Model structures

(Read Roe, Chap. 5)
Remember:

$$
\begin{aligned}
& \rho(r)-->I(q) \text { possible } \\
& I(q)-->\rho(r) \text { not possible }
\end{aligned}
$$

Model structures

(Read Roe, Chap. 5)
Remember:

$$
\begin{aligned}
& \rho(r)-->I(q) \text { possible } \\
& I(q)-->\rho(r) \text { not possible } \\
& I(q)-->\Gamma_{\rho}(r) \text { only }
\end{aligned}
$$

Thus, use a reasonable model to fit $I(q)$ or $\Gamma_{\rho}(r)$

Model structures

(Read Roe, Chap. 5)
Remember:

$$
\begin{aligned}
& \rho(r)-->I(q) \text { possible } \\
& I(q)-->\rho(r) \text { not possible } \\
& I(q)-->\Gamma_{\rho}(r) \text { only }
\end{aligned}
$$

Thus, use a reasonable model to fit $I(q)$ or $\Gamma_{\rho}(r)$:
dilute particulate system
non-particulate 2-phase system
soluble blend system
periodic system

Model structures

Use reasonable model to fit $/(q)$ or $\Gamma_{\rho}(r)$:
Dilute particulate system
polymers, colloids
dilute - particulates not correlated
if particulate shape known, can calc I (q)
if particulate shape not known, can calc radius of gyration

Model structures

Use reasonable model to fit I (q) or $\Gamma_{\rho}(r)$:
Non-particulate 2- phase system
2 matls irregularly mixed - no host or matrix crystalline \& amorphous polymer phases
also, particulate system w/ no dilute species
get state of dispersion, domain size, info on interphase boundary

Model structures

Use reasonable model to fit $/(q)$ or $\Gamma_{\rho}(r)$:
soluble blend system
single phase, homogeneous but disordered
two mutually soluble polymers, solvent + solute
get solution properties

Model structures

Use reasonable model to fit $/(q)$ or $\Gamma_{\rho}(r)$:
periodic system
crystalline matls, semi-crystalline polymers, block copolymers, biomaterials
crystallinity poor
use same techniques as in high angle diffraction, except structural imperfection prominent

Model structures

Dilute particulate system

1. Homogeneous sphere
2. Spherical shell
3. Spherical concentric shells
4. Particles consisting of spherical subunits
5. Ellipsoid of revolution
6. Tri-axial ellipsoid
7. Cube and rectangular parallelepipedons
8. Truncated octahedra
9. Faceted Sphere

9x Lens
10. Cube with terraces
11. Cylinder:
12. Cylinder with elliptical cross section
13. Cylinder with hemi-spherical end-caps

13x Cylinder with 'half lense' end caps
14. Toroid
15. Infinitely thin rod
16. Infinitely thin circular disk
17. Fractal aggregates

Model structures

Dilute particulate system

18. Flexible polymers with Gaussian statistics
19. Polydisperse flexible polymers with Gaussian statistics
20. Flexible ring polymers with Gaussian statistics
21. Flexible self-avoiding polymers
22. Polydisperse flexible self-avoiding polymers
23. Semi-flexible polymers without self-avoidance
24. Semi-flexible polymers with self-avoidance
25. Star polymer with Gaussian statistics
26. Polydisperse star polymer with Gaussian statistics
27. Regular star-burst polymer (dendrimer) with Gaussian statistics
28. Polycondensates of A_{f} monomers
29. Polycondensates of AB_{f} monomers
30. Polycondensates of ABC monomers
31. Regular comb polymer with Gaussian statistics
32. Arbitrarily branched polymers with Gaussian statistics
33. Arbitrarily branched semi-flexible polymers
34. Arbitrarily branched self-avoiding polymer's
35. Sphere with Gaussian chains attached
36. Ellipsoid with Gaussian chains attached
37. Cylinder with Gaussian chains attached
38. Polydisperse thin cylinder with polydisperse Gaussian chains attached to the ends
39. Sphere with corona of semi-flexible interacting self-avoiding chains of a corona chain

Model structures

Dilute particulate system

40. Very anisotropic particles with local planar geometry:

Cross section:
(a) Homogeneous cross section
(b) Two infinitely thin planes separated by
(c) A layered centro symmetric cross-section
(d) Gaussian chains attached to the surface

Overall shape:
(a) Infinitely thin spherical shell
(b) Elliptical shell
(c) Cylindrical shell
(d) Infinitely thin disk
41. Very anisotropic particles with local cylindrical geometry:

Cross section:
(a) Homogeneous circular cross-section
(b) Concentric circular shells
(c) Elliptical Homogeneous cross section.
(d) Elliptical concentric shells
(e) Gaussian chains attached to the surface and

Overall shape:
(a) Infintely thin rod
(b) Semi-flexible polymer chain with or without excluded volume

Model structures

Dilute particulate system
dilute - particulates not correlated
matrix presents only uniform bkgrd
$I_{\text {total }}=\Sigma I_{\text {individual particle }}$
isotropic
Radius of gyration, R_{g} :

$$
\begin{aligned}
& R_{g}^{2}=\int r^{2} \rho(r) d r / \int \rho(r) d r \\
& \rho(r)=\text { scattering length density distribution } \\
& \quad \text { in particle }
\end{aligned}
$$

Model structures

Dilute particulate system
Radius of gyration, R_{g} :

$$
\begin{aligned}
& R_{g}{ }^{2}=\int r^{2} \rho(r) d r / \int \rho(r) d r \\
& \rho(r)=\text { scattering length density distribution } \\
& \text { in particle }
\end{aligned}
$$

If scattering length density is constant thru-out particle:

$$
\begin{aligned}
& R_{g}^{2}=(1 / v) \int r^{2} \sigma(r) d r \\
& \sigma(r)=\text { shape fcn of particle; } v=\text { particle volume }
\end{aligned}
$$

Model structures

Dilute particulate system

Simple shapes
For a single particle

$$
\begin{aligned}
& A(q)=\int_{v} \rho(r) \exp (-i q r) d r \\
& I(q)=A^{2}(q)
\end{aligned}
$$

Average over all orientations of the particle

Model structures

Dilute particulate system

For a single particle

$$
\begin{gathered}
A(q)=\int_{V} \rho(r) \exp (-i q r) d r \\
I(q)=A^{2}(q)
\end{gathered}
$$

Sphere:

$$
\rho(r)=\rho \text { for } r \leq R \& O \text { elsewhere }
$$

Then

$$
\begin{aligned}
& A(q)=\int_{0}^{\infty} \rho(r) 4 \pi r^{2}(\sin (q r)) / q r d r \\
& A(q)=\rho / q \int_{0}^{R} \rho(r) 4 \pi r \sin (q r) d r \\
& A(q)=\left(3 \rho v /(q R)^{3}\right)(\sin (q R)-q R \cos (q R))
\end{aligned}
$$

Model structures

Dilute particulate system

For a single particle

$$
\begin{gathered}
A(q)=\int_{V} \rho(r) \exp (-i q r) d r \\
I(q)=A^{2}(q)
\end{gathered}
$$

Sphere:

$$
\rho(r)=\rho \text { for } r \leq R \& O \text { elsewhere }
$$

Then

$$
\begin{aligned}
& A(q)=\int_{0}^{\infty} \rho(r) 4 \pi r^{2}(\sin (q r)) / q r d r \\
& A(q)=\rho / q \int_{0}^{R} \rho(r) 4 \pi r \sin (q r) d r \\
& A(q)=\left(3 \rho v /(q R)^{3}\right)(\sin (q R)-q R \cos (q R))
\end{aligned}
$$

Model structures

Dilute particulate system

For a single particle

$$
A(q)=\int_{V} \rho(r) \exp (-i q r) d r
$$

Sphere:

$$
I(q)=A^{2}(q)
$$

Model structures

Dilute particulate system

Thin rod, length L, \angle betwn q \& rod axis $=\vartheta$

$$
I(q)=(\rho v)^{2}(2 / q L \cos \vartheta)^{2} \sin ^{2}((q L / 2) \cos \vartheta)
$$

Model structures

Dilute particulate system

Thin rod, length L, \angle betwn $q \&$ rod axis $=\vartheta$

$$
I(q)=(\rho v)^{2}(2 / q L \cos \vartheta)^{2} \sin ^{2}((q L / 2) \cos \vartheta)
$$

Averaging over all orientations

$$
I(q)=(\rho v)^{2} 2 / q L\left(\int_{0}^{q}(\sin u) / u d u-(1-\cos q L) / q L\right)
$$

Model structures

Dilute particulate system

Thin disk, radius R

$$
I(q)=(\rho v)^{2} 2 /(q R)^{2}\left(1-\left(J_{1}(2 q R)\right) / q R\right)
$$

Model structures

Dilute particulate system
Polymer chain w/ N + 1 independent scattering "beads" Gaussian - w/ one end of polymer chain at origin, probability of other end at dr obeys Gaussian distribution
bead volume is v_{u}; chain volume is $v=(N+1) v_{u}$

Model structures

Dilute particulate system
Polymer chain w/ N + 1 independent scattering "beads" Gaussian - w/ one end of polymer chain at origin, probability of other end at dr obeys Gaussian distribution
bead volume is v_{u}; chain volume is $v=(N+1) v_{u}$
scattering length of each bead is ρv_{u}

$$
A(q)=\rho v_{u} \sum_{j=0}^{N+1} \exp \left(-i q r_{j}\right)
$$

Model structures

Dilute particulate system
Polymer chain w/ N + 1 independent scattering "beads" Gaussian - w/ one end of polymer chain at origin, probability of other end at dr obeys Gaussian distribution
bead volume is v_{u}; chain volume is $v=(N+1) v_{u}$
scattering length of each bead is ρv_{u}

$$
\begin{gathered}
A(q)=\rho v_{u} \sum_{j=0}^{N+1} \exp \left(-i q r_{j}\right) \\
I(q)=\left(\rho v_{u}\right)^{2} \int P(r) \exp (-i q r) d r \\
P(r) \text { is \# bead pairs } r \text { apart }
\end{gathered}
$$

Model structures

Dilute particulate system
Polymer chain w/ N + 1 independent scattering "beads" Gaussian - w/ one end of polymer chain at origin, probability of other end at dr obeys Gaussian distribution
bead volume is v_{u}; chain volume is $v=(N+1) v_{u}$
scattering length of each bead is ρv_{u}

$$
\begin{gathered}
A(q)=\rho v_{u} \sum_{j=0}^{N+1} \exp \left(-i q r_{j}\right) \\
I(q)=\left(\rho v_{u}\right)^{2} \int P(r) \exp (-i q r) d r \\
P(r) \text { is \# bead pairs } r \text { apart }
\end{gathered}
$$

Averaging over all such chains:

$$
I(q)=\left(\rho v_{u}\right)^{2} \int P(r) \exp (-i q r) d r
$$

