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A figure of merit is defined for an indexing of a given pattern as M20 = Q2o/2gN2o. Here N_,0 is the number 
of different calculated Q values up to Q20, which is the Q value for the 20th observed and indexed line; 

is the average discrepancy in Q for these 20 lines. From a number of indexings which have been 
disproved by single-crystal analysis, the conclusion is drawn that M20 < 6 must give rise to considerable 
doubt about the result. A number of confirmed indexings shows values of 20-60 for good routine work 
on pure, well-crystallized samples, and down to 6 for retrievable correct indexings of less accurate data. 
If the number of unindexed lines below Q20 is not more than two, a value M:0 > 10 guarantees that the 
indexing is substantially correct. 

Introduction 

In a previous paper (de Wolff, 1961b) a procedure has 
been proposed for estimating the reliability of a unit 
cell derived exclusively from a given powder pattern. 
Applicat ion of this test has proved to be cumbersome. 
Since anyhow a rigorous statistical treatment of  the 
problem is next to impossible - because of  the inter- 
mixing of continuous variables (the diffraction angles) 
and completely unknown integers (the indices) - it 
seemed worth while to look for a simplified criterion. 
The present paper describes such a criterion in the form 
of a 'figure of merit ' .* This figure M is closely related 
to the quantities discussed in the former paper, yet it 
can be understood independently, as shown in the next 
section. 

One-dimensional model 

In order to understand the definition of M, consider 
a hypothetical crystal for which the possible diffraction 
angles 20, when plotted on an appropriate scale, yield 
multiples of a single parameter. This is, for instance, 
the case for a cubic lattice if the lines are plotted on 
a 1/d 2 or Q scale. We assume, however, that systematic 
vacancies (such as the well-known cases h2+/¢2+/2 = 

7, 15 etc. in the cubic pattern) do not occur. 
Let us call the variable, as a function of which the 

lines are mapped,  9. The period of the equidistant cal- 
culated lines is called p, so that ~ 0 e a l e = h p ,  with an 
integer ' index'  h. Let the problem be to determine the 
parameter  p f rom a set of measured angles, which re- 
presents a series of  random h values and has random 
errors of  measurement.  

In Fig. 1, the situation is illustrated for a number  of 
observed values of ~0. Supposing a certain value of p, 
say p = p ' ,  each line can be ' indexed'  by assigning to 
it the index hi of  its nearest neighbour in the series 

* Substantially the same criterion was formulated earlier by 
de Wolff (1966a), but a severe error slipped into that defini- 
tion, N being called the number of observed, instead of calcu- 
lated, lines. 

of multiples of  p'.  For each observed line ~0;, we shall 
call [qgi-&pl the discrepancy, ei. Another  value p "  of  
p yields a different set of discrepancies. 

The indexing procedure - by whatever method - 
aims at finding a value o f p  for which the discrepancies 
are very small. How small? This is a very pertinent 
question, since the e~ can be reduced indefinitely by 
choosing ever smaller values ofp .  As a matter of  fact, 
each e~ is always smaller than 32- p because of the above 
mentioned identification with the closest multiple ofp .  

Here we hit on an important  notion: even arbitrary 
values of p yield limited discrepancies. Being distri- 
buted evenly between 0 and ½p, their average value is 
¼p. Since we use this average value quite generally, 
we shall call it G, and we have for the linear model  

ga=lP  . (1) 

The index a means that ga refers to an arbitrary value 
of p. Indeed, if p has its true value the discrepancies 
can be much smaller, provided the measurement  has 
been accurate enough. This immediately answers the 
above question: a reliable value of p is indicated by 
discrepancies much smaller than G. Again, however, 
a question comes up: how much smaller? We shall put 
this question in a numerical  way by introducing the 
ratio M: 

M(p)=~a(p)H(p)  , (2) 
where ia is given by (1), and g(p) is the average value 
of the actual discrepancies for the parameter  value p. 

p "  H c  i H -~2 P-~ E3 ~ ~4 
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0 , , - q D  ' 1 '. 
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Fig. 1. Schematic illustration of discrepancies for a given one- 
dimensional pattern (lower scale), for two values p' and p" 
of the parameter. 
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In Fig.2, M is shown as a function of p for two 
synthetic patterns (Table 1) in which arbitrary errors 
and vacancies were introduced. 

Table 1. 'Observed' values of  ~o for two synthetic 
one-dimensional patterns: ptrue = 1 

(a) ~ =0.05 (b) e =0.14 
1.98 19.92 1.93 19.75 
2.94 25.04 2.82 25.13 
3.88 26.02 3.65 26.07 

11.05 26.94 11.14 26.82 
13.05 27.91 13.16 27.73 
14.00 32.00 13"99 31.99 
14.99 35.03 14.98 35-10 
16-10 36.01 16.31 36"03 
17"96 38-04 17.87 38.13 
18"97 39-04 18"92 39.12 

They differ in the average discrepancy which is 0.05 
and 0.14 times ptrue, respectively. Since for arbitrary 
p the average discrepancy is ga, the curves oscillate 
around a mean value M--  1. For the true value p--  1, 

has a sharp minimum. Equally deep dips in ~ occur 
at p =Ptrue/m, m = integer. Of the corresponding peaks 
in M, however, the one at p =Ptrue is by far the largest 
since the numerator of (2) is inversely proportional to 
m. Moreover, the pseudo-solutions with m > 1 will be- 

tray themselves by the conspicuous property that all 
their indices are multiples of m. 

We see, therefore, that the peak for the true value 
ofp  stands out above the pseudo-solution peaks. How- 
ever trivial this result may seem, it illustrates the funda- 
mental difference between M and the standard statis- 
tical criteria. The latter compare the discrepancies e 
with an expected value a of the measuring error of each 
line. Therefore they assign exactly equal reliability to 
the solutions p=ptrue, ½Ptrue, ½Ptrue etc. This is inevi- 
table because it is impossible to formulate an a priori 
probability distribution of p. 

The quantity M, on the other hand, takes account 
of the amount of 'coverage', that is, the fraction of 
calculated lines actually observed. For a given pattern, 
the higher this fraction, the higher is p; and M is pro- 
portional to p through (1) and (2). That the magnitude 
of the errors, too, profoundly influences M is clear 
from (2) as well as from Fig. 2. 

A less fundamental difference between (2) and sta- 
tistical criteria is the use of g, instead of the root mean 
square discrepancy. In our model the r.m.s, error might 
be preferable; in actual indexing, however, several cir- 
cumstances (variation of a as 0 changes, systematic 
errors, discarding of unindexable lines as impurities) 
tend to make the extra complication useless. 

M 

5. 

0 "5  (=3)  1 " 0  P /P t r ue  1 " 5  
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Fig.2. The quantity M as a function of p for the synthetic one-dimensional patterns given by (a) Table l(a) and (b) Table l(b) 
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We shall not  pursue the theory of the one-dimen- 
sional model  any further. The question of how large 
M should be for a reliable indexing could be answered 
for this model,  but we prefer to discuss it for the actual 
indexing later on. 

Role of  t~, the error of measurement 

It may  seem amazing that a statistical criterion can be 
formed without o- in it. However, the practice of index- 
ing introduces whatever is known of a in an implicit 
way. As a matter  of  fact, indexings with discrepancies 
much larger than o- (or what one believes to be an 
acceptable error) are either discarded as a whole, or 
explained by leaving out the unindexable lines and 
ascribing these to impurities. Thus, in practice, any 
indexing will automatically be such that i is of the order 
of o', the 'expected' error. Since, however, a is hardly 
ever known very well - especially in its dependence on 
0, line width and intensity - it seems better to stick 
to the actual discrepancies in defining M. 

Disregarding a few unexplained lines is sometimes 
condemned in principle. We think that its virtues de- 
pend upon the case; indeed experience has justified it 
very often, both in the literature and in our own work. 
The reliability of  the unit cell depends, of course, on 
the number  of such unindexable lines. In the present 
paper we shall express this by stating X20: the number  
of unindexable lines occurring up to the 20th observed 
and indexed line. 

Definition of  M2o 

In actual indexing, the calculated line positions are no 
longer equidistant. The interval between two succes- 
sive calculated lines (or intrinsic multiplets, such 
as hkl and h[cl in the monoclinic system) has a 
distribution which closely approximates the exponen- 
tial distribution of free path lengths (de Wolff, 1961b). 
It is characterized by a single parameter,  for which 
one may  take the average interval length p. Moreover, 

this distribution is valid only in a narrow range of 0: 
the parameter  of  the exponential function is itself a 
function of 0. 

If  we neglect the second circumstance - or if  we 
imagine the lines to be mapped on a ~0 scale, such that  
the parameter  p is independent  of ~o - there remains 
the statistical fluctuation of the intervals. Because of 
this, the average discrepancy for an arbitrary unit cell 
is now equal not to ¼p but to ½p. The extra factor 2 
is a well-known paradoxical result of statistics, ex- 
plained by the larger chance for an observed line to 
sit in a large interval as compared with sitting in a small 
one. 

To carry out the mapping just mentioned would be 
impractical;  a different q~ scale would be needed for 
each choice of unit-cell parameter.  However, mapping  
is not needed if we choose a scale such that the varia- 
tion o f p  is not too large. (This is the case for the quan- 
tity Q = 1/d 2, somewhat  less so for 1/d and for 0, but 
not at all for the d scale. Hence the reliability should 
on no account be judged from discrepancies in d-value.) 
Then/3 can be defined as the mean interval in the range 
of observed lines. Taking the Q scale, this means that, 
if the first 20 observed lines are considered, 

ga = ½P = Q2o/2N2o , 

where Q20 is the value of Q for the 20th observed line 
(not counting unexplained lines), and Nzo is the number  
of different calculated Q values up to Q2o. It follows 
from (2) that for these 20 lines the value of M is 

Mzo=Q2o/2gN2o . (3) 

The 'coverage' mentioned before as an implicit  factor 
of  M is clearly apparent  in (3). Actually the observed 
fraction of calculated lines is 20/N20. 

The number  20 merely serves to make estimates of 
reliability of  different patterns comparable.  This re- 
striction, is, of course, arbitrary. We found 20 to be 
a useful range. The number  of observed lines should 
be reasonably large in relation to the number  (up to 6) 

Table 2. Examples o f  (a) correct, (b) incorrect and (c) unconfirmed indexings 

No. Compound 104. Q20 104. ~ N20 X20 Mz0 
(a) Correct 

1 ~-Li4B205 1680 0.5 26 - 60 
2 UO2WO4 1304 0"6 35 3 33 
3 ~'-Cd(OH)2 3669 4"0 25 0 18 
4 K2RuCIs. NO 1271 1'6 30 2 13 
5 oc-Li4B205 2128 2.0 40 5 13 
6 fl-Li4B205 2993 1"9 70 0 10 
7 NaBsO8.5H20 1082 1 "6 50 0 6.7 
8 Li6B409 1703 2.6 63 2 5.3 

(b) Incorrect 
9 Li6BaO9 1703 3"0 52 2 5-4 

10 ~'-UO3 1357 1-3 180 1 3"0 
11 Li3BO3 2510 2-3 210 0 2"6 
12 7-Cd(OH)2 3911 4"4 310 3 1"5 

(c) Unconfirmed 
13 ~-Ta205 1621 0.6 38 0 36 
14 KTasO13 1484 0.6 33 0 37 
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No. Data* 

1 Vi 
2 Vi 
3 12-62 
4 15--46 
5 12-130 
6 12-128 
7 12-265 
8 12-129 
9 12-129 

10 See C 
11 12-127 
12 12-62 
13 9-360 

Remarks  on 
(1) and (5) 

(2) 

(3) and (12) 

(4) 

(6) 
(7) 

(8) and (9) 

(10) 

(11) 

14 12-90 

* The numbers  under  

Table 2 (cont.) 

Table 2 

Indexed with constants  
a b c ,8 by* 

Or thorhombic  primitive 10.20 A 17.58 A 4.730 A s.c. 
Monoclinic primitive 13.60 5.489 7.22 104.49 ° Vi 
Monoc l in ic / -cen t red  5.67 10-22 3.407 91.52 H, W 
Or thorhombic  primitive 10.36 13.30 6.90 V, W 
Hexagonal  (cf. No. 1) 20.32 4.74 V ,W 
Monoc l in ic / -cen t red  10"23 4.698 8-78 93.54 H, V 
Monoclinic A-centred 13"63 16.44 11.09 112.73 V, W 
Monoclinic primitive 9.18 23.41 3.32 92.68 s.c. 
Or thorhombic  B-centred 12.30 13.37 11.87 W 
Monoclinic C 
Triclinic unpubl ished 
Or thorhombic  unpubl ished 
Ps 'eudo-te t ragonal / -centred 3.78 3"80 35.75 90.90 V, W 
actually triclinic, 
ct=90.10 ° and y=90.01 o 
Or thorhombic  primitive 10.71 16.79 5.651 W 

Data are card numbers  in the Powder Data  File of the ASTM.  The other symbols mean:  
C Connol ly  (1959) 
Vi Visser (1966) 
H, V, W Contr ibut ions  to a ' computer  indexing project '  by 

H Professor H. Haendler,  D u r h a m  N.H.,  U.S.A. 
V Dr J. Villadsen, Vedbaek, Denmark  
W Present author  

s.c. Indexing derived from single-crystal data 

The indexing of  No. 5 is interesting: the unit cell is not  pseudo-hexagonal  but it was indexed as hexagonal because the 
difference between b and a}/3 is nil. Apart  f rom this systematic error, the indexing of No. 5 was correctly found,  
though the second strongest line of the pattern belongs to a contaminat ion!  No. 1 is a pattern measured by Dr 
J. W. Visser after he had established the true unit cell by single-crystal work;  therefore the number  X20 is immaterial.  
The result is listed as an example of rout ine accuracy and is to be compared  with No. 5, data taken from the literature. 
Diffractometer data of an impure phase, indexed by Visser (1966), and later identified with the phase described with 
single-crystal data by Juenke & Bartram (1964). 
Data  originally given as diffraction angles to 0.1 o. Indexing (12) was obtained with a computer  p rogram not  able to 
cope with monoclinic  cells. No. 3 was confirmed by structure analysis (de Wolff, 1966b) and single-crystal work 
(Oswald, 1964). 
The first two lines are f rom a contaminat ion.  The cell was later confirmed by the single-crystal work of  Khodashova  
& Boky (1960). 
Confirmed by single-crystal work by Visser (1966). 
After indexing, Villadsen discovered a single-crystal structure analysis by Sabelli (1962), agreeing with his and our  
cell constants.  
are, respectively, the correct and an incorrect indexing of the same data, listed in Table 3. The correct unit cell was 
derived from single-crystal work by Visser (1966). 
The correct unit cell for the same data gives M20=8 (de Wolff, 1961a). It was confirmed by structure analysis 
(Engmann & de Wolff, 1963). 
The true, monoclinic primitive unit cell (a=8,337,  b=9.179,  c=3.260,  f l=  101"59 °) was not  found from the data  
(for which it yields M20 = 10, X20=0) but from single-crystal work by Visser (1966). 

of unit-cell parameters. All the same, including many 
more lines does not raise the significance of M 
very much. This is so because, if we keep to the Q 
scale, ga always decreases with increasing Q. In mod- 
erately complex patterns, even the medium angle region 
tends to be overcrowded with calculated lines. On the 
other hand, the error of measurement tends to increase 
with increasing Q. In other words, the indexing of high- 
angle lines is always much easier - and therefore adds 
much less to the reliability - than for low-angle lines. 

The critical value of M20 

A hypothesis such as the correctness of a unit cell can 
never be verified with absolute certainty. In testing 
hypotheses which are more amenable to theoretical 

treatment, limits for certain criteria can be set in rela- 
tion to a 'percentage confidence'. The present problem 
is too complex for such a treatment. Therefore we can 
rely only on experience; this has now accumulated to 
a degree where it may yield some idea of a 'critical' 
value. The following discussion refers to Table 2, where 
the values of Q20, g, N20 and of M20 and X20 are listed 
for a number of cases. 

(a) Correct indexings 
The term 'correct' is used for results which have been 

confirmed by single-crystal investigations. The values of 
342o and X20 are listed for a number of such cases in 
Table 2. They show, for instance, the high values ob- 
tainable with routine diffractometer or Guinier-camera 
measurements. On the other hand, lower figures occur 

JAC I - 4* 
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which are interesting in so far as these patterns have 
been solved correctly (without knowledge of the single- 
crystal data) by several authors. Of course these lower 
values of M have no relation to the critical limit for 
reliability. In theory, M20 could be as low as 1 for a 
correctly indexed pattern - only it is highly improbable 
that the correct solution would ever be derived from 
so inaccurate and/or incomplete data. The lower limit 
of M20 for an indexing which is both correct and re- 
trievable seems to lie around M20 = 6, and for 342o = 13 
even quite a few impurity lines (X20--5) appear not to 
render the solution impossible. 

(b) Incorrect indexings 
Here 'incorrect' means disproved by single-crystal 

investigation and/or successful structure determination. 
Now the range of M20 is a straightforward warning 
signal: any indexing falling within this range is un- 
trustworthy. Again we must observe, however, that 
there is no absolute confidence or inconfidence. For 
instance, it is difficult to see why incorrect indexings 
could not occasionally have very high 3//20 values. In 
practice, fortunately, it appears that most of them do 
not exceed 3410 = 3. The value of 5 for Li6B409 is quite 
an exception. It is therefore described in full in Table 3. 
Just as with several other incorrect indexings of Table 2, 
there is not the remotest analogy between correct and 
incorrect reciprocal lattice; there does not even exist a 
common zone. It is remarkable that correct indexing 
of the same data yields almost the same value of M20, 
and the same value of )(2o. The intensities, however, 
gave a clear indication because the incorrect indexing 
misses the strongest line of the pattern! A similar fail- 
ure to explain a strong line weighed heavily against 
example No. 10, which was eventually disproved - but 
a strong line can also be missed by a correct indexing, 
as shown by No. 5. 

Finally, Table 2 includes some (as yet) unconfirmed 
results with very high values of M20. We thought it 
worth while to point to the existence in the literature 
of such excellent patterns, indexable with a precision 
and completeness which in itself is fully convincing. 
The only remaining uncertainty in such cases is a pos- 
sible oversight of pseudo-extinctions, if the structure 
happens to have a predominant subcell. This, however, 
is also true for the corresponding reflexions in single- 
crystal work, so the difference from the results of the 
latter is only one of degree. In the higher symmetries, 
another kind of misinterpretation is possible, of which 
No. 5 of Table 2 is an example (cf. Remarks). 

Apart from such 'systematic' errors, it seems safe to 
conclude that a value of M20 = 10 or higher will guar- 
antee the essential correctness of the indexing,* pro- 

* This conclusion receives addi t ional  support  f rom a pri- 
vate communica t ion  by Dr Villadsen, which he kindly per- 
mitted us to quote:  ' In applying this criterion to very many 
indexings of  pat terns taken from the literature, no case has yet 
been observed where an indexing proved to be wrong with 
M20 larger than 10'. 

Table 3. Powder data for Li6B409 
(of. Table 2, Nos. 8 and 9) 

104. Q from Correct  Incorrect  
card 12-129 indexing indexing 

hkl 104.Qe hkl 104. Qc 

192.9 120 191.9 111 193 
286.3 130 283.1 002 284 
358.7 - - 121 362 
548.5 220 548-7 201 547 
644.4 230 640-0 131 642 

776 160 775.6 222 772 
886 - - 321 888 
924 011 924.5 123 930 
995 10T 994.5 - - 

1061 101 1055.8 232 1052 

1075 111 1074-1 - - 
1132 260 1132.5 004 1136 
1161 131 1158.7 240 1163 
1233 330 1234.7 303 1233 
1287 180 1286.4 313 1289 

1366 340 1362.4 024 1361 
1393 221 1393.6 412 1393 
1455 15T 1450.5 214 1455 
1560 061 1562-9 422 1561 
1606 231 1607.5 143 1607 

1646 280 1643.2 034 1645 
1703 161 1712-5 501 1715 

vided there are few spurious lines (X2o not above 2). 
On the other hand, values below 6 must be regarded 
with suspicion and below 3 as hardly significant at all, 
though, again, this does not mean that such an index- 
ing could not be correct! 

Other factors influencing the reliability 

(a) X20 is obviously a very rough measure of the con- 
tamination. To what extent it discredits the indexing 
depends also on the intensity of the unexplained lines, 
as discussed in the foregoing section. 

On the other hand, complete or even partial ex- 
planation of these lines by the pattern of an acceptable 
impurity may lend much weight to the indexing - 
again, however, not expressible quantitively. 

(b) The discrepancies - and therefore the value of 
M - depend to some extent upon the exact values 
chosen for the cell parameters. For the first 20 lines, 
this effect is usually not very strong. Indeed, refinement 
of parameters will appreciably raise M20 if it is already 
high, but it will hardly improve doubtful values, as 
will be evident by inspecting Fig. 2 for the one-dimen- 
sional model. 

(c) Indices triples falling under obvious general ex- 
tinctions (e.g. for centred lattices) should of course be 
disregarded in counting N20. Special extinctions (mainly 
for glide planes) play quite a different r61e because 
their selective nature makes the indexing more con- 
vincing. A conservative way to express this is to sub- 
tract special extinctions, too, from the triplets to be 
counted. 
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(d) Normally the number of close doublets among 
the N20 calculated lines is small. In cases of pseudo- 
symmetry, those doublets which would be unobserv- 
able as such may be counted as one line. If doublets 
are recognizable in the pattern, e.g. by systematic in- 
tensity ratios, a corresponding indices relation adds a 
good deal to the reliability. 

(e) The same is true for a good fit with an observed 
density (provided Z is evident) and for several other 
circumstances, such as good agreement with texture 
effects. Sometimes this circumstantial evidence is so 
strong as to make other criteria superfluous. 

Still there remain quite a number of investigations 
(e.g. those carried out at non-room temperatures and/or 
pressures) where such extraneous support is usually not 
available. In computer indexing, too, one cannot al- 
ways account for non-powder data, but a criterion like 
M20 can easily be programmed. It has, indeed, proved 
to be a useful test in an indexing program written and 
frequently applied by Visser (1968). 

The author is much indebted to Drs Visser (T.P.D., 
Delft) for providing many of the data used; to Ir W. 

Peterse of this laboratory for preparing the plotting 
program for Fig. 1; and to Professor Haendler (Dur- 
ham) and Dr Villadsen (Vedbaek, Denmark) for per- 
mission to use their contribution to a 'computer index- 
ing project' in which they participated in 1964. 
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Etude Cristallographique de Quelques Fluorures Complexes 
de Terres Rares de Formule A2NaTF6 

PAR SUZANNE ALI~ONARD ET CHANTAL POUZET 
Laboratoire d'Electrostatique et de Physique du M$tal, Grenoble, Iskre, France 

(Recu le 7 avril 1968) 

RbzNaTF6 and Cs2NaTF6 fluorides, with T=Yb, Er, Ho, Y, Tb and Sm, belong to the cubic system 
[space group Fm3m (OS)]. Lattice parameters (near to 9 A,), indices, intensities and spacings are tabulated 
for the whole series. They are ordered perovskites. The cations are in parameterless positions. The 
parameters of the F- ions have been determined in RbzNaErF6 and CszNaErF6. 

Introduction 

R~cemment, lors d'une 6tude sur les fluorures com- 
plexes du c6rium, Besse & Capestan (1968) signalent 
l'existence du compos6 Cs2NaCeF6: selon ces auteurs, 

sa maille cubique, de param~tre a = 9,26 A, appartien- 
drait au groupe d'espace Pa3 (T6). A notre connais- 
sance, c'est le seul compos6 A2NaTF6 6tudi6 jusqu'ici. 

Etant donn6 que les fluorures NaTF4 pr6sentent 
haute temp6rature la structure fluorine cubique (Hund, 

Tableau 1. Caractdristiques cristallographiques des composOs Rb2NaTF6 et Cs2NaTF6 
Param6tres de 

mailles, Volume Densit6, 
Formules a mol6culaire d 

RbzNaYbF6 8,824 _+0,002 A. 171,76 A,3 4,65 
RbzNaErF6 8,867 + 0,001 174,28 4,53 
Rb2NaHoF6 8,881 +0,001 175,11 4,49 
RbeNaYF6 8,8693 4- 0,0005 174,40 3,78 
RbzNaTbF6 8,9208 -+ 0,0005 177,48 4,37 
RbzNaSmF6 8,988 -+ 0,001 181,52 4,19 

CszNaYbF6 9,022 4-0,001 183,59 5,21 
CszNaErF6 9,06! _+ 0,001 185,98 5,09 
CszNaYF6 9,056 _+ 0,001 185,67 4,39 
CszNaTbF6 9,107 + 0,001 188,82 4,94 
Cs2NaSmF6 9,163 4- 0,002 192,33 4,78 


