Guinier law (interpretation w/o a model)

Regardless of particle shape, at small q :

$$
I(q)=(\rho v)^{2} \exp \left(-q R_{g}\right)^{2 / 3}
$$

Guinier law (interpretation w/o a model)

Regardless of particle shape, at small q :

$$
\begin{aligned}
& I(q)=(\rho v)^{2} \exp \left(-q R_{g}\right)^{2 / 3} \\
& \ln (q)=\ln (\rho v)^{2}-\left(R_{g}^{2} / 3\right) q^{2}
\end{aligned}
$$

Dilute monodisperse spheres

Guinier law (interpretation w/o a model)

Regardless of particle shape, at small q :

$$
\begin{aligned}
& I(q)=(\rho v)^{2} \exp \left(-q R_{g}\right)^{2 / 3} \\
& \ln (q)=\ln (\rho v)^{2}-\left(R_{g}^{2} / 3\right) q^{2}
\end{aligned}
$$

$\mathrm{R}=100 \AA \quad R_{g}=\sqrt{\frac{3}{5}} R=77.5 \AA$

Guinier law (interpretation w/o a model)

Regardless of particle shape, at small q :

$$
\begin{aligned}
& I(q)=(\rho v)^{2} \exp \left(-q R_{g}\right)^{2 / 3} \\
& \ln (q)=\ln (\rho v)^{2}-\left(R_{g}{ }^{2 / 3}\right) q^{2}
\end{aligned}
$$

Only holds if:
a. $q<1 / R_{g}$
b. dilute
c. Isotropic
d. matrix or solvent scattering is removed

Guinier law (outline of derivation)

$\rho(r)$ is scattering length distribution

$$
A(q)=\int \rho(r) \exp (-i q r) d r
$$

Expand as a power series:

$$
A(q)=\int \rho(r) d r-i \int q r \rho(r) d r-(1 / 2!) \int(q r)^{2} \rho(r) d r+\ldots
$$

Origin at center of mass

Guinier law (outline of derivation)

$\rho(r)$ is scattering length distribution

$$
A(q)=\int \rho(r) \exp (-i q r) d r
$$

Expand as a power series:

$$
A(q)=\int_{\rho r} \rho(r) d r-i \int q r \rho(r) d r-(1 / 2!) \int(q r)^{2} \rho(r) d r+\ldots
$$

Origin at center of mass

$$
\begin{aligned}
& (q r)^{2}=\left(q_{x} x+q_{y} y+q_{z} z\right)^{2} \\
& x y=(1 / \rho v) \int x y \rho(r) d r, \text { etc...... }
\end{aligned}
$$

Guinier law (outline of derivation)

$q \ll \rho v$, average intensity/particle, for large \# randomly oriented particles:

$$
I(q)=(\rho v)^{2}\left(1-\left(\left(q_{x} x\right)^{2}+\left(q_{y} y\right)^{2}+\left(q_{z} z\right)^{2}+2 q_{x} q_{y} x y\right)\right.
$$

Isotropic:

$$
\begin{aligned}
& \text { average } x^{2}=\text { average } y^{2}=\text { average } z^{2}=R_{g}{ }^{2} / 3 \\
& \text { average } x y=\text { average } y z=\text { average } z x=0 \\
& I(q)=(\rho v)^{2}\left(1-\left(\left(q R_{g}\right)^{2} / 3+\ldots\right)\right. \\
& I(q)=(\rho v)^{2} \exp \left(-q R_{g}\right)^{2 / 3}
\end{aligned}
$$

Guinier law (outline of derivation)

For non-identical particles, Guinier law gives an average R \& average v

Model structures - effect of dense packing

For N spherical particles, radius R, scattering length density ρ

$$
A(q)=\sum_{j=1}^{N} A_{1}(q) \exp \left(-i q r_{j}\right)
$$

$R_{j}=$ location of center of jth sphere, $A_{\rho}(q)=$ form factor for single sphere

Model structures - effect of dense packing

For N spherical particles, radius R, scattering length density ρ

$$
A(q)=\sum_{j=1}^{N} A_{1}(q) \exp \left(-i q r_{j}\right)
$$

$R_{j}=$ location of center of jth sphere, $A_{1}(q)=$ form factor for single sphere

$$
\begin{aligned}
& I(q)=I_{1}(q) \sum_{j=1 k=1}^{N} \exp \left(-i q r_{j k}\right) \\
& I(q)=I_{1}(q)\left(N+\sum_{j=1}^{N} \sum_{k \neq 1}^{N} \exp \left(-i q r_{j k}\right)\right)
\end{aligned}
$$

Model structures - effect of dense packing

For N spherical particles, radius R, scattering length density ρ

$$
A(q)=\sum_{j=1}^{N} A_{l}(q) \exp \left(-i q r_{j}\right)
$$

$R_{j}=$ location of center of jth sphere, $A_{1}(q)=$ form factor for single sphere

$$
\begin{aligned}
& I(q)=I_{1}(q) \sum_{j=1}^{N} \sum_{k=1}^{N} \exp \left(-i q r_{j k}\right) \\
& I(q)=I_{1}(q)\left(N+\sum_{j=1}^{N} \sum_{k \neq 1}^{N} \exp \left(-i q r_{j k}\right)\right) \\
& \text { independent } \\
& \text { scattering from } \\
& \text { particles }
\end{aligned}
$$

Model structures - effect of dense packing

For N spherical particles, radius R, scattering length density ρ

$$
A(q)=\sum_{j=1}^{N} A_{l}(q) \exp \left(-i q r_{j}\right)
$$

$R_{j}=$ location of center of jth sphere, $A_{1}(q)=$ form factor for single sphere

$$
\begin{aligned}
& I(q)=I_{l}(q) \sum_{j=1 k=1}^{N} \sum_{1}^{N} \exp \left(-i q r_{j k}\right) \\
& I(q)=I_{1}(q)\left(N+\sum_{j=1 k \neq 1}^{N} \sum_{i=1}^{N} \exp \left(-i q r_{j k}\right)\right)
\end{aligned}
$$

<n> $g(r) d r=$ probability of finding another particle in $d r$ at distance r from a given particle (<n> = average \# density of particles)

$$
I(q)=N I_{1}(q)\left(1+<n>\int g(r) \exp (-i q r) d r\right)
$$

Or:

$$
I(q)=N I_{1}(q)\left(1+<n>\int(g(r)-1) \exp (-i q r) d r\right)
$$

Model structures - effect of dense packing

<n> $g(r) d r=$ probability of finding another particle in $d r$ at distance r from a given particle (<n> = average \# density of particles)

$$
I(q)=N I_{1}(q)\left(1+<n>\int g(r) \exp (-i q r) d r\right)
$$

Or:

$$
I(q)=N I_{1}(q)\left(1+<n>\int(g(r)-1) \exp (-i q r) d r\right)
$$

Isotropic:

$$
I(q)=N I_{1}(q)\left(1+<n>\int_{0}^{\infty} 4 \pi r^{2}(g(r)-1)(\sin (q r)) /(q r) d r\right)
$$

One result:
as fraction of volume occupied by spheres $<n>v$ increases

Model structures - effect of dense packing

One result:
as fraction of volume occupied by spheres <n>v increases, low q intensity is suppressed.

Model structures - effect of dense packing

Anisotropic particles give similar result, altho more complicated.

