In transmission:

$$l/l_o = exp(-\mu\rho x) = exp(-\mu^* x)$$

 $\mu \ (= \mu^* / \rho) = \text{mass attenuation coefficient} \\ \mu^* = \text{linear attenuation coefficient} \\ \rho = \text{density of specimen}$

In transmission:

$$l/l_o = exp(-\mu\rho x) = exp(-\mu^* x)$$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

Values for μ can be found in a number of tables (e.g., Intnl Tables for X-ray Crystallography)

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

Also, scattering intensity built up by t^2 , so

 $I \sim I_o \exp(-\mu^* x) t^2$ dI = const. I_o (exp(-\mu^* x)) (2 - \mu^* x) = 0

optimum $x = 2/\mu^*$; more correct derivation gives $1/\mu^*$

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C +$ optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Pure Ni - *optimum x* = 1/(49.3cm²/gm x 8.90gm/cm³) = 0.023mm

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C +$ optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Pure Ni - *optimum* $x = 1/(49.3 cm^2/gm \times 8.90 gm/cm^3) = 0.023 mm$

Pure Al - *optimum x* = 1/(48.7cm²/gm x 2.70gm/cm³) = 0.076mm

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Pure Ni - *optimum* $x = 1/(49.3 cm^2/gm \times 8.90 gm/cm^3) = 0.023 mm$

Pure Al - *optimum x* = 1/(48.7cm²/gm x 2.70gm/cm³) = 0.076mm

NiAl - optimum x = 1/(((58.69/85.672) x 49.3cm²/gm + 0.315 x 48.7cm²/gm) x 5.86gm/cm³) = 0.035mm

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Polyethylene - optimum x = 1/(((12.011/14.077) x 5.50cm²/gm + 0.147 x 0.44cm²/gm) x 1.0gm/cm³) = 2.1mm

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Quartz - optimum $x = 1/(((28.086/60.086) \times 60.3cm^2/gm + 0.533 \times 12.7cm^2/gm) \times 2.65gm/cm^3) = 0.11mm$

 $I/I_o = exp(-\mu\rho x) = exp(-\mu^* x)$

 μ (= μ^*/ρ) = mass attenuation coefficient μ^* = linear attenuation coefficient ρ = density of specimen

 $\mu = wt. fract. A \cdot \mu_A + wt. fract. B \cdot \mu_B + wt. fract. C \cdot \mu_C + \dots$

optimum $x = 1/\mu^*$

Examples (for $CuK\alpha$):

Quartz - optimum $x = 1/(((28.086/60.086) \times 60.3cm^2/gm + 0.533 \times 12.7cm^2/gm) \times 2.65gm/cm^3) = 0.11mm$

Water - $optimum x = 1/(((16/18.016) x 12.7cm^2/gm + 0.112 x 0.44cm^2/gm) x 1gm/cm^3) = 0.88mm$

Metals & alloys

optimum $x = 10-50\mu = 0.01-0.05 \text{ mm}$ generally cut, ground, & polished very carefully - avoid poor surface finish

polycrystalline matls - grain size should be small

Metals & alloys

optimum $x = 10-50\mu = 0.01-0.05 \text{ mm}$ generally cut, ground, & polished very carefully - avoid poor surface finish

polycrystalline matls - grain size should be small

Polymers

optimum x = 1-2mm slice, microtome

Water solutions ~ 1mm thick