

Lattice planes

Useful concept for crystallography \& diffraction

Think of sets of planes in lattice - each plane in set parallel to all others in set. All planes in set equidistant from one another
Infinite number of sets of planes in lattice

d interplanar spacing

Lattice planes

Keep track of sets of planes by giving them names - Miller indices
(hkl)

Miller indices (hkl)

Choose cell, cell origin, cell axes:

Miller indices (hkl)

Choose cell, cell origin, cell axes
Draw set of planes of interest:

Miller indices (hkl)

Choose cell, cell origin, cell axes
Draw set of planes of interest
Choose plane nearest origin:

Miller indices (hkl)

Choose cell, cell origin, cell axes
Draw set of planes of interest
Choose plane nearest origin
Find intercepts on cell axes:
origin
$1,1, \infty$

Miller indices (hkl)

Choose cell, cell origin, cell axes
Draw set of planes of interest
Choose plane nearest origin
Find intercepts on cell axes
origin
$1,1, \infty$
Invert these to get (hkl)
(110)

Lattice planes

Exercises

Lattice planes

Exercises
(001)

Lattice planes

Exercises
(001).......intercepts: $\infty, \infty, 1$

Lattice planes

Exercises
(011)

Lattice planes

Exercises
(011).......intercepts: $\infty, 1,1$

Lattice planes

Exercises
(113)

Lattice planes

Exercises

(113)intercepts: $1,1, \frac{1}{3}$

Lattice planes

Exercises

Lattice planes

Two things characterize a set of lattice planes: interplanar spacing (d) orientation (defined by normal)

Strange indices

For hexagonal lattices - sometimes see 4-index notation for planes (hkil) where $i=-h-k$

Zones

2 intersecting lattice planes form a zone

$$
\begin{aligned}
& \text { zone axis [uvw] is } \\
& u \hat{i}+v \hat{j}+w \hat{k}
\end{aligned}
$$

$$
\left|\begin{array}{lll}
i & j & k \\
h_{1} & k_{1} & l_{1} \\
h_{2} & k_{2} & l_{2}
\end{array}\right|
$$

plane (hkl) belongs to zone [uvw] if hu $+k v+l w=0$
if $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} l_{2}\right)$ in same zone, then
$\left(h_{1}+h_{2} \quad k_{1}+k_{2} \quad l_{1}+l_{2}\right)$ also in same zone.

Zones

Example: zone axis for (111) \& (100) - [011]

zone axis [uvw] is $u i=v j+w 反$
$\left|\begin{array}{lll}i & j & k \\ h_{1} & k_{1} & l_{1} \\ h_{2} & k_{2} & l_{2}\end{array}\right|$
(011) in same zone? hu $+k v+l w=0$

$$
0 \cdot 0+1 \cdot 1-1 \cdot 1=0
$$

if $\left(h_{1} k_{1} I_{1}\right)$ and $\left(h_{2} k_{2} l_{2}\right)$ in same zone, then
$\left(h_{1}+h_{2} \quad k_{1}+k_{2} \quad l_{1}+l_{2}\right)$ also in same zone.

Reciprocal lattice

Real space lattice

Reciprocal lattice

Real space lattice - basis vectors

Reciprocal lattice

Real space lattice - choose set of planes

Reciprocal lattice

Real space lattice - interplanar spacing d

Reciprocal lattice

Real space lattice \longrightarrow the (100) reciprocal lattice pt

Reciprocal lattice

The (010) recip lattice pt

Reciprocal lattice

The (020) reciprocal lattice point

Reciprocal lattice

More reciprocal lattice points

Reciprocal lattice

The (110) reciprocal lattice point

Reciprocal lattice

Still more reciprocal lattice points

Reciprocal lattice

Reciprocal lattice notation

Reciprocal lattice

Reciprocal lattice for hexagonal real space lattice

Reciprocal lattice

Reciprocal lattice for hexagonal real space lattice

Reciprocal lattice

Reciprocal lattice for hexagonal real space lattice

Reciprocal lattice

Reciprocal lattice for hexagonal real space lattice

Reciprocal lattice

In general:

$$
\begin{aligned}
& a^{*}=\frac{b \times c}{a \cdot b \times c} \\
& b^{*}=\frac{c \times a}{a \cdot b \times c} \\
& c^{*}=\frac{a \times b}{a \cdot b \times c}
\end{aligned}
$$

