cexystallography II

Lattice

n-dimensional, infinite, periodic array of points,
each of which has identical surroundings.

use this as test for lattice points

A2 ("bcc") structure

lattice points

Lattice

n-dimensional, infinite, periodic array of points,
each of which has identical surroundings.

use this as test for lattice points

CsCl structure

lattice points

Choosing unit cells in a lattice

Want very small unit cell - least complicated, fewer atoms

Prefer cell with 90° or 120° angles - visualization \& geometrical calculations easier

Choose cell which reflects symmetry of lattice \& crystal structure

Choosing unit cells in a lattice
Sometimes, a good unit cell has more than one lattice point

2-D example:

Primitive cell (one lattice pt./cell) has strange angle

Choosing unit cells in a lattice
Sometimes, a good unit cell has more than one lattice point

3-D example:

body-centered cubic (bcc, or I cubic)
(two lattice pts./cell)
The primitive unit cell is not a cube

14 Bravais lattices

Allowed centering types:

Primitive rhombohedral cell (trigonal)

R -
rhombohedral
centering of trigonal cell

14 Bravais lattices

Combine P, I, F, C (A, B), R centering with 7 crystal systems
Some combinations don't work, some don't give new lattices -

C-centering destroys cubic symmetry

C tetragonal
$=P$ tetragonal

14 Bravais lattices

Only 14 possible (Bravais, 1848)

System $\begin{gathered}\text { Allowed } \\ \text { centering }\end{gathered}$
$\begin{array}{ll}\text { Triclinic } & \text { P (primitive) } \\ \text { Monoclinic } & \text { P, I (innerzentiert) } \\ \text { Orthorhombic } & \text { P, I, F (flächenzentiert), A (end centered) } \\ \text { Tetragonal } & \text { P, I } \\ \text { Cubic } & \text { P, I, F } \\ \text { Hexagonal } & \text { P } \\ \text { Trigonal } & \text { P, R (rhombohedral centered) }\end{array}$

Choosing unit cells in a lattice

Unit cell shape must be:
2-D - parallelogram (4 sides)

3-D - parallelepiped (6 faces)

Not a unit cell:

Choosing unit cells in a lattice

Unit cell shape must be:
2-D - parallelogram
(4 sides)

3-D - parallelepiped (6 faces)

Not a unit cell:

Stereographic projections
Show or represent 3-D object in 2-D
Procedure:

1. Place object at center of sphere
2. From sphere center, draw line representing some feature of object out to intersect sphere
3. Connect point to N or S pole of sphere. Where sphere passes through equatorial plane, mark projected point
4. Show equatorial plane in 2-D this is stereographic projection

PROJECTION PROCEDURE IN 3-D

Stereographic projections of symmetry groups
Types of pure rotation symmetry

$$
\begin{aligned}
& \text { Rotation 1, 2, } 3,4,6 \\
& \text { Rotoinversion } \overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}
\end{aligned}
$$

Draw point group diagrams (stereographic projections)

Stereographic projections of symmetry groups
Types of pure rotation symmetry

$$
\begin{aligned}
& \text { Rotation 1, 2, } 3,4,6 \\
& \text { Rotoinversion } \overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}
\end{aligned}
$$

Draw point group diagrams (stereographic projections)

Stereographic projections of symmetry groups
Types of pure rotation symmetry

$$
\begin{aligned}
& \text { Rotation } 1,2,3,4,6 \\
& \text { Rotoinversion } \overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}
\end{aligned}
$$

Draw point group diagrams (stereographic projections)

symmetry elements

Stereographic projections of symmetry groups
Types of pure rotation symmetry

$$
\begin{aligned}
& \text { Rotation } 1,2,3,4,6 \\
& \text { Rotoinversio } \overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}
\end{aligned}
$$

Draw point group diagrams (stereographic projections)

symmetry elements

All objects, structures with i symmetry are centric

Stereographic projections of symmetry groups
Types of pure rotation symmetry

> Rotation $1,2,3,4,6$
> Rotoinversion $\overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}$

Draw point group diagrams (stereographic projections)

Stereographic projections of symmetry groups
Types of pure rotation symmetry

> Rotation $1,2,3,4,6$
> Rotoinversion $\overline{1}(=i), \overline{2}(=m), \overline{3}, \overline{4}, \overline{6}$

Draw point group diagrams (stereographic projections)

Stereographic projections of symmetry groups More than one rotation axis - point group 222

Stereographic projections of symmetry groups More than one rotation axis - point group 222

Stereographic projections of symmetry groups

 More than one rotation axis - point group 222
orthorhombic

Stereographic projections of symmetry groups More than one rotation axis - point group 2?2

Stereographic projections of symmetry groups More than one rotation axis - point group $\{2 ?$

Stereographic projections of symmetry groups More than one rotation axis - point group $2 \mathfrak{\imath} 2$

Stereographic projections of symmetry groups Rotation + mirrors - point group $4 / \mathrm{mm}$
[001]

Stereographic projections of symmetry groups
Rotation + mirrors - point group 4 min

Stereographic projections of symmetry groups
Rotation + mirrors - point group $4 m \mathrm{~m}$

Stereographic projections of symmetry groups
Rotation + mirrors - point group 4 mm

equivalent points
tetragonal

Stereographic projections of symmetry groups
Rotation + mirrors - point group 2/m

Stereographic projections of symmetry groups
Rotation + mirrors - point group $2 / \mathrm{m}$

monoclinic

Stereographic projections of symmetry groups

Use this table for symmetry directions

System	1st symbol	2nd symbol	3rd symbol
Triclinic	-	-	-
Monoclinic	$[010]$	-	-
Orthorhombic	$[100]$	$[010]$	$[001]$
Tetragonal	$[001]$	$[111]$	$[110]$
Cubic	$[100]$	$[100]$	$[210]$
Hexagonal	$[001]$	$[100]$	$[210]$
Trigonal	$[001]$		

Use this table to assign point groups to crystal systems

System
Triclinic
Monoclinic
Orthorhombic
Tetragonal
Cubic
Hexagonal
Trigonal

Minimum symmetry

$$
\begin{aligned}
& 1 \text { or } \overline{1} \\
& 2 \text { or } \overline{2} \\
& \text { three } 2 s \text { or } \overline{2 s} s \\
& 4 \text { or } \overline{4} \\
& \text { four } 3 s \text { or } \overline{3 s} \\
& 6 \text { or } \overline{6} \\
& 3 \text { or } \frac{3}{3}
\end{aligned}
$$

And here are the 32 point groups

System
Triclinic $\quad 1, \overline{1}$
Monoclinic $\quad 2, \mathrm{~m}, 2 / \mathrm{m}$
Orthorhombic
Tetragonal
Cubic
Hexagonal
Trigonal

Point groups

222. $\mathrm{mm} 2,2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
$4,4,4 / \mathrm{m}, 422,42 \mathrm{~m}, 4 \mathrm{~mm}, 4 / \mathrm{m} 2 / \mathrm{m} \mathrm{2} / \mathrm{m}$
$23,2 / \mathrm{m} \overline{3}, 432,4 \overline{3} \mathrm{~m}, 4 / \mathrm{m} \overline{3} \mathrm{2} / \mathrm{m}$
$6, \frac{6}{6}, 6 / \mathrm{m}, 622,62 \mathrm{~m}, 6 \mathrm{~mm}, 6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$
$3,3,32,3 \mathrm{~m}, \overline{3} 2 / \mathrm{m}$
