confirm the correctness of the solution.

7.5. Combined X-ray and neutron diffraction

The complementary nature of X-ray and neutron diffraction has been used in a number of
applications for improving accuracy and providing additional information. The respective
advantages of X-ray and neutron sources for structural investigation have been considered
in section 2.1. Even if X-ray diffraction is the most convenient means of crystal structure
determination, due to higher contrast between atoms, the accuracy of the atomic coordinates
of light atoms may be considerably improved by Rietveld refinement from neutron diffraction
data. Combined neutron and synchrotron X-ray experiments were used for a structural study
of Ga2(HPO3)3.4H2O containing 29 atoms in the asymmetric unit (Morris et al 1992). The
benefit of using neutron diffraction can be appreciated from materials containing contrasted
atoms and anionic groups with well known geometry. For U(UO2)(PO4)2 (Bénard et al
1994), the X-ray diffraction pattern is strongly dominated by the scattering contribution
from the metal atoms, since the ratio of atomic factors of U and O atoms is greater than
11.5, the ratio of atomic numbers, while the appropriate neutron scattering lengths for U
and O atoms are in the ratio 1.45. The imprecision in O atomic positions in the X-ray case
can be seen from the distortion of the PO4 tetrahedra with P–O distances ranging from 1.46
to 1.62 Å. After refinement from the neutron diffraction data, the P–O distance is in the
range 1.510–1.565 Å. X-rays and neutrons were also used in the structure determination of
similar materials containing contrasting atoms, e.g. PbC2O4 (Christensen, Cox and Lehmann
1989) and PbSO3 (Christensen and Hewat 1990). The complementary nature of X-ray and
neutron diffraction has given rise to the use of both neutron and X-ray powder diffraction
data in a simultaneous structure refinement (Maichle, Ihringer and Prandl 1988; Larson and
Von Dreele 1987). Moreover, neutron diffraction data can in some cases be used as an
aid to determining the correct space group. For instance, the space group obtained from
synchrotron data for potassium uranyl phosphate trihydrate, KUO2PO4 · 3H2O, was Pccn,
but the intense 011 reflection observed in the neutron powder pattern violated the extinction
conditions for this space group. The reflections observed in the neutron data were in fact
found to be compatible with the P 21cn space group (Cole, Fitch and Prince 1993).
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7.6. Noteworthy examples of ab initio structure determination

In recent years many crystal structures have been solved ab initio from powder diffraction
data. In the majority of cases, powder diffraction data collected with conventional X-ray
sources were used, but a few were based on synchrotron X-ray data or monochromatic
X-rays. The three following examples demonstrate the power of modern powder diffraction
methods for solving crystal structures.

Sigma-2 zeolite (McCusker 1988): synchrotron X-ray powder diffraction data of Sigma-
2 [(Si64O128).4C10H17N], a clathrasil phase, were collected by using the Debye-Scherrer
geometry. The pattern was indexed by means of a tetragonal cell with a = 10.2387 (1)
Å and c = 34.3829 (1) Å (V = 3604 Å3), space group I41/amd, and the asymmetric
unit cell contains 17 atoms. The extraction of integrated intensities was carried out by the
Pawley method with an equipartition of intensity for overlapping reflections. A sum of 258
integrated intensities were entered in a direct-methods program. The best solution gave
the position of all four Si atoms and four of the seven O atoms in the asymmetric unit.
The first difference Fourier map showed the remaining three O-atom positions. Subsequent
refinement coupled with Fourier syntheses revealed the location of the partially disordered
1-aminiadamantane in the large cage. The final Rietveld refinement was based on 451
contributing reflections and 47 structural parameters, leading to a structure-model indicator
RF of 0.10.

Gallium phosphite (Morris et al 1992): the structure of Ga2(HPO3)3.4H2O, with 29
atoms in the asymmetric unit cell, was solved ab initio from X-ray synchrotron powder
diffraction data (Debye–Scherrer geometry). The unit cell is monoclinic with a = 8.0947
(2) Å, b = 10.0336 (2) Å, c = 7.6711 (2) Å and β = 111.392 (2)◦ (V = 580 Å3)
and space group P 21. 551|Fobs| values were extracted by the iterative method (Le Bail,
Duroy and Fourquet 1988) and entered in the direct-methods program (SHELX-86). From
the normalized structure factors fhkl , the best solution produced an E-map with two large
peaks which were assigned to Ga atoms. Subsequent Fourier syntheses revealed four more
atoms identified as two P and two O atoms. The model was refined by the Rietveld method
with further Fourier synthesis, which revealed the positions of one further P and ten O
atoms. The H-atom positions were obtained from neutron diffraction data and the final
stage of the Rietveld refinement converged to RF = 0.03.

((CH3)4N)4Ge4S10 (Pivan et al 1994): the structure of this thiogermanate has been
solved from conventional high resolution CuKα1 powder diffraction data. From pattern
indexing the symmetry was found to be cubic with a cell dimension a = 19.5490 (4) Å and
only two space groups, P 4̄3n and Pm3n were possible. In this example, the complexity
of the pattern arises from the large unit cell volume (7471Å3) and the exact overlap of
a large number of independent reflections. From pattern decomposition combined with
the principle of equipartition of overlapping reflections, the structure was solved by direct
methods and one difference Fourier map. The application of direct methods was found to be
very sensitive to limitations in sin θ/λ of the datasets used. The refinement by the Rietveld
method converged to RF = 0.06.

7.7. Integrated software

With the growing development of this important application of the powder method,
integrated software for solving crystal structures is now of interest (McCusker 1992)
and some of the programs available to carry out the various steps in ab initio structure
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determination are listed in section 7.1. (See also Smith and Gorter 1995.) The software
combines programs for the treatment of powder diffraction data with those used in
conventional structure determination by single-crystal methods. An important development
is that solving and refining crystal structures from powder data can now be performed with
a personal computer (Louër and Louër 1994). It is intended to provide an integrated suite
of programs for structural investigations as part of the Collaborative Computational Project
in Powder Diffraction (CCP14) (see section 1).

8. Resonant diffraction (anomalous dispersion)

An important aid to structure determination is the use of resonant X-ray diffraction, which is
also known as anomalous dispersion or anomalous scattering. The atomic scattering factor
for X-rays, f , has a ‘normal’ (Thomson) component, f0, and a complex energy-dependent
‘anomalous’ contribution f ′ + if ′, or

f = f0 + f ′ + if ′′. (8.1)

f0 depends on the electron distribution and varies only with sin θ/λ, whereas the anomalous
contribution is strongly dependent on energy. This is normally very much less than f0, but
in the vicinity of an absorption edge, when the energy of an incident photon is sufficient to
excite a core electron, it is greatly enhanced. For example, f ′ for Fe is about 7 eV at the K

edge, compared with 17 eV for f0 at sin θ/λ = 0.3Å−1, and considerably greater values of
f ’ have been reported for L edges (Phillips and Hodgson 1980). Resonant diffraction is
thus a sensitive probe of atomic sites and it has been used for many years in single-crystal
determination of macromolecular and protein structures. However, it is a relative newcomer
in powder diffraction, a result of the increased availability of dedicated synchrotron sources
with high intensity over a wide range of wavelengths in the X-ray region. By fine tuning
a suitable monochromator, the appropriate wavelength for enhancing f ′ or f ′′ for an atom
of interest can be selected. Resonant scattering is mainly used to obtain the distribution
of the resonant element within a crystal structure, in the presence of elements with similar
atomic numbers, or to obtain contrast between atoms of the same element, but with different
valence states, for which the values of f ′ normally differ by a few eV. Attfield (1992) has
discussed these uses of resonant diffraction in detail, together with the relevant experimental
procedures. (See also Wilkinson and Cheetham 1992.)

The reliability of the results of a resonant-diffraction experiment depends on the accuracy
with which f ′ and f ′′ have been determined, particularly in the vicinity of their resonant
values (Hoyt, de Fontaine and Warburton 1984). These parameters can be calculated, but
values determined experimentally are generally considered to be more reliable. Considerable
effort was expended in the 1980s to determine f ′ and f ′′. These were mainly obtained from
the measurement of X-ray absorption spectra (e.g. Bonse and Hartmann-Lotsch 1984), by
means of X-ray interferometry (e.g. Begum et al 1986) and from powder diffraction data
(e.g. Suortti, Hastings and Cox 1985; Will et al 1987).

An example of a straightforward application of resonant diffraction to achieve elemental
contrast is the determination of Fe/Ni occupancies of the four distinct octahedral sites in the
structure of FeNi2(BO3)O2 by Perkins and Attfield (1991). A single resonant pattern was
collected at 16 eV below the FeK edge and, in addition to the usual parameters refined, Fe/Ni
occupancies were obtained with a precision of 0.6%. A somewhat different use of elemental
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contrast was the study by Moroney, Thompson and Cox (1988) of isotropic temperature
factors in yttrium-stabilized cubic zirconia Y0.19Zr0.81O1.90. The Y/Zr occupancy of the
cation site was fixed and resonant data were used to ascertain how each species is disordered
around the ideal position, by determining its temperature factor independently. Resonant
diffraction has proved to be invaluable in elucidating structural detail in ‘YBCO’ and other
high Tc ceramics. For example, Howland et al (1989) partially replaced Cu in YBa2Cu3O7−δ

by Fe, Co, Ni or Zn and determined the dopant site occupancies. This was achieved by
collecting data at energies near the absorption edges for the dopants. Cu in orthorhombic
YBCO occupies Cu(1) (‘chain’) sites and Cu(2) (‘plane’) sites. Ni and Zn were found to
behave similarly, in terms of site occupancy, and differently from Fe and Cu. The two sites
play distinctly different rôles in determining the physical properties of this material, which
can be modified significantly by the introduction of dopants. An example of the use of
resonant scattering, coupled with an image-plate detector, to detect very weak superlattice
reflections at high pressure is given in section 11.2.

Warner, Cheetham and Cox (1990) used resonant diffraction to study the important case
of Fe2+ and Fe3+ in the mixed-valence compound α-Fe2PO5. There is a difference of
about 3 eV between the absorption edges of Fe2+ and Fe3+ (Sarode et al 1979) and in
this instance the ions were found to be located at two different crystallographic sites. A
significant result of this work was that the two sites could clearly be distinguished as having
different scattering powers close to an absorption edge, despite there being a comparable
energy spread in the incident beam. Wilkinson, Cheetham and Cox (1991) carried out a
similar investigation of oxide-state contrast in Ga+Ga3+Cl4, by using the differences in
f ′ between Ga+ and Ga3+, and Kwei et al (1990) studied the Cu+, Cu2+ and Cu3+ sites
in orthorhombic YBCO. K edges were used in this work and, as an example of resonant
scattering in the vicinity of an L edge, Attfield (1990) used Eu LIII to contrast ordered
valence states in Eu3O4. In this instance, Eu3+ was found to occupy one of three distinct Eu
sites and Eu3+ fills the other two. Until recently, resonant diffraction was limited to elements
with Z greater than about 20, but Mårdalen, Riekel and Müller (1994) successfully used soft
X-rays near the K edge for sulphur (Z = 16) to obtain information on the behaviour of the
main chain in the partially conducting polymer poly(3-octylthiophene) (P3OT). Only the 100
reflection could be recorded, but in this instance the unit cell and the basic structure had been
determined previously by using harder X-rays and neutrons. Nevertheless, the experiment
demonstrated the possibilities of resonant diffraction with low-Z elements, particularly in
providing additional structural information on systems with few diffraction peaks.

Resonant diffraction experiments carried out with synchrotron X-ray sources have
contributed significantly to our understanding of complex inorganic structures and have
increased our knowledge of the behaviour of f ′ and f ′′ in the vicinity of absorption
edges. Although the technique is somewhat limited in its application and is experimentally
demanding, resonant diffraction is now firmly established as a valuable technique in powder
diffraction, one which is likely to become more important with the increased availability of
high brightness sources.

9. Quantitative phase analysis

9.1. Introduction

The integrated intensity of reflections for a compound in a multiphase powder diffraction
pattern is related to the phase abundance in the mixture. This property has been used
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for many years in quantitative phase analysis (Klug and Alexander 1974) and significant
advances have occurred in the last two decades (see, for instance, Snyder and Bish 1989;
Hill 1991; Davis 1992; Snyder 1992a). The method can be applied to a wide range of
materials, but instrumental and sample-related effects can influence the accuracy of the
results profoundly, e.g. preferred-orientation, extinction, micro-absorption and the detection
of trace and amorphous components. Diffraction measurements of phase abundance can
be performed in many ways, but traditional methods require the acquisition of standard
reference data for each phase present in the mixture to be analysed. The introduction of
the concept of a reference intensity ratio (RIR; section 4.6.2) contributed to the simple and
powerful procedure described by Chung (1974a, b). With the advent of the Rietveld method
(section 3.3.2) a new approach to quantitative phase analysis has been devised (Werner et
al 1979; Hill and Howard 1987).

9.2. The internal-standard and the reference-intensity-ratio methods

The internal-standard method is based on elimination of the matrix absorption factors by
computing the ratio Ii/Is of the diffraction line intensity of phase i and the intensity of a
line for an internal standard s. This ratio is then related to the weight fraction (Wi) of phase
i through the equation:

Ii/Is = kWi/Ws. (9.1)

This equation is the basis of the internal-standard method. To be applied, it is necessary to
add a known amount of a standard material to the mixture and the k values must be known,
or must be obtained, for each phase. The procedure is sensitive to systematic errors, e.g. the
effects of micro-absorption in a heterogeneous material and preferred orientation have been
discussed by Cline and Snyder (1985, 1987) and Herman and Ermrich (1989); Bish and
Chipera (1988) have considered the separation of overlapping and broad diffraction lines
and the detection of amorphous and trace phases. The procedure for using a calibration
curve in quantitative analysis was improved for the case of analysing monoclinic-tetragonal
ZrO2 by using pattern decomposition techniques (Toraya, Yoshimura and Sömiya 1984).
The problem of multiple calibration constants can be overcome by using the RIR. This has
been given the notation I/Ic, the ratio of the maximum intensity I of the strongest line of
the analyte to that of the corundum 113 reflection, Ic (Visser and de Wolff 1964; Hubbard,
Evans and Smith 1976; de Wolff and Visser 1988). The concept of the intensity ratio as a
materials constant has been extended to other reference phases (Hubbard and Snyder 1988).
Selected RIR values and other parameters have been reported by Davis and Smith (1988)
and Davis, Smith and Holomany (1989). However, it should be noted that the weight
fraction of a component in a mixture of phases is proportional to line-profile area and the
use of maximum intensities is an approximation. Nevertheless, a direct application of the
RIR concept was introduced by Chung (1974a, b) who derived a simple relationship in RIR
analysis. In the fundamental equation 9.1, relating phase concentration (W ) and diffraction
line intensity (I), Ws (= Wc) is the weight proportion of the standard (e.g. corundum) added
to the sample and k is the RIRic for component i. Also, an ‘adiabatic’ method for analysing
a mixture of identified phases without the addition of a standard, provided that all RIR ratios
are known, has been described. This imposes the constraint that the sum of the percentage
weight fractions of all crystalline phases in the mixture, including trace components, is
100%. Thus, the presence of any unanalysed amorphous phase, including the commonly
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occurring amorphous surface layers on crystallites, invalidates this procedure. In these
approaches the RIR, by nature of the basic standard used for all materials, ‘flushes out’
absorption effects. Chung (1974a) illustrated the ‘matrix flushing’ technique with various
tests using synthesized corundum as the flushing agent. An interesting example of this
technique is a study of the performance of lead-acid batteries, to determine the correlation
between deep-discharge service with the composition of the positive plate material (Harris,
Hill and Rand 1984). The measurement and use of RIRs is straightforward for random
samples and materials for which the intensity does no vary with composition. The problems
arising from a variable chemistry and/or strong preferred-orientation effects (e.g. feldspars
and zeolites) have been considered by Chipera and Bish (1995). By using reflections from
non-parallel planes (e.g. 001 and 110), or small regions which include multiple reflections,
the measured RIR values can be averaged to compensate for these effects. Chipera and
Bish showed that the precision and accuracy of quantitative analysis in such cases are then
considerably improved.

Additional standardless methods have also been described by Fiala (1980) and by
Zevin and Zevin (1989). The former is essentially an iterative procedure in which the
concentrations of individual phases and the intensities of standards are compared and the
differences minimized. The related technique of Zevin and Zevin involves preparing at least
as many mixtures of known concentration as there are phases in the sample to be analysed.
If sufficient ‘control’ samples are prepared, then a least-squares comparison of intensities
can be carried out. This standardless technique is unsuitable for sporadic analyses of a few
samples, but it is a powerful and potentially accurate method for large-scale analysis of
many samples with similar composition. Zevin and Zevin applied the method to various
mixtures of minerals and most of the observed weight fractions were within 10% (relative)
or the actual values.

9.3. Quantitative phase analysis by the Rietveld method

It has been demonstrated (Hill and Howard 1987) that there is a simple relationship between
the individual scale factors (equation 3.6) determined in a Rietveld structure refinement of
a multicomponent sample and the phase concentration in the mixture. Information on the
weight fractions (Wi) of the phases present in a mixture is thus obtained directly from the
scale factors for each phase obtained from the refinement:

Wi = si (ZMV )i

/ ∑

j

sj (ZMV )j . (9.2)

where si , Zi , Mi and Vi are the scale factor, the number of molecules per unit cell,
the molecular weight and unit-cell volume of phase i, and the summation is over all
phases present. A similar relationship, expressed as a function of the calculated density
ρi (= ZiMi/NAVi , where NA is Avogadro’s constant), was also derived (Bish and Howard
1988). The quantity ZMV (which is proportional to ρV 2) for a particular phase is the
Rietveld equivalent of the conventional RIR (Hill 1991) and has been derived in RIR
notation by Snyder (1992b). A requirement of the method is that the crystal structure
is known for each phase in the sample. This analysis has advantages over conventional
quantitative analysis methods, since no experimental precalibration is required and the use
of all reflections in a pattern reduces the uncertainty in the derived weight fractions by
minimizing the effects of preferred orientation and extinction. The problem of contrast
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effects due to micro-absorption in quantitative analysis by means of the Rietveld method
has been discussed by Taylor and Matulis (1991). Provision for the determination of phase
abundance by using the Rietveld method is now available in a number of a computer
programs, e.g. QPDA (Madsen and Hill 1990) and SIROQUANT (Taylor 1991). Bish and
Post (1993) describe a modified version of the Rietveld program DBW3.2 (Wiles and Young
1981), adapted for use with internal external standards. These two modifications are then
analogous to the matrix-flushing and adiabatic methods, respectively, described by Chung
(1974a, b). Programs for quantitative analysis are listed in table 16 of Gorter and Smith
(1995).

Many applications of this important development in quantitative analysis have been
reported. Partially stabilized zirconia containing various amounts of the cubic, tetragonal
and monoclinic phases of ZrO2 have been analysed by X-ray (Hill and Reichert 1990)
and neutron (Howard et al 1990) diffraction. In these materials, transitions between
the polymorphs occur during the preparation of samples for X-ray diffraction and the
composition at or near the surface is then not representative of the bulk. X-ray diffraction
was used to study near-surface regions and neutrons were used to determine the composition
of the bulk. Other applications of quantitative phase analysis to complex mixtures, by using
the Rietveld method, include a mixture of Fe3O4–LixFe3O4, of interest in solid-state battery
electrodes (Rodriguez-Carvajal and Fontcuberta 1987), and a study of Portland cement
(Taylor and Aldridge 1993). The use of quantitative analysis in mineralogy by using the
Rietveld full-pattern fitting method has been discussed by Snyder and Bish (1989) and Bish
and Post (1993).

10. Line-profile analysis and microstructural properties

10.1. Microstructure of materials

Polycrystalline materials invariably contain imperfections which modify the intensity
distribution of a Bragg reflection (section 2.4). This departure from an ideal structure,
generally known as microstructure, can profoundly influence the physical, mechanical and
chemical properties of materials and the characterization of structural imperfections (line-
profile analysis) is thus an important application of powder diffraction. With the exception
of structure refinement by means of the Rietveld method (section 6.1.5), the techniques
considered so far have been concerned with ‘ideal’ crystal structures, in that the effects
of microstructure have largely been ignored, and have mostly been based on determining
the position and intensity of reflections. However, the full distribution of intensity needs
to be taken into account in studies of microstructure and line-profile analysis is thus one
of the more demanding uses of powder data. There are two main approaches to obtaining
microstructural parameters from diffraction. One is based on the representation of line
profiles by Fourier series and the other employs line-profile parameters obtained from pattern
decomposition (section 3.3.1).

10.2. Analysis of microstructure based on Fourier series

The diffraction line profile f (s) due to sample microstructure for the reflection hkl can
be expressed as the Fourier series given by equation 3.3, with x = s/2ŝ, where s is the
radial distance from the corresponding reciprocal-lattice point and ±ŝ is the range over
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which data are recorded for this reflection. There are two ways in which equation 3.3
is applied in line-profile analysis. One may be regarded as an analytical approach, since
formulae based on diffraction theory (section 2.4.1) are applied directly to the experimental
data, to estimate parameters which characterize the microstructural properties of interest
(sections 10.2.1 and 10.2.2). In the alternative approach, a model, based on the expected
microstructural properties (e.g. section 2.4.2), is used to calculate the sample line profiles
f (x) or to obtain parameters which characterize f (x). These are then compared with the
experimental data, ideally by a least-squares-refinement procedure. Model-based procedures
are considered in section 10.2.3.

10.2.1. Crystallite (domain) size. Bertaut (1949) demonstrated that, if f (s) is due solely to
the size of coherently diffracting domains, then the inverse of the initial slope of normalized
values of a plot of An versus n is the average number of unit cells in a direction perpendicular
to the diffracting planes and that the second derivative of this curve is proportional to the
distribution of column lengths. For convenience, n is usually replaced by L(= n/2ŝ)

and |dAn/dL|−1
L=0 then gives εF , the area-weighted apparent size (section 2.4.1) directly.

(It should be noted that the Fourier coefficients An correspond to the transform V (t) in
equation 2.12, normalized to unit volume and with Y (t) constant, and n corresponds to
discrete values of 2ŝt .) These important results are the basis for determining the size and
shape of crystallites (section 10.2.3) and the distribution of apparent size (section 2.4.1)
from the Fourier-series representation of f (s). For the particular case of reflections from
crystallites with parallel surfaces which are perpendicular to the direction [hkl], the line
profile due to size effects is, from Bertaut (1950) equation (10),

f (s) ∝
∫ ∞

0

P(L) sin2 πLs dL

(πs)2 (10.1)

where P(L) is the volume-weighted fraction of the sample for which the crystallite thickness
lies between L and L + dL and is proportional to [V ′′(t)]t=L (Guinier 1963, equation 5.21
and section 2.4.1). The term sin2πLs/(πs)2 in equation (10.1) will be different for other
forms of crystallite. A consequence of the low precision which normally occurs when
obtaining the second derivatives of An versus L is the presence of spurious oscillations
in the size-distribution curves. Also, an incorrect determination of the background leads
to an initial ‘hook’ of the An versus L curve, which results in a physically impossible
negative value of P(L) as L → 0 (Young, Gerdes and Wilson 1967). Various approaches
have been devised to overcome the problem of spurious oscillations, applicable only to
data from well resolved reflections and cases where broadening due to lattice distortion
is negligible. Pausescu et al (1974) eliminated negative minima by means of an iterative
procedure, based on an extrapolated exponential function. Bley, Calvayrac and Fayard
(1974) obtained smooth size distributions by fitting a Lorentzian function to the tails of
observed line profiles. This method is related to the correction introduced by de Bergevin
and Germi (1972), which is based on the linear variation of the variance (second central
moment) of a line profile with range of truncation (Wilson 1962b). The representation
of the distribution curve by a polynomial series modulated by a generalized Lorentzian
function was proposed by Moraweck, de Montgolfier and Renouprez (1977), who used the
simplex method to solve the resulting set of simulataneous equations. A procedure based
on smoothing the An versus L curve before obtaining the second derivatives was applied
by Petrov (1976) and by Pielaszek et al (1983). The over-determined set of equations
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derived from (10.1) can also be solved by a least-squares procedure (Hossfeld and Oel
1966; Le Bail and Louër 1978); however, the spurious oscillations superimposed on the
size distribution function, a consequence of the instability of the system, usually remain.
Le Bail and Louër (1978) applied an algorithm which minimizes an approximate function,
based on Tikhonov’s regularization procedure (see section 2.3), to obtain smooth distribution
functions. The validity of this technique was confirmed by applying it to data from samples
containing two known, but different size distributions. Similar regularization schemes were
applied by Ozerin et al (1986) and Kojdecki (1991).

10.2.2. The Warren–Averbach method. Subsequent to the pioneering work of Bertaut in
extracting the mean domain size and distribution of size from diffraction data, Warren and
Averbach (1950, 1952) introduced an analytical technique for dealing with combined order-
independent and order-dependent line broadening (section 2.4.1). Full details of the method
are given by Warren (1969) and a useful overview has been provided by Delhez, de Keijser
and Mittemeijer (1982). The basis of the method is the multiplicative property of the
Fourier transforms of convoluted functions, as is used to remove instrumental contributions
from experimental line profiles by means of the Stokes method for deconvolution (section
2.3). An analysis of microstructure is normally based on the cosine (real) coefficients An

in equation 3.3. This makes the assumption that the sine coefficients Bn are negligible and,
although Bn are zero for size effects, for which the line profiles are symmetrical, this is
not necessarily the case for lattice distortion. Accordingly, Wagner (1966) suggested using
Fn = (A2

n + B2
n)

1/2, rather than An. The coefficients An are considered to have an order-
(and hence d∗

hkl) independent component AS
n and an order-dependent part AD

n (l), where S

denotes ‘size’ and D ‘strain’ (distortion), and l is the order of the reflection, or

An = AS
nA

D
n (l). (10.2)

(An in equation 10.2 corresponds to the product V (t)Y (t) in equation 2.12, normalized to
unit volume.) The order-dependent coefficients are

AD
n (l) = 〈cos[2π ln e(n)]〉 (10.3)

where e(n), the fractional displacement of a pair of unit cells a distance n cells apart, is a
measure of strain in the direction perpendicular to the reflecting planes. Thus

An = AS
n − AS

n2π2l2n2〈e(n)2〉 + . . . (10.4)

Most Fourier methods for separating ‘size’ and ‘strain’ effects are then based on equation
10.2 or 10.4.

The Fourier harmonic number n is again often replaced by a distance L. By considering
only the first two terms of this equation (n small), the inverse of the initial slope of a plot
of normalized values of An versus L is again the area-weighted apparent size εF , as in
section 10.2.1. In the method devised by Warren and Averbach, order-independent (‘size’)
and order-dependent (‘strain’) contributions are separated by plotting ln(An) versus l2. This
procedure is exact if the variation of e(n) is Gaussian, though there is no particular reason
a priori that the strain distribution should be of this form, and is a good approximation
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if the lattice distortion is small. In order to avoid this restriction, Delhez, de Keijser and
Mittemeijer (1980) used only the cosine expansion to separate size and strain contributions.
This entailed plotting An versus l2 (i.e. neglecting the third and higher terms in equation
10.4). These and related procedures clearly require data for at least two orders of a reflection.
However, this is not always possible or practicable to achieve, e.g. for heterogeneous
catalysts with very small crystallites, some polymers or studies of surface layers. Another
instance is the technique of monitoring a single peak rapidly by using a position-sensitive
detector, in a dynamical study of a sample which is not in a state of equilibrium. Various
authors have discussed the application of the Warren-Averbach method to data from a single
peak. For example, Mignot and Rondot (1975, 1977) fitted a quadratic to the An versus n

curve for small n to obtain AS
n and AD

n . Single-line methods have been listed and reviewed
by Delhez, de Keijser and Mittemeijer (1982). An approach which is rapid and less model-
dependent, based on the assumption that e(n) is small or zero as n → 0, was introduced by
Nandi et al (1984). AS

n is again obtained from the initial slope of the An versus n curve, the
mean-square strain 〈e2(n)〉 being given by equation 10.4. This approach lends itself to on-
line monitoring of diffraction effects and, although the method is only approximate, Nandi
et al obtained good agreement with the results of other single-line methods and multiple-
order analyses when applying it to a variety of materials. Schlosberg and Cohen (1983)
also developed an on-line procedure for the collection and subsequent Fourier analysis of
diffraction data, taking into account errors due to truncation and from other sources. Another
modification of the Warren–Averbach procedure uses the first derivatives of the An versus
n curve, rather than the complete curves (Delhez, de Keijser and Mittemeijer 1982). By
assuming that g(x) and h(x), and hence f (x), can be approximated by some analytical
function, this approach can be applied to calculate initial derivatives, from which estimates
of ‘size’ and ‘strain’ can be extracted (de Keijser, Mittemeijer and Rozendaal 1983).

A different approach to characterizing lattice distortion was proposed by Vogel, Haase
and Hosemann (1974). By using the logarithm of the ratio of An for two orders of a
reflection, the size term vanishes and a hypothesis regarding the nature of the disorder
present can then be based on the behaviour of ln An(l)/An(l + 1) as a function of n.
A parabolic trend, equivalent to a constant mean-square strain 〈e2〉, is interpreted as a
fluctuation in lattice parameter in different crystallites, whereas a linear trend (〈e2〉 ∝ 1/n,
approximately) is attributed to the presence of dislocations or to paracrystallinity (Crist and
Cohen 1979).

Owing to the difficulty in obtaining reliable Fourier coefficients for even moderate
overlap of reflections, the basic method is largely restricted to materials with high symmetry
and even then serious errors due to the unavoidable truncation of line-profile tails can
occur, as was noted in section 2.3. An early attempt to deal with the case of partially
overlapping line-profile tails, based on the linear variation of ln〈e2〉1/2 versus ln(〈d〉n), was
made by Adler and Houska (1979). An interesting alternative approach to the use of Fourier
series, which to some extent overcomes the problem of line-profile overlap and thereby is
applicable to materials having lower symmetry, was introduced by Enzo et al (1988). This
uses pseudo-Voigt functions to model f (x) and g(x), the latter having been determined
experimentally. The convolution of these functions, carried out by numerical integration,
is then compared with h(x) by refining the parameters which define f (x). An can then be
determined for subsequent use in the Warren–Averbach or Vogel–Haase–Hosemann methods.
Garcı́a-Martı́nez et al (1993) used this technique to characterize ‘nanocrystals’ of ZnO
and CuO, for which the crystallite size was found to be ∼ 10 nm or less. Niepce and
Benabad-Sidky (1986) treated line-profile overlap by carrying out pattern decomposition
before obtaining the Fourier coefficients. Among the examples cited is the important case
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of the change in separation and broadening of the 002/200 doublet which occurs as the
tetragonal-cubic phase transition in BaTiO3 is approached. Balzar (1992) avoided the use
of numerical convolution by making the assumption that the line profile due to instrumental
effects and sample imperfections can be modelled by Voigt functions, for which the Fourier
transform is known (Langford 1978). Balzar and Ledbetter (1992, 1993) compared this
approach with the normal Fourier/Warren–Averbach procedure and found that, subject to
certain limitations, the same results were obtained. They used the Voigt approach to estimate
domain sizes in Bi-Cu-O superconductors, to ascertain the relationship between the critical
temperature Tc and microstructure in doped superconductors with nominal composition
La2CuO4 (Balzar, Ledbetter and Roshko 1993).

The Warren–Averbach method has been widely used since its inception, notably in
metallurgical applications. Several programs exist for carrying out deconvolution by the
Stokes method and for applying the Warren–Averbach technique (see table 13 in Gorter
and Smith (1995)) and the procedure is usually included in commercial software for
automatic powder diffractometers. In cases where broadening from lattice distortion is
negligible, reliable information can usually be obtained about the mean size of crystallites
or domains and the distribution of size (section 10.2.3). However, when size effects are
accompanied by strain broadening, the latter is simply interpreted in terms of diffraction
effects and in general its physical interpretation is unclear. Furthermore, the approximation
used to describe strain broadening, namely the truncation of equation 10.4 at the second
term, is incompatible with the nature of the microstrain in a plastically deformed material
(Wilkens 1979, 1984). If parameters which relate to specimen microstructure in a way
which is physically meaningful are required, then a model-based approach must be used.
Nevertheless, the Warren–Averbach method is a well established procedure in a variety
of applications and is particularly useful for monitoring the changes in diffraction effects
due to differences in the preparation or treatment of a sample, or to different experimental
conditions.

Scardi, Kothari and Guzman (1991) used both the Warren–Averbach and Vogel–Haase–
Hosemann methods to study microstructural disorder in TiNx thin films on Si substrates,
prepared by reactive ion-beam assisted deposition and with different nitrogen content. All
films exhibited [111] orientation, with small crystallites (< 100 Å) and large microstrains
(〈e2〉1/2 ∼ 10−2). The crystallite size diminished and the strain increased with increasing
nitrogen concentration, the former being generally observed in non-equilibrium ion-beam
techniques. The large microstrain was thought to be due to fluctuations in the lattice
parameter introduced by ion bombardment. In another application of the adaptation by
Enzo et al (1988) of the Warren–Averbach method, Scardi, Lutterotti and Di Maggio (1991)
showed that, by obtaining size distributions from the Fourier coefficients, there is a critical
size of 300 Å below which tetragonal zirconia will not transform to the monoclinic phase.

10.2.3. Model-based methods. Line-profile analysis by using Fourier series is greatly
simplified if lattice distortion is negligible, as is the case if the An versus n curves for
different orders of a reflection superimpose, or as can be ascertained from a Williamson–
Hall plot (section 10.3). This frequently occurs for ceramics and other materials prepared
at high temperatures. A typical example is the study by Louër et al (1983) of powder ZnO
obtained by thermal decomposition of a Zn(OH)4(NO3)2 precursor. Electron micrographs
suggested that the crystallites were irregular hexagonal prisms and a cylindrical model
was used to interpret the variation of line breadth with lattice direction. By this means,
the average diameter (120 Å) and height (250 Å) of the crystallites (figure 11) and the
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distribution of size were obtained. The direction-dependence of data for ZnO prepared
from the same material, but under different conditions, indicated that a right hexagonal
prism, with edge length 90 Å and height 210 Å, was a more appropriate model than a
cylinder (Vargas, Louër and Langford 1983).

Figure 11. ‘Average’ form of crystallites in powder ZnO modelled by means of a cylinder with
〈H 〉 = 270 (60) Å and 〈D〉 = 180 (10) Å. ——εobs; – – –εcal; · · · · · ·τobs (Langford 1992).

Caban̂as et al (1995) obtained the mean dimensions of crystallites in samples of barium
hexaferrite (BaFe12−2xCoxTixO19), prepared under different thermal conditions by the co-
precipitation method and the liquid-mix technique. The variation of line breadths with
lattice direction suggested that the crystallites had the form of platelets and a cylindrical
model was again used. There was a marked correlation between the mean diameter 〈D〉,
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height 〈H 〉 and the ratio 〈D〉/〈H 〉 with the method of preparation and these quantities varied
systematically with x, the weight fraction of Co and Ti. For a sample with x = 0.5, the
diameters obtained from X-ray data were of the same order as those observed from TEM
images, indicating that the particles were in fact single crystals in this particular case.

An example of a comparison of calculated and observed line profiles is the study of
boehmite (AlOOH) by Grébille and Bérar (1985). An indication of the morphology and
mean size of crystallites was obtained from TEM images and the form was modelled on
the basis of convex polyhedra (section 2.4.2) having the same shape, but a distribution of
size, to obtain fcal(x). This was convoluted with g(x) to give hcal(x), which was compared
with hobs(x) by a least-squares procedure. The quantities refined were dimensions of the
polyhedra and parameters defining the distribution of size and remarkably good agreement
between theory and experiment was achieved. Andreev and Lundström (1994) used a
similar procedure to determine the crystallite size in boron nitride, which has a turbostratic
graphite-like structure. They used a starting model for f (x) based on that given by Warren
and Bodenstein (1966) for graphite-like layers.

A determination of the crystallite-size distribution is of paramount importance in studies
of chemical reactivity, particularly the behaviour of catalysts, e.g. α-Fe2O3 supported by
silica gel (Amelse et al 1981) and Pt dispered on activated carbon (Polizzi et al 1987).
Louër and de Guibert (1985) used Bertaut’s method, after incorporating the regularization
procedure discussed in section 10.2.1, to investigate the electrochemical properties of
mechanically-activated nickel hydroxide nitrate. The Fourier coefficients for the 001 and 002
reflections were identical, indicating that lattice distortion was negligible, and the crystallite-
size distributions were obtained for samples which had been milled for different lengths
of time. The results were compared with specific area measurements, obtained by the
BET method, and with the response of electrodes produced from nickel hydroxide nitrate.
Another example of the determination of crystallite-size distributions is a study of acicular
hematite, by using X-ray diffraction and electron microscopy, by Duvigneaud and Derie
(1980). The needle-like habit was quantified by obtaining size distributions in three different
crystallographic directions and it was found that the long dimension was perpendicular to
the c axis. These are particularly good examples of the detailed information on crystallite
size and shape which can be obtained if size effects are the main source of diffraction
broadening.

In a neutron and X-ray structural study of the ε, γ and θ transitional phases of alumina,
Zhou and Snyder (1991) used line widths to establish the nature of the phases. The transition
aluminas occur when the various hydroxides of aluminium are heated. The ε and γ phases
have a broadened spinel-type powder diffraction pattern with the unusual feature of a very
broad 111 reflection, corresponding to a crystallite size of 20 Å, whereas the 222 reflection
is relatively sharp, indicating a size of about 200 Å. These observations can be explained
by noting that the structure factor for the 222 reflection is dominated by oxygen scattering
and the size of the oxygen sublattice is thus reflected in the FWHM of the 222 reflection.
A tablet size of 200 Å was also observed by means of TEM. The aluminium ions in the
spinel tetrahedral sublattice dominate the structure factor for the 220 reflection, for which
the FWHM indicates a coherent-domain size of 16 Å for ε alumina and 19 Å for the γ

phase. The difference Fourier plot, after refinement of the structure by the Rietveld method,
showed that 13% of the Al ions are in 3-fold coordination for the case of ε alumina, which
corresponds exactly to the number of Al ions on the surface of 16 Å crystallites. Thus, by
means of powder diffraction and ordering domain-length analysis, a model for the catalytic
activity of these high surface area catalysts could be devised. The 3-fold coordinated Al
ions locked on the crystallite surfaces are obvious Lewis acid sites which bind reacting
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molecules to the surfaces, permitting heterogeneous catalysis.
If it is demonstrated that the sample exhibits measurable lattice distortion, then the

analysis is less straightforward. There is no single model which accounts for all cases of
deformed materials and the one selected in a particular application can be based on the
nature, origin and treatment of the sample. Hitherto, the cause of lattice distortion which
has received most attention is the presence of dislocations. Indeed, the determination of
the nature and density of dislocations is one of the more important applications of line-
profile analysis. The first attempt to model line broadening due to strain fields around
dislocations was made by Wilson (1952). The theory was developed further by Krivoglas
and Ryaboshapka (1963), with subsequent contributions by Wilkens (1970) and Ungár et al
(1984) which embody different assumptions regarding the random nature of dislocations.
The underlying concept is the superposition of the displacement fields of single dislocations
in an infinite medium, to model various dislocation configurations. The dislocation density
and the ‘effective outer cut-off radius’ are obtained, together with information on any dipolar
nature of the dislocations and on spatial fluctuations in their density (Groma, Ungár and
Wilkens 1988). By using high resolution data, Ungár, Groma and Wilkens (1989) obtained
these parameters for plastically deformed Cu. Although single crystals were used in this
work, the technique is equally applicable to individual grains embedded in polycrystalline
samples (Langford et al 1992). The procedure for studying dislocations by means of
diffraction data has been reviewed by van Berkum et al (1994), who also applied the
technique to plastically deformed copper and ball-milled tungsten.

An interesting recent development in the model-based approach is the analysis by van
Berkum et al (1992) of the line broadening due to local elastic distortions induced by finely
dispersed misfitting inclusions. These were modelled by considering spherical particles
in an elastically distorted matrix. The corresponding diffraction line profiles fcal(x) were
simulated for the case of Al–Si alloys and convoluted with instrumental functions g(x) to
obtain hcal(x). These were then compared with the experimental data hobs(x). Simulations,
based on a ‘misfit’ parameter which is related to the strain induced by inclusions, were
carried out for alloys having between 2 and 18% (by volume) of Si after precipitation. Good
agreement between theory and experiment was obtained and the stored energy density of
the aluminium matrix was found to be 4.5 kJ m−3 per vol. %Si.

10.3. Integral-breadth methods

Improved algorithms and software for pattern decomposition and the availability of good
quality data from high resolution diffractometers have resulted in a revival of interest in the
use of the integral breadth β in microstructural analysis. An advantage over the Warren–
Averbach approach is that, in principle, methods based on β can be applied to data for
any crystal system, but in practice the results can be inaccurate for materials with low
symmetry and large unit cells. This is due to the problem of obtaining meaningful line-
profile parameters for severely overlapped reflections, but the situation may well change
as maximum entropy and other statistical methods are applied to the ‘unscrambling’ of
diffraction maxima. A feature of the integral-breadth method is that only average values of
microstructural parameters are obtained, which may be a disadvantage in some applications.
Also, the analysis requires that an analytical function be ascribed to each reflection. Such a
function (a) must clearly model the observed data as precisely as possible, (b) should allow
for the breadths of convoluted functions to be readily separated and (c), ideally should
have a physical significance. The line profile due to size effects is often assumed to be
Lorentzian, which satisfies criterion (b), but not (a) and, in general, (c). The form of the
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‘strain profile’ is frequently taken as Gaussian, which again does not necessarily accord with
(a) or (c). Such assumptions can lead to the introduction of appreciable systematic errors
and a more flexible function is the Voigtian, the convolution of Lorentzian and Gaussian
functions, which was introduced into line-profile analysis by Langford (1978). It has been
found in practice that most, though by no means all, symmetrical experimental line profiles
can be modelled adequately by this function. It is then a straightforward matter to obtain the
corresponding Lorentzian and Gaussian components and their d∗ dependence. A detailed
account of this procedure has been given by Langford (1992).

After removing instrumental contributions from the observed integral breadths, β∗
f

(expressed in reciprocal units) can be interpreted in terms of structural imperfections. A
useful overview of the nature of the microstructure of the sample is given by the Williamson–
Hall plot (Williamson and Hall 1953; see also Langford 1992), β∗

f versus d∗, with the
addition of hkl for each reflection. It is immediately apparent from this plot if there are
both d∗-independent and d∗-dependent contributions to line breadths, since for the former
β∗

f is the same for all orders of a reflection. It is also evident, from the scatter in β∗
f ,

whether or not there is a direction- or hkl-dependence. This can be due to the effects of
domain shape, to lattice ‘mistakes’ or to anisotropy of elastic constants. The interpretation
of Williamson–Hall plots has been discussed by Langford (1992) and their main purpose is
to determine a strategy for further analysis of the data in terms of microstructural properties.

A straightforward application of the integral-breadth method, by using Voigt function,
is the study by Guillou, Auffrédic and Louër (1994) of CeO2 obtained from the oxide
nitrate hydrate. From a Williamson–Hall plot, β∗

f was found to increase linearly with d∗,
with little scatter, and the approximation introduced by Halder and Wagner (1966) [see also
equation (A.11)] was used to obtain the Lorentzian and Gaussian components of line-profile
breadths. Parameters for 16 reflections were used in the analysis and it was demonstrated
that on average the crystallites were spherical, with a mean diameter of 276 (7) Å, and that
there was small, but significant distortion of the lattice, equivalent to a root-mean square
strain of 2.78 (7) × 10−4. The precision of these results, amounting to a few percent, is
typical of analyses based on the integral breadth, if data from a large number of reflections
are available.

In a study, by using neutron diffraction, of pre-reaction microstructural changes
occurring in Ca(OD)2 during heating, Chaix-Pluchéry et al (1983) used Williamson–Hall
plots, based on different orders of h00, h0h and 00l reflections, to demonstrate the presence
of anisotropic microstrains. With increasing temperature, a sudden decrease of strain in 00l

planes was observed. This selective effect was interpreted as being due to the formation
of water molecules and to slight structural changes prior to decomposition into CaO.
An example of the complementary use of X-ray and neutron diffraction is the study by
Percheron-Guégan et al (1980) of LaNi5 with partial replacement of Ni by Al or Mn, to
form intermetallic compounds used for hydrogen storage. Neutron data obtained at the
Institut Laue-Langevin, Grenoble, provided structural information and high resolution X-
ray data were used to investigate microstructural properties. A large number of samples
were studied and Williamson–Hall plots provided an ideal means of displaying the trends
in microstructural changes due to different Al or Mn dopant concentrations. In general,
significant size and strain effects with marked direction dependence were observed, but for
some concentrations the broadening due to imperfections was found to be ‘isotropic’.

A different use of the method was the investigation by Langford et al (1993) of the
microstructure of ZnO powder obtained by thermal decomposition of the oxalate hydrate
ZnC2O4.2H2O. From a Williamson–Hall plot the dependence of breadth on d∗ and hkl

indicated that the line broadening was due to a combination of crystallite size and stacking
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faults, which had not been reported previously for ZnO. By using line-profile data for 27
reflections it was ascertained that the crystallites were prismatic, with a mean height 〈H 〉
of 351 (9) Å and diameter 〈D〉 of 404 (7) Å, and that the stacking-fault probability was
0.011 (3), corresponding to between one and two fault planes per crystallite, on average.
The variation of the microstructure of ex-oxalate ZnO with temperature of formation was
also studied (Auffrédic et al 1995) and it was found that 〈H 〉 and 〈D〉 both increased
significantly with temperature, whereas there was little change in the ratio 〈D〉/〈H 〉. The
corresponding specific surface areas, of importance when ZnO is used as a catalyst, were
compared with values obtained by the nitrogen-absorption (BET) method.

Diffraction broadening due to lattice distortion is negligible in the above examples;
the treatment of cold-worked tungsten, for which ‘strain’ broadening is appreciable and
‘isotropic’ (does not vary with lattice direction), has been considered by Langford (1992).
The Williamson–Hall plot for this sample is linear, with negligible scatter and a small
intercept. The shape of the diffracting domains is thus spherical, on average, with an
average diameter of about 850 (100) Å, and the rms strain was found to be 3.0 (1) × 10−3.
These effects are probably due to dislocations, when the dislocation density would be
∼ 4 × 1013m−2, but a more detailed analysis of the data is not possible by means of the
integral breadth method. An interesting result of this study is that, by using a Voigt function
to model f (x), the line profiles due to domain size are predominantly Gaussian and those
due to lattice distortion tend to be Lorentzian, the reverse of the customary assumptions for
these effects. In cases where line broadening due to lattice distortion is not approximately
‘isotropic’, data for two or more orders of several reflections are required in order to ascertain
the direction dependence of microstrain (e.g. Langford et al 1986).

Fiévet et al (1979) used X-ray diffraction and electron microscopy to examine in detail
the microstructure of samples of non-stoichiometric nickel oxide (Ni1−xO) prepared at
temperatures in the range 200 to 400◦C. For the purpose of comparing the behaviour of
different samples, values of FWHM were used for Williamson–Hall plots, rather than integral
breadths, to give an indication of crystallite size and microstrain. It was found that the cell
dimension differed from that of bulk NiO by an amount which varied as the inverse of the
crystallite size, but which was insensitive to the degree of non-stoichiometry. A marked
inverse correlation between the estimated size and microstrain was also observed.

11. Dynamic and non-ambient diffraction

11.1. Time- and temperature-dependent powder diffraction

The applications discussed in sections 5 to 10 have mainly been concerned with experiments
carried out under constant ambient conditions and on stable phases, but the availability of
high power radiation sources and the development of position sensitive detectors (PSDs),
combined with efficient data storage, have resulted in powder diffraction being used
increasingly to investigate changes occurring in crystal structure and microstructure due
to some external perturbation. The choice of radiation depends on the speed and nature of
the reaction or process of interest. In general, changes in all the diffraction line-profile
parameters in equation 2.1 and defined in section 2.1 can be of interest in studies of
dynamical phenomena and applications to a wide variety of materials have been reported,
including dynamic studies of biological substances.

Due to the possibility of using diffraction techniques to identify materials arising
from thermal- or time-dependent events, temperature- and time-resolved diffractometry
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offer several advantages over conventional techniques for thermal analysis. These include
differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), which are
used to measure the energy and weight changes involved in chemical and structural
modifications as a function of temperature, time dependence and heating rates. Due to
their complementarity, these and other analytical techniques are in fact often combined with
powder diffraction. For example, Fawcett et al (1985) reported simultaneous analyses of
in situ reactions, by combining DSC, mass spectrometry (MS) and X-ray powder diffraction
to characterize materials heated in controlled atmospheres. The capability of identifying
solid phases as they are formed in a reaction chamber can contribute to an understanding
of reaction processes. Additionally, structural and microstructural changes during phase
transformations can be monitored, if the data are of sufficiently high quality. This has been
demonstrated by the repetitive application of the Rietveld method to neutron data from a
sample of La2NiO4, collected at intervals of 3 minutes as the temperature was increased from
3 to 275 K at a rate of 0.33 K min−1, in order to explain an ‘anomalous’ change in sample
microstrain (Rodriguez-Carvajal, Martinez and Pannetier 1988). With the very narrow
instrument function available with synchrotron sources, Rodriguez et al (1990) observed
the tails of h00 reflections from YBa2Cu3O7 to have an asymmetry towards higher angles,
whereas the 0k0 reflections had a corresponding asymmetry towards lower angles. This
effect corresponds to martensitic strain energy in the crystal structure, resulting in a phase
transiton near 580◦C which causes (110) twinning. An important feature of diffractometry
is that experimental Bragg intensities are related to the diffracting volume of the sample
(equation 2.1) and they can therefore be used for obtaining kinetic data, provided that
the data acquisition times are short enough compared to the time required to complete
the reaction or transformation. For rapid reaction kinetics, shorter acquisition times are
required and experiments in ‘real’ time must be carried out. Considerable use has been
made of these developments; powder diffraction studies on a timescale of milliseconds, by
using synchrotron sources, have been described by Pennartz et al (1992) and time- and
temperature-resolved experiments have been reported extensively with neutron diffraction
(Pannetier, 1986a, b). Neutron scattering has the advantage of low absorption cross-sections
for most elements and a sample can be enclosed in a controlled environment (furnace,
cryostat, reaction chamber or pressure cell) with little loss of intensity. Similarly, the high
flux ‘white-beam’ X-rays from synchrotron sources can be used to advantage in energy-
dispersive diffraction (EDD) (e.g. Clark et al 1994).

11.1.1. Time-dependent diffractometry with conventional X-ray sources. The use of ‘real-
time’ powder diffraction for understanding dynamical processes in solids is well established.
For relatively slow processes, conventional X-ray sources and detectors can be used, e.g. the
transformation of nickel hydroxide nitrate to nickel hydroxide by hydrolysis has been studied
by line-profile analysis, to obtain microstructural data (Le Bail and Louër 1980). Changes
in crystallite-size distributions (section 10.2.1) for both the initial and final phases revealed
interesting features of the phase transformation and of crystallite growth in Ni(OH)2. An
increase in the mean of the distribution, and hence the average crystallite size, occurred in
the initial stage, due to removal of the smaller crystallites. Very small crystallites of the
hydroxide (∼ 30Å) were formed simultaneously and, by obtaining the size distribution
for the final phase, their growth due to coalescence was determined as a function of
time. Diffusion during desorption processes in microporous materials has been studied
by sequential powder diffraction, with data collection times varying from 100 minutes to
6 days (Mentzen 1988), and the formation of hydrides has been investigated in situ by
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Notten et al (1994). For this purpose a cell was designed for monitoring the absorption
or desorption of hydrogen and at the same time obtaining the powder diffraction patterns
for hydrided or dehydrided intermetallic compounds. The cell was used to study hydride
formation based on LaNi5 over a pressure range up to 10 bar and under both dynamic and
steady-state conditions. Dynamic diffraction using a PSD has also been used to characterize
reaction kinetics and to obtain sequential powder diffraction patterns for biological systems
which had been subjected to external stimulations (electrical, chemical, etc.). For example,
the stability of the myelin lattice following nerve stimulation was monitored by means of
changes in the intensity of different orders of a reflection in the low-angle scattering region
(Padrón, Mateu and Requena 1980; Morán and Mateu 1983), by using the PSD described
by Gabriel and Dupond (1972). PSDs have also been used for determining the kinetic
behaviour of solid-state reactions under isothermal conditions, e.g. the transformation at
room temperature of β-Cs2CdI4 to the stable α-phase (Plévert et al 1989). In this study, the
dramatic influence of preferred orientation on the quantitative interpretation of the reaction
process clearly demonstrated that care must be taken to avoid this effect. (See section
4.5.1.) The technique has also been applied to following solid-state reactions, such as the
formation of YBa2Cu3O6 at 710◦C from a mixture of BaCO3CuO and Y2O3 (Forster et
al 1994). An interesting use of rapid in situ analysis to study the phenomenon of melt-
texturing of high-Tc superconductors was reported by Snyder (1994). Powder diffraction
patterns were collecting by using a PSD capable of collecting data over a range of 10◦ in
one second. In addition, an optical-microscopy hot stage was used to observe the formation
of microstructures, which was monitored with a video camera. By means of this system,
the mechanism and kinetics of texturing, as well as the dynamics of the formation of the
textured microstructure, were established.

A number of in situ dynamical studies of the thermal behaviour of materials by means
of conventional X-ray sources and position sensitive detectors have been reported. A linear
PSD with data collection over an angular range of 15◦ was used by Chayka and Göbel (1983)
for a dynamical study of the γ –δ phase transformation in NaAlO2 and of recrystallization
phenomena in TaSi2 thin films at high temperatures. The development of the linear PSD
has led to the recording of diffraction data over a range of up to 10◦ in times down to a
few milliseconds when studying oscillatory phenomena. An elegant application of this rate
of data collection was demonstrated by Zorn, Wersing and Göbel (1985), where a reflection
from piezoelectric PZT was recorded dynamically as a function of an applied electric field.
This oscillated at 100 Hz and the powder patterns for various values of field were stored in
different channels of a multi-channel analyser. The resulting plot of peak position versus
the magnitude of the field led to the complete determination of the electrostriction tensor.
X-ray diffraction studies of pharmaceutical materials, by collecting data with a PSD at 5◦C
intervals while continuously heating the sample at 1◦C min−1 (Fawcett et al 1886) and
for the investigation of the melting and crystallization behaviour of polyethylene at 2◦C
intervals (Crowder et al 1986) have also been reported. Isothermal and non-isothermal
experiments on drugs were carried out by Anwar and Barnes (1992). A curved position
sensitive detector with an angular aperture of 120◦ (section 4.3.3) was used in a dynamical
study of the thermal behaviour of cadmium hydroxide nitrate (Auffrédic, Plévert and Louër
1990) and of the transformation of zirconium hydroxide nitrate into the amorphous and
tetragonal forms of zirconia (Bénard, Auffrédic and Louër 1993). In order to improve
counting statistics, diffraction data for the latter were collected for 1000 sec at a heating
rate of 10◦C h−1. Similarly, a conventional X-ray source was used for the study of the
thermal decomposition of amorphous hydrous zirconia (Mamott et al 1988) and for the
crystallization process occurring in thin amorphous films having the composition CrSi2.57
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(Pitschke et al 1994). Phase transitions in NH4NO3 have been studied from polycrystalline
transmission samples by collecting diffraction data in a few minutes by means of a curved
PSD (Wölfel 1983). The power of sequential thermo-diffractometry was also demonstrated
by the detection of a subtle phase transition in copper hydroxide nitrate (Guillou, Louër and
Louër 1994) and the technique played a major rôle in revealing an unexpected double valence
change in cerium during the thermal decomposition of CeK2(NO3)6 (Guillou, Auffrédic
and Louër 1995). Structure refinement by the Rietveld method during in situ diffraction
experiments was applied to a study of nickel-exchanged zeolite-Y catalysts by Thomas,
Williams and Rayment (1988) and to the dehydration process of the zeolite thomsonite by
Ståhl and Thomasson (1992). An improvement in time and temperature resolution with
in situ X-ray diffraction was obtained by Engler et al (1988) in the case of continuously
programmed heating. By using a 12 kW rotating-anode X-ray source and a 5 cm linear PSD,
the data acquisition time was reduced to 10–30 s in a study of the thermal decomposition
of dolomite, CaMg(CO3)2.

11.1.2. Dynamic diffraction with synchrotron sources. Many important chemical, physical
and biological phenomena take place on a time-scale of nanoseconds or picoseconds, and
the brightness of synchrotron sources may well bring such time resolution within the scope
of X-ray diffraction studies. Already powder diffraction experiments with a time-cale
of 2.5 ms have been described, by using a synthesized multilayered material to select
the desired wavelength instead a standard crystal monochromator (Pennartz et al 1992).
Powder diffraction patterns have in fact been obtained in less than a nanosecond by using
X-rays emitted from a laser-produced plasma (Woolsey, Wark and Riley 1990). Noteworthy
applications of time-resolved synchrotron data to the study of solid combustion reactions
have been reported by Wong et al (1990). Phase transformations of highly exothermic, fast
and self-propagating solid combustion reactions on a subsecond time-scale down to 100 ms,
and in some instances to 10 ms, were studied for Ti, C and Ni systems.

An analysis of time-dependent line-profile shapes from CdO samples, obtained from the
thermal decomposition of CdCO3 powder, was carried out by means of the variance-range
method (see Wilson 1962b) and by using a counting time of 1 to 2 s per step (Schoonover and
Lin 1988). Rapid in situ EDD was used by Turrillas et al (1993) to obtain direct information
on the kinetics of the tetragonal-to-monoclinic transformation in zirconia which had been
synthesized by heating the hydroxides to 1300◦C. The kinetics of the intercalation of cations
in crystals of MnPS3 in water by using real-time in situ X-ray diffraction was reported by
Evans and O’Hare (1994). The reactions were monitored from ambient temperature to 60◦C
and the diffraction pattern was recorded over a d-spacing range of 20 to 4 Å in as little
as 10 sec, allowing the direct observation of changes in the host lattice and the growth of
the product phase. Synchrotron powder diffraction studies, based on the Rietveld method,
of dehydration processes in the natural zeolites scolecite and mesolite have been reported,
by using the INEL curved PSD for collecting data accumulated in 5 minutes (Ståhl and
Hanson 1994). This detector was also used for on-line experiments, with data recorded at
5 minute intervals and at temperatures up to 100◦C, to study chemical reactions occurring
in wet pastes which had been made from a mixture of MgO and MgCl2 aqueous solutions
(Christensen, Norby and Hanson 1995). The crystalline reaction products observed were
magnesium hydroxide and the basic hydroxide-chloride, and the reaction rates of these
heterogeneous systems were found to be strongly dependent on the solution concentrations.
In situ studies of the kinetics of the crystallization of metallic glasses on time-scales varying
from minutes to milliseconds have also been made (Sutton 1994, Fischer et al 1994).
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For in situ experiments there are clearly advantages in bringing together techniques
which can be applied simultaneously. Dual measurements with synchrotron radiation
involving powder diffraction and XAFS were made by Couves et al (1991) to follow the
dehydration and reduction of the layered mineral aurichalcite, Cu5−xZnx(OH)6(CO3)2, when
heated in air. This material is converted to a mixture of CuO and ZnO, the precursor of an
active catalyst consisting of highly dispersed particles of copper supported by ZnO. There
is little change in the structure of the CuK absorption spectrum as aurichalcite is calcined,
in contrast to the powder diffraction pattern, which alters dramatically as the oxides of
Cu and Zn are formed. Reduction, on the other hand, affects Cu rather than Zn and this
metallization was seen vividly in the XAFS data. A differential scanning calorimeter with
a temperature range of 77 to 873 K has also been developed for use in combination with
either time-resolved X-ray scattering or high-resolution energy-dispersive powder diffraction
studies (Bras et al 1995).

11.1.3. Dynamic diffraction with neutron sources. Although neutron powder diffraction
does not have a temporal resolution comparable to that available with synchrotron sources,
the specific properties of the neutron make it a unique tool for investigating phase changes in
solids. The potential for combining time-resolved powder diffraction and neutron scattering
in materials science are numerous (see, for example, Pannetier 1986a). Diffraction patterns
can often be recorded in a few minutes. Examples of earlier studies are intercalation
of gaseous ND3 and liquid pyridine in TaS2 (Riekel and Schöllhorn 1976; Riekel and
Fischer 1979), the replacement of NH3 by ND3 in TaS2 (Riekel 1978), cathodic reduction
of TaS2 in K2SO4/D2O solution (Riekel, Reznik and Schöllhorn 1979) and hydrothermal
crystallization of amorphous iron(III) hydroxide (Christensen, Convert and Lehmann 1980).
Polymorphic phase transformations and ranges of stability in lithium iodate have been
thoroughly investigated by Crettez et al (1987). Since single crystals twin, crack and assume
a whitish colour due to decrepitation at the transition, powder samples were used in neutron-
diffraction experiments and transition temperatures were found to be strongly dependent
on particle size. The behaviour of the intermetallic hydride LaNi4,5Al0.5Dx was studied
by in situ neutron powder diffraction throughout an electrochemical deuterium charge–
discharge cycle (Latroche et al 1992), when unexpected phases with non-equilibrium cell
parameters related to the discharge rate were detected. The evolution of neutron diffraction
patterns, obtained at 10 minute intervals, for γ -MnO2 during discharge in an alkaline
electrolyte (figure 12), has been described by Chabre and Pannetier (1995). Superimposed
on the high background arising from the silica vessel and the KOD liquid electrolyte, new
Bragg reflections from pyrochroite Mn(OH)2 in the final stage of reduction were observed
for samples containing structural-defect concentrations, indicating a partial breakdown of
the γ -MnO2 lattice. This work demonstrated that the rechargeability of alkaline MnO2
batteries is limited by the presence of structural imperfections. The hydration reaction of
the hemi-hydrate CaSO4.

1
2 H2O to form gypsum CaSO4.2H2O was also followed by neutron

diffraction at different temperatures (Christensen, Lehmann and Pannetier 1985). Analysis
of the data supported the view that hydration passes through the formation of an intermediate
gel phase. The effect of the additives CaCl2 and CaBr2 on the reaction between Ca12Al14O33
and water was also investigated by the same technique (Christensen, Fjellvåg and Lehmann
1988). Real-time neutron diffraction measurements during the formation of superconducting
phases of the Bi(Pb)-Sr-Ca-Cu-O system were reported by Aldica et al (1993). Patterns were
recorded every 3 minutes and multiphase Rietveld refinements were applied. The power
of neutron diffraction in the investigation of hydration/dehydration of solids has thus been
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clearly demonstrated. The high incoherent background arising from hydrogeneous samples
provides a straightforward measure of the proton content of the material being investigated.
It is then possible to measure simultaneously the composition and structural features of
the samples. This property of neutron diffraction has been used in a number of studies
e.g. the dehydration of WO3.

1
2 H2O (Pannetier 1986a) and Fe2F5(H2O)2 (Pannetier 1986b),

the dehydroxylation of kaolinite in the range 440–600◦C and the initial stages of mullite
formation at 950–1000◦C (Collins, Fitch and Catlow 1991) and the thermal decomposition
of cobalt acetate tetrahydrate (Grimes and Fitch 1991).

Figure 12. Evolution of neutron powder diffraction pattern for a commercial γ -MnO2 sample
during in situ electrochemical reduction (λ = 2.51 Å; recording time of 10 minutes for each
pattern) (Chabre and Pannetier 1995).

11.2. High pressure diffraction

Materials subjected to high pressure undergo a variety of structural changes which can
give rise to dramatic changes in their physical properties. The determination of crystal
structures, the study of phase transitions and the measurement of compressibility and other
properties at high pressure are thus of considerable interest in materials science. High-
pressure experiments are carried out with single crystals (e.g. Sowa et al 1990), but these
are limited by experimental considerations and by pulverizing phase transitions to pressures
of about 10–20 GPa (100–200 kbar). The study of the behaviour of materials at non-ambient
pressure by means of powder diffraction, on the other hand, has been a growth area since
the late 1970s. This has largely been due to the availability of ‘dedicated’ synchrotron
sources, with a corresponding improvement in instrument resolution (e.g. Bourdillon et al
1978), and to advances in the design of detectors (section 4.3) and pressure cells (section
4.4.3).

As noted in section 4.4.3, studies at non-ambient pressure can be classified as low,
medium or high, depending on the pressure cell used. An example of a low-pressure
experiment using a gas-driven cell is the study by Hamaya et al (1986) of nucleation
and growth processes in a pressure-induced first-order NaCl/CsCl-type phase transition in
RbI. Neutron diffraction data were obtained at the Brookhaven National Laboratory reactor
and the transformation was found to occur at a critical pressure of 0.35 GPa. The time
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dependence of the intensity of selected reflections was monitored after a sudden increase
or decrease of pressure relative to the critical value, to establish that the behaviour of RbI
accords with the standard model for nucleation and growth. In the medium-pressure range,
Häusermann, Daghoogli and Sherman (1990) used energy-dispersive diffraction (EDD) at
the Daresbury Laboratory SRS to compare the performance of Bridgman, Drickamer and
belt-type cells by measuring the compressibility of Cu at pressures up to 10 GPa. These
authors later (1992) used a modified Drickamer cell to measure the compressibility of
potassium at pressures to 6.1 GPa. The behaviour of alkali metals is of particular interest,
since it is close to that of ‘ideal metals’, and the value of the bulk modulus obtained
for potassium was in good agreement with that derived from the anharmonic theory of
crystalline lattices.

The cubic-anvil cell SAM-85 at the NSLS, Brookhaven, (section 4.4.3) has been used
extensively to study the behaviour of perovskites and other minerals at temperatures and
pressures which are typical of conditions in the Earth’s lower mantle. By laboratory
simulation of this environment to study phase transitions, equations of state and other
quantities, an evaluation of the properties of mantle minerals, particularly the bulk and shear
moduli and density, can be undertaken. Also, complementary data to those derived from
discontinuities in seismic wave velocity at transition zones in the mantle can be obtained.
Minerals in the lower mantle are known to be dominated by (Mg, Fe)SiO3 perovskites,
which undergo a series of phase transitions with increasing pressure and temperature, these
being associated with dramatic changes in physical properties. By using EDD, Wang et
al (1991) demonstrated that MgSiO3 transforms to another orthorhombic perovskite at 7.3
GPa and 327◦C and obtained the variation of unit-cell dimensions and volumetric expansion
with temperature to 980◦C. The implications of these results for studies of the Earth’s lower
mantle, and in relation to the work of others in this field, are discussed by Weidner and
Zhao (1992). A similar study by Wang and Weidner (1994) of the thermoelasticity of
the CaSiO3 perovskite to about 12 GPa provided evidence for a chemically homogeneous
mantle, but subsequent measurements of the unit-cell volume of the more representative
mineral Mg1−xFexO3 (x = 0.0 and 0.1) indicated that it is unlikely that the lower mantle has
a perovskite stoichiometry (Wang et al 1994). These EDD experiments provided information
on changes in unit cell dimensions, and hence volume, with pressure and temperature. An
extension of this work, by using fixed-wavelength radiation and the angle-dispersive mode
with the MAX-80 cubic-anvil press (section 4.4.3) at the Tsukuba synchrotron source the
‘Photon Factory’, was an investigation of the structure of neighborite, NaMgF3, at ambient
and under high-pressure conditions (Zhao et al 1994). Detailed information on the structural
behaviour of this perovskite at high pressure, obtained by the Rietveld method, demonstrated
the power of angle-dispersive methods (see below) and also that analyses based solely on
changes in unit-cell parameters should be interpreted with caution.

Other minerals studied under high-pressure and high-temperature conditions, by using
the SAM-85 cubic-anvil press at the NSLS, include the α (olivine), β and γ (spinel) phases
of Mg2SiO4, also of relevance in interpreting mantle discontinuities (Meng et al 1993).
Diffraction studies in the medium-pressure regime were amongst the earliest applications of
the time-of-flight technique with pulsed neutral sources (Jorgensen 1990). Recent examples
using the LANSCE source (section 4.1.3) are pressure-induced phase transitions in Ca/Al-
doped cristobalite (Parise et al 1994a) and hydrogen bonding in brucite, Mg(OD)2 (Parise et
al 1994b). In both cases, structures were refined by means of the Rietveld method. Also, by
using the modified Bridgman cell discussed in section 4.4.3 and the ISIS spallation source,
Nelmes et al (1993, 1995) have extended the pressure range to 10 GPa or more. Precise
measurements were made of the dependence on pressure of the structures of deuterated ice
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VIII and boron carbide.
Typical of the numerous EDD experiments in the high-pressure régime is the study by

Olsen, Gerward and Benedict (1985), carried out at the HASYLAB synchrotron source,
Hamburg, of a phase transition in cubic UN, one of the actinide pnictide compounds, whose
magnetic properties have been studied extensively. A maximum pressure of 34 GPa was
achieved and the characteristics of a new rhombohedral phase, UN III, which appeared at 29
GPa, were obtained. ThN, another actinide pnictide, was studied at pressures up to 47 GPa
(Gerward et al 1985), but no phase transition was observed, even though this compound is
related both structurally and chemically to UN. By using a DAC phase transitions in W and
Mo were observed by Ruoff (1992) at pressures in the range 200–300 GPa and a maximum
pressure of at least 438 GPa was obtained, well in excess of the calculated static pressure
at the centre of the Earth.

Until the early 1990s, EDD had been used for the greater part of high-pressure work.
The use of a fixed scattering angle makes it easier to design and accommodate pressure
cells and the intense ‘white beam’ from synchrotron sources in particular compensates for
small sample volumes. Data collection can then be rapid and kinetic studies at high pressure
are feasible, but the resolution attainable with EDD is relatively low and most experiments
have been confined to the measurement of cell dimensions or to classifying the phases
present. However, some refinements of crystal structure have been undertaken. For example,
Yamanaka and Ogata (1991) used synchrotron radiation at the Photon Factory and a diamond
anvil cell (DAC) to obtain the structures of the hexagonal and tetragonal polymorphs
of GeO2 at temperatures up to 580◦C and pressures to 10 GPa. Line-profile parameters
were obtained by means of pattern decomposition, by fitting pseudo-Voigt functions to the
experimental data. In addition to structure refinement based on integrated intensities, cell
dimensions were used to establish the pressure dependence of compressibility and thermal
expansion coefficients. Yamanaka, Sugiyama and Ogata (1992) then used EDD to carry out
a detailed investigation of the hexagonal-tetragonal transformation which GeO2 undergoes at
3.0 GPa. For this purpose, spectra were recorded at 15 minute intervals, with temperatures in
the range 220 to 380◦C. Pseudo-Voigt functions were again used to model line profiles and,
from the integrated intensities, the transition rate for the transformation and the activation
energy were obtained.

It was the introduction of the image-plate 2-dimensional detector (Fujii et al 1988),
with a dynamic intensity range of ∼ 105, which transformed high-pressure research; high-
resolution angle-dispersive experiments could then be carried out with synchrotron radiation,
since the problem of small sample volume, inherent with DACs, is then overcome by
recording and integrating the intensity around a substantial part of each Debye–Scherrer ring.
Software for analysing image-plate data was developed at the Daresbury Laboratory SRS
(section 4.3.4) and one of the first materials to be investigated there by using this technique
was InSb (Nelmes et al 1993a), a III-V semiconductor which had previously been studied
extensively by EDD at high pressures (e.g. Vanderborgh, Vohra and Ruoff 1989). A short
wavelength (0.4445 Å) was used to minimize the harmonic content of the diffraction pattern,
to give a high peak-to-background ratio and to confine the pattern to relatively low angles
(figure (5(a)). Three phases were detected at pressures above 2 GPa and their structures
were refined by means of the multiphase Rietveld method. One of these phases, InSb-IV,
was subsequently shown to have a site-ordered orthorhombic superlattice which is stable
over a wide range of pressure and temperature (Nelmes and McMahon 1995), a remarkable
phenomenon for a semiconductor of this type. One of the strongest superlattice reflections
from the Cmcm superstructure of InSb-IV, the (112), can clearly be seen in figure 5(b),
for which the data were obtained at 5.1 GPa. Three weaker superlattice reflections, (110),
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(111) and (113), with intensities < 0.1% of the strongest lines, are just visible in the pattern
collected for 8 hr near the In K-edge, where the difference in scattering between In and Sb
is enhanced by resonant scattering (anomalous dispersion; section 8). These reflections are
no longer detectable away from the K-edge and the intensity of the (112) is also reduced
significantly. The changes in intensity show the structure to be site-ordered and the detection
of the (110) proved to be crucial in determining the correct space group. This work was part
of a systematic study of the dependence of structure on pressure for numerous II-VI, III-V
and group IV semiconductors. The ability to detect very weak reflections, the acquisition of
data of sufficient quality to carry out structure refinement routinely and the use of resonant
scattering experiments led to the discovery of several new phases for these materials and to
a substantial revision of phase diagrams reported previously. For example, the well-known
transition in CdTe from the zincblende to the NaCl phase was found to involve two closely-
spaced transitions, from the zincblende to the cinnabar structure at ∼ 2.7 GPa and then
from cinnabar to NaCl at ∼ 3.7 GPa (Nelmes et al 1993b). Previously, the structure of
cinnabar (HgS) had been regarded as only occurring in mercury chalcogenides. Similarly,
new orthorhombic phases were observed for Si between 13.2 GPa and 15.6 GPa (McMahon
and Nelmes 1993) and also for GaSb at ∼ 7 GPa (McMahon et al 1994), rather than the
β-tin structure reported previously. McMahon and Nelmes (1995) have summarized the
results of these and other structural studies of tetrahedrally-coordinated semiconductors at
high pressure. The use of synchrotron radiation for high pressure research in general is
reviewed in Nelmes and Häusermann (1992).

Recent examples of the innumerable high-pressure experiments carried out by means
of conventional X-ray sources and a DAC are studies of TiO2 (anatase) (Haines and Léger
1993) and cotunnite-type ZrO2 (zirconia) (Haines, Léger and Atouf 1995) up to a pressure
of 49 GPa. A transition from anatase to the orthorhombic α-PbO2 structure at pressures
greater than 5.4 GPa was observed for the former, which transformed to a monoclinic phase
above 10 GPa. Only the cell dimensions were obtained in this experiment and the direction
dependence of compressibility and the pressure-volume relationship (equation of state) were
obtained for all three phases. In the second experiment, the structure of ZrO2 was refined
in situ, by using the Rietveld method, at different pressures for both heated and unheated
samples. For the former, an irreversible transition to the cotunnite phase began above
25 GPa and this phase was found to be stable over a large pressure-temperature domain.
This was the first reported refinement of a cotunnite-type oxide and the results resolved
discrepancies in the literature concerning the behaviour of heated and unheated zirconia at
high pressure.

11.3. Magnetic X-ray powder diffraction

Although X-ray diffraction is being used increasingly to study antiferromagnetism in single
crystals, measurements on powder samples have, until recently, been restricted to neutron
scattering. This is due to the relative weakness of magnetic diffraction peaks compared
with fluorescence and electronic scattering. However, by using synchrotron radiation and a
high energy discrimination, Collins et al (1995) exploited the strong uranium M4 resonance
in UO2 to detect the magnetic 102 reflection at a temperature T ∼ 23 K, well below
the Néel point TN . The peak disappeared after transformation to the paramagnetic phase
(T > TN), the energy distribution of the magnetic scattering exhibited a sharp resonance
and the magnetic scattering cross-section at resonance agreed well with the predicted value,
thus confirming the magnetic origin of the observed peak. This first observation of magnetic
scattering from a powder sample was based on low resolution data with a poor signal-to-
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noise ratio, obtained from an unfocused beam and a simple bending magnet at the Daresbury
SRS. Fluxes from undulators at other machines will in future be some three to five orders-
of-magnitude greater and it is likely that X-ray powder diffraction will, at least for actinide
compounds, be a valuable technique in magnetic studies.

12. Concluding remarks

It will be clear from the foregoing that progress in powder diffraction during the past
twenty years or so has been substantial. The main reason for its current status as
one of the most versatile and widely used techniques available to material scientists is
the advance in procedures for recovering 3-dimensional information on the structure and
microstructure of materials from 1-dimensional powder diffraction data. The development
of high resolution instruments and the advent of high-intensity sources of radiation have
contributed to this development and, in common with most branches of science, powder
diffraction has benefited considerably from the revolution in computing facilities during the
period reviewed. However, if any one event can be singled out as the cause of the veritable
renaissance in powder diffraction during the 1970s, this has to be the introduction of the
Rietveld method for refining crystal structures. The Rietveld method was a milestone in
the quest to deal with line-profile overlap, but it also had the effect of attracting scientists
of international standing in other fields, whose contribution to powder diffraction has since
been incalculable. Indeed, the door has been opened to solving crystal structures ab initio
from powder data and over a hundred examples have been reported in the literature to
date. Further impetus was acquired by the discovery and development of new materials,
such as high Tc ceramics, in which powder diffraction played a key rôle. In addition to
the introduction of new investigative tehniques, there has been progressive enhancement of
earlier ‘traditional’ applications. As a result, the type and quality of information obtained
have advanced considerably in all branches of powder diffraction.

What of the future? Most of the techniques discussed in this review are becoming
increasingly accessible through public-domain programs and commercial software marketed
by manufacturers of diffraction systems. There is an on-going program for instructing
powder diffractionists world-wide in modern methods and practices, notably by the ICDD,
the Commission on Powder Diffraction (CPD) of the IUCr and the European Community. As
a consequence of these developments, there should be a general improvement in the quality
of both the routine characterization of materials and fundamental research. Additionally,
there will continue to be significant progress in ab initio structure analysis. The impact of
this important tool for studying the structures of materials which are only available in powder
form may well parallel that of structure solution by means of single-crystal data from the
1950s onwards. However, the most significant advances in furthering basic science are likely
to involve existing and new-generation high-intensity synchrotron sources. Increasing use
will be made of diffraction methods in non-ambient diffraction, in order to follow structural
changes and study materials at higher pressures and on shorter time-scales. In so far as
structural and microstructural studies are concerned, the main thrust will doubtless be in the
‘unscrambling’ of overlapping peaks by means of maximum entropy and other methods.
For the latter, future work will certainly involve the simulation of diffraction patterns due to
various combinations of structural imperfections. Perhaps the most radical development will
be in measurements made on individual grains of a polycrystalline sample, thus bringing
together the techniques of single-crystal and powder diffraction.
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Appendix. Analytical functions commonly used to model powder diffraction line
profiles

x Distance from position of maximum intensity; 2θ −2θ0 in the angle-dispersive
case, E − E0, d − d0, etc., for energy-dispersive experiments.

*(0) Maximum intensity of line-less-background
2w Full width at half maximum intensity (FWHM)
β Integral breadth (area/maximum intensity)
φ Shape factor (2w/β)
L Lorentzian function, given by

*(x) = *(0)
w2

w2 + x2 (A.1)

with

β = πw and φ = 2/π (A.2)

G Gaussian function, given by

*(x) = *(0) exp(−πx2/β2) (A.3)

with

w = (Ln2/π)1/2β and φ = 2(Ln2/π)1/2. (A.4)

(a) Pearson VII function (Hall et al 1977)
The Pearson VII function is simply Lm, where m is the Pearson VII index. The function
is easy to compute, but has the disadvantage that the convolution of two such functions is
not a Pearson VII unless m = 1 or m = ∞.

*(x) = *(0)
1

(1 + Cx2)m
(A.5)
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where

C = 21/m − 1
w2 β = π22(1−m)3(2m − 1)w

(21/m − 1)[3(m)]2 (A.6)

and 3 is the gamma function.
(A.5) reduces to a Lorentzian for m = 1 and tends to a Gaussian as m → ∞. (For

m = 5 the area of the Pearson VII is about 5% less than for a Gaussian with the same
I (0) and the integral breadths differ by the same amount.) Line profiles with m < 1 are
regarded as being ‘super-Lorentzian’ (Wertheim et al 1974). m is normally refined in an
application which involves modelling of line profiles, but sometimes it is arbitrarily fixed.
For example, the case of m = 2 is known as a ‘modified Lorentzian’ and m = 1.5 as an
‘intermediate Lorentzian’.

(b) Voigt function (Langford 1978)
The Voigt function is the convolution of one or more Lorentzian and Gaussian functions
and the convolution of Voigt functions is also Voigtian.

*(x) = *(0)ββ−1
G Re{w(z)} (A.7)

with

z =
√

πx

βG

+ ik (A.8)

and

k = βL√
πβG

(A.9)

where k is the Voigt parameter, βL and βG are the integral breadths of the Lorentzian and
Gaussian components and Re{w(z)} is the real part of the complex error function. [Langford
(1992) gives an algorithm for computing w(z).] βG is given by

βG = β exp(k2)[1 − erf(k)] (A.10)

and βL can then be obtained from (A.9). Halder and Wagner (1966) introduced the following
approximate relation between the integral breadths:

β2 ∼ βLβ + β2
G. (A.11)

Values of β from (A.11) are accurate to within about 5%, β being less than the true value
for a given k (Langford 1978). Ahtee et al (1984) have shown that

φ = E(1 + Ak + Bk2)

(1 + Ck + DK2)
(A.12)
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where A = 0.9039645, B = 0.7699548, C = 1.364216, D = 1.136195 and E =
2(Ln2/π)1/2 = 0.9394372. (A.12) is an approximation, but the maximum difference from
the exact value is only 0.16% (at k = 0.15). When modelling line profiles, the observed
quantities are β and φ. k can then be obtained from the inversion of (A.12).

Lorentzian and Gaussian functions are clearly limiting cases of the Voigtian. From (A.2)
and (A.4), the Voigt function can only be used to model diffraction line profiles if φ is in
the range

0.6366 ! φ ! 0.9394. (A.13)

(c) Pseudo-Voigt function (Wertheim et al 1974)
The pseudo-Voigt function is the sum of a Lorentzian and a Gaussian in the ratio
η/(1 − η),where η is the pseudo-Voigt mixing parameter. It is simpler to calculate than
the true Voigt, since it does not involve the complex error function, but it again has the
disadvantage that the convolution of pseudo-Voigt functions is not a pseudo-Voigt.

*(x) = *(0)[ηL − (1 − η)G] (A.14)

and

β = ηβL + (1 − η)βG

= ηπwL + (1 − η)(πLn2)1/2wG. (A.15)

When modelling line profiles wL and wG are usually made equal, but there is no reason

a priori why they should not have different values. The pseudo-Voigt also includes the
Lorentzian (η = 1) and Gaussian (η = 0) functions as limiting cases. Again, line profiles
with η > 1 are regarded as being ‘super-Lorentzian’.
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Louër D and Langford J I 1988 J. Appl. Cryst. 21 430–7
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Ståhl K and Hanson J 1994 J. Appl. Cryst. 27 543–50
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