exystallography （晶体学）

Most materials we use are crystalline，partially crystalline，or can be made crystalline or partially crystalline

Crystalline means atom arrangement is periodic（周期性的）－repeats throughout space

Most materials we use are crystalline, partially crystalline, or can be made crystalline or partially crystalline

metals

Most materials we use are crystalline，partially crystalline，or can be made crystalline or partially crystalline

spinels（ferrites－铁电的）

Most materials we use are crystalline，partially crystalline，or can be made crystalline or partially crystalline

BaTiO_{3}
（钡钛氧 ${ }_{3}$ ）

Most materials we use are crystalline, partially crystalline, or can be made crystalline or partially crystalline

zeolite (沸石)

Most materials we use are crystalline，partially crystalline，or can be made crystalline or partially crystalline

carbon nanotubes（纳米管）（CNTs）

Most materials we use are crystalline，partially crystalline，or can be made crystalline or partially crystalline

polyethylene（聚乙烯）polymer

This type of structure is called

crystal structure（晶体结构）

In crystals，atom groups（unit cells）repeated to form a solid material

The study of this repetition in crystals is called crystallography

Repetition＝symmetry（对称性）

Types of repetition：
rotation（旋转）
translation（平移）

Rotation

What is rotational symmetry?

Imagine this object will be rotated (maybe)

Was it?

The object is obviously symmetric...it has symmetry

The object is obviously symmetric...it has symmetry

Can be rotated $90^{\circ} \mathrm{w} / \mathrm{o}$ detection
...........so symmetry is really doing nothing

Symmetry is doing nothing - or at least doing something so that it looks like nothing was done!

What kind of symmetry does this object have?

What kind of symmetry does this object have？

4 （旋转轴）

What kind of symmetry does this object have?

4
m (镜)

What kind of symmetry does this object have?

4

What kind of symmetry does this object have?

4

What kind of symmetry does this object have?

4 mm
(点群)

4

Another example:

Another example:

And another:

And another:

2

What about translation?

Same as rotation

What about translation?

Same as rotation
Ex: one dimensional array of points

Translations are restricted to only certain values to get symmetry (periodicity)

2D translations

Lots of common examples

Each block is represented by a point

This array of points is a LATTICE (晶格)

Lattice－infinite（无限的），perfectly periodic（周期性的）array of points in a space

Not lattice:

Not lattice:

Not lattice -some kind of STRUCTURE because not just points

Another type of lattice - with different symmetry

rectangular

Another type of lattice - with different symmetry

square

Another type of lattice - with different symmetry

hexagonal (六角)

Back to rotation -

 This lattice exhibits 6-fold symmetry hexagonal

Periodicity and rotational symmetry

What types of rotational symmetry allowed?

object with 4-fold symmetry translates OK

overlap not allowed
object with 5-fold symmetry doesn'† translate

Periodicity and rotational symmetry

Suppose periodic row of points is rotated through $\pm \alpha$:

Periodicity and rotational symmetry

To maintain periodicity:

vector $\underset{\sim}{S}=$ an integer \times basis translation \ddagger

vector $S=$ an integer \times basis translation \pm $t \cos \alpha=S / 2=m+2$

m	$\cos \alpha$	α	axis	
2	1	0	2π	1
1	$1 / 2$	$\pi / 3$	$5 \pi / 3$	6
0	0	$\pi / 2$	$3 \pi / 2$	4
-1	$-1 / 2$	$2 \pi / 3$	$4 \pi / 3$	3
-2	-1	$-\pi$	π	2

Only rotation axes consistent with lattice periodicity in 2-D or 3-D

We abstracted points from the shape:

Now we abstract further:
this is UNIT CELL

Now we abstract further:

This is a UNIT CELL
Represented by two lengths and an angle
.......or, alternatively, by two vectors

Basis vectors and unit cells

a and $\underset{\sim}{b}$ are the basis vectors for the lattice

In 3-D:

a, b, and c are the basis vectors for the lattice

In 3-D:

a, b, and c are the basis vectors for the lattice

Lattice parameters（晶格参数）：

need 3 lengths－$|a|,|b|,|c|$ $\& 3$ angles $-\alpha, \beta, \gamma$ to get cell shape \＆size

The many thousands of lattices classified into crystal systems (晶系)

System

Interaxial
Angles

Axes

Triclinic
Monoclinic
Orthorhombic Tetragonal Cubic Hexagonal Trigonal

$$
\begin{array}{ll}
\alpha \neq \beta \neq \gamma \neq 90^{\circ} & a \neq b \neq c \\
\alpha=\gamma=90^{\circ} \neq \beta & a \neq b \neq c \\
\alpha=\beta=\gamma=90^{\circ} & a \neq b \neq c \\
\alpha=\beta=\gamma=90^{\circ} & a=b \neq c \\
\alpha=\beta=\gamma=90^{\circ} & a=b=c \\
\alpha=\beta=90^{\circ}, \gamma=120^{\circ} & a=b \neq c \\
\alpha=\beta=90^{\circ}, \gamma=120^{\circ} & a=b \neq c
\end{array}
$$

The many thousands of lattices classified into crystal systems

System
Triclinic
Monoclinic
Orthorhombic
Tetragonal
Cubic
Hexagonal
Trigonal

Minimum symmetry

$$
\begin{aligned}
& 1 \text { or } \overline{1} \\
& 2 \text { or } \overline{2} \\
& \text { three } 2 s \text { or } \overline{2 s} \\
& 4 \text { or } \overline{4} \overline{3} \\
& \text { four } 3 s \text { or } \overline{3 s} \\
& 6 \text { or } \frac{6}{3} \\
& 3 \text { or }
\end{aligned}
$$

For given lattice, infinite number of unit cells possible:

