

# crystallography ll

#### Lattice

n-dimensional, infinite, periodic array of points,

each of which has identical surroundings.

#### use this as test for lattice points



A2 ("bcc") structure



lattice points

#### Lattice

n-dimensional, infinite, periodic array of points,

each of which has identical surroundings.

#### use this as test for lattice points







lattice points

Choosing unit cells in a lattice

Want very small unit cell - least complicated, fewer atoms

Prefer cell with 90° or 120° angles - visualization & geometrical calculations easier

Choose cell which reflects symmetry of lattice & crystal structure

Choosing unit cells in a lattice

# Sometimes, a good unit cell has more than one lattice point

2-D example:



<u>Primitive</u> cell (one lattice pt./cell) has strange angle

<u>End-centered</u> cell (two lattice pts./cell) has 90° angle

0

0

0

0

Choosing unit cells in a lattice

# Sometimes, a good unit cell has more than one lattice point

3-D example:



body-centered cubic (bcc, or I cubic) (two lattice pts./cell) The primitive unit cell is not a cube

#### **14 Bravais lattices**

#### Allowed centering types:



**14 Bravais lattices** 

Combine P, I, F, C (A, B), R centering with 7 crystal systems Some combinations don't work, some don't give new lattices -

C-centering destroys cubic symmetry





### C tetragonal

= P tetragonal

**14 Bravais lattices** 

### Only 14 possible (Bravais, 1848)

| System | Allowed   |
|--------|-----------|
|        | centering |

Triclinic Monoclinic Orthorhombic Tetragonal Cubic Hexagonal Trigonal

P (primitive) P, I (innerzentiert) P, I, F (flächenzentiert), A (end centered) P, I P, I, F P P, R (rhombohedral centered) Choosing unit cells in a lattice Unit cell shape must be:

> 2-D - parallelogram (4 sides)

3-D - parallelepiped (6 faces)

Not a unit cell:

Choosing unit cells in a lattice Unit cell shape must be:

> 2-D - parallelogram (4 sides)

3-D - parallelepiped (6 faces)



#### Stereographic projections

Show or represent 3-D object in 2-D

#### Procedure:

- Place object at center of sphere
  From sphere center, draw line representing some feature of object out to intersect sphere
- 3. Connect point to N or S pole of sphere. Where sphere passes through equatorial plane, mark projected point
- 4. Show equatorial plane in 2-D this is stereographic projection



Rotation 1, 2, 3, 4, 6  
Rotation 
$$\overline{1}$$
 (= i),  $\overline{2}$  (= m),  $\overline{3}$ ,  $\overline{4}$ ,  $\overline{6}$ 



Rotation 1, 2, 3, 4, 6  
Rotation 
$$\overline{1}$$
 (= i),  $\overline{2}$  (= m),  $\overline{3}$ ,  $\overline{4}$ ,  $\overline{6}$ 



> Rotation 1, 2, 3, 4, 6 Rotoinversion 1 (= i), 2 (= m), 3, 4, 6



> Rotation 1, 2, 3, 4, 6 Rotoinversion  $\overline{1}$  (= i),  $\overline{2}$  (= m),  $\overline{3}$ ,  $\overline{4}$ ,  $\overline{6}$

Draw point group diagrams (stereographic projections)



All objects, structures with *i* symmetry are centric

> Rotation 1, 2, 3, 4, 6 Rotoinversion  $\overline{1}$  (= i)  $\overline{2}$  = m),  $\overline{3}$ ,  $\overline{4}$ ,  $\overline{6}$



> Rotation 1, 2, 3, 4, 6 Rotoinversion  $\overline{1}$  (= i)  $\overline{2}$  (= m),  $\overline{3}$ ,  $\overline{4}$ ,  $\overline{6}$











orthorhombic

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

Stereographic projections of symmetry groups Rotation + mirrors - point group 4 nm

![](_page_24_Figure_1.jpeg)

Stereographic projections of symmetry groups Rotation + mirrors - point group 4 min

![](_page_25_Figure_1.jpeg)

Stereographic projections of symmetry groups Rotation + mirrors - point group 4mm

![](_page_26_Figure_1.jpeg)

Stereographic projections of symmetry groups Rotation + mirrors - point group 4mm

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

tetragonal

Stereographic projections of symmetry groups Rotation + mirrors - point group 2/m

![](_page_28_Figure_1.jpeg)

Stereographic projections of symmetry groups Rotation + mirrors - point group 2/m

![](_page_29_Figure_1.jpeg)

monoclinic

### Stereographic projections of symmetry groups

## Use this table for symmetry directions

| System       | 1st symbol | 2nd symbol | 3rd symbol |
|--------------|------------|------------|------------|
| Triclinic    | _          | _          | -          |
| Monoclinic   | [010]      | -          | -          |
| Orthorhombic | [100]      | [010]      | [001]      |
| Tetragonal   | [001]      | [100]      | [110]      |
| Cubic        | [100]      | [111]      | [110]      |
| Hexagonal    | [001]      | [100]      | [210]      |
| Trigonal     | [001]      | [100]      | [210]      |

## Use this table to assign point groups to crystal systems

| System       | Minimum symmetry          |
|--------------|---------------------------|
| Triclinic    | 1 or 1                    |
| Monoclinic   | 2 or 2                    |
| Orthorhombic | three 2s_or 2s            |
| Tetragonal   | 4 or $\overline{4}$       |
| Cubic        | four 3s or <del>3</del> s |
| Hexagonal    | 6 or 6                    |
| Trigonal     | 3 or 3                    |

## And here are the 32 point groups

| System       | Point groups                                                            |
|--------------|-------------------------------------------------------------------------|
| Triclinic    | 1, $\overline{1}$                                                       |
| Monoclinic   | 2, m, 2/m                                                               |
| Orthorhombic | 222, mm2, 2/m 2/m 2/m                                                   |
| Tetragonal   | 4, $\overline{4}$ , 4/m, 422, $\overline{42}$ m, 4mm, 4/m 2/m 2/m       |
| Cubic        | 23, 2/m $\overline{3}$ , 432, $4\overline{3}$ m, 4/m $\overline{3}$ 2/m |
| Hexagonal    | 6, 6, 6/m, 622, $\overline{62}$ m, 6mm, 6/m 2/m 2/m                     |
| Trigonal     | 3 $\overline{3}$ 32 3m $\overline{3}$ 2/m                               |