Why scattering at small angles?

Angle & size related thru Braggs' law:

 $\lambda = 2d \sin \theta$

Why scattering at small angles?

Angle & size related thru Braggs' law:

 $\lambda = 2d \sin \theta$

Suppose CuK α x-rays (λ = 1.5418 Å)

calculate 2θ for various ds

Why scattering at small angles?

Angle & size related thru Braggs' law:

 $\lambda = 2d \sin \theta$

Suppose CuK α x-rays (λ = 1.5418 Å)

calculate 2θ for various ds

d	20	q
10 Å (0.001 micron)	8.84° 1 77°	0.628 Å ⁻¹
100 Å (0.01 micron) 300 Å	0.88° 0.29°	0.0628 Å ⁻¹
600 Å	0.15°	
1000 Å (0.1 micron)	0.09°	0.00628 Å ⁻¹
10,000 Å (1 micron)	0.009°	0.000628 Å ⁻¹

d	20	q = $(4\pi/\lambda) \sin \theta = 2\pi/d$
10 Å (0.001 micron)	8.84°	0.628 Å ⁻¹
50 Å	1.77°	
100 Å (0.01 micron)	0.88°	0.0628 Å ⁻¹
300 Å	0.29°	
600 Å	0.15°	
1000 Å (0.1 micron)	0.09°	0.00628 Å ⁻¹
10,000 Å (1 micron)	0.009°	0.000628 Å ⁻¹

High-angle x-ray scattering (usually $\sim 2^{\circ}-160^{\circ}2\theta$) --> atomic scale structure

d	20	q = $(4\pi/\lambda) \sin \theta = 2\pi/d$
10 Å (0.001 micron)	8.84°	0.628 Å ⁻¹
50 Å	1.77°	
100 Å (0.01 micron)	0.88°	0.0628 Å ⁻¹
300 Å	0.29°	
600 Å	0.15°	
1000 Å (0.1 micron)	0.09°	0.00628 Å ⁻¹
10,000 Å (1 micron)	0.009°	0.000628 Å ⁻¹

High-angle x-ray scattering (usually $\sim 2^{\circ}-160^{\circ}2\theta$) --> atomic scale structure

Small-angle scattering --> structure of BIG things

WAXS and SAXS study of (m)TMXDI-PDMS siloxane-urethaneureas

WAXS and SAXS study of (m)TMXDI-PDMS siloxane-urethaneureas

Hard segments --> regions with crystal-like order

Soft segments --> amorphous siloxane chains

WAXS and SAXS study of (m)TMXDI-PDMS siloxane-urethaneureas

Saxs scattering curves for various NCO/OH ratios (a = 1.5/1; e = 4.5/1):

Size of the hard segment "crystalline" regions changes

Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes

Polymer sheets of semicrystalline ethylene (E)/ethylene-propylene (EP) diblock E/EP and triblock E/EP/E copolymers made by channel die proessing

Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes

Polymer sheets of semicrystalline ethylene (E)/ethylene–propylene (EP) diblock E/EP and triblock E/EP/E copolymers made by channel die processing

Sheets are stacked into several types of blocks w/ different gas transport props.

Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes

Polymer sheets of semicrystalline ethylene (E)/ethylene-propylene (EP) diblock E/EP and triblock E/EP/E copolymers made by channel die processing

saxs image for perpendicular texture type

Nanometer to Micrometer Void Microstructure Characterization of SOFC Layers and Interfaces by Small Angle Scattering (SAXS) and Computed X-ray Microtomography(XMT)

<u>Preliminary Void Size Distributions</u> <u>obtained from Maximum Entropy</u> <u>Analysis of SAXS Data:</u>

Pore Diameter (µm)

Critical Dimension Metrology of Nanoscale Structures with Small Angle X-ray Scattering

NIST developing transmission saxs method capable of angstrom level precision in critical dimension evaluation over (50×50) mm arrays of nanoscale periodic structures

Critical Dimension Metrology of Nanoscale Structures with Small Angle X-ray Scattering

SEM image of a photoresist grating on a silicon wafer & resulting 2-D SAXS image

Critical Dimension Metrology of Nanoscale Structures with Small Angle X-ray Scattering

SEM image of a photoresist grating on a silicon wafer & resulting 2-D SAXS image

Streaks tell about deviations from ideal grating & defects such as long wavelength line edge roughness

Critical Dimension Metrology of Nanoscale Structures with Small Angle X-ray Scattering

- (a) blue rectangles represent etched regions in a film
- (b) resulting SAXS detector image

The measurement of the micro-fibril angle in soft-wood

Wood cell wall consists of bundles of a crystalline arrangement of cellulose chains (microfibrils)

The measurement of the micro-fibril angle in soft-wood

Wood cell wall consists of bundles of a crystalline arrangement of cellulose chains (microfibrils)

Microfibrils align quite parallel in a spiral around cell wall, with spiral axis along long cell direction

The measurement of the micro-fibril angle in soft-wood

Typical saxs patterns from Norway spruce - mean MFA of 20° - longitudinal cell axis vertical. (c) pattern recorded at $\alpha = 0^{\circ}$. (d) pattern recorded at $\alpha = 45^{\circ}$

