1. Construct, to scale, the l = 0, 1, 2 layers of the reciprocal lattice for an orthorhombic crystal for which a = 5, b = 7 Å. Let h, k run over the range ± 2 . Index each point. Show the unit cell in each layer and mark the unit cell axes.

$$/= 0$$

$$\begin{array}{c}
220 & 210 & 200 & 210 & 220 \\
120 & 110 & 100 & 110 & 210 \\
020 & 010 & 000 & 010 & 020 \\
120 & 110 & 100 & 110 & 120 \\
220 & 210 & 200 & 210 & 220 \\
\end{array}$$

$$\begin{array}{c}
221 & 211 & 201 & 211 & 221 \\
121 & 111 & 101 & 111 & 211 \\
021 & 011 & 001 & 011 & 021 \\
121 & 111 & 101 & 111 & 121 \\
221 & 211 & 201 & 211 & 221 \\
\end{array}$$

$$\begin{array}{c}
222 & 212 & 202 & 212 & 222 \\
\end{array}$$

/= 2

•	•	Í		•	•
122	112 •	10	2	112 •	212
 022	012	00	2	012	022
1 <u>2</u> 2	112	10	2	112	122
222	212	2	22	212	222

2. An almost infinite number of tiny, perfectly cube-shaped grains of salt, about 1 micron in size, are dropped onto a flat glass plate so that they are extremely densely packed. For NaCl, a = 5.64 Å.

Construct, to scale, a drawing of the representation of the reciprocal lattice for this specimen, index, and explain.

When cubes fall onto plate, they will all lie on a cube face. This means that they will have a "preferred orientation", like this:

Note that all cubes have one crystal direction in common, perpendicular to the plate (we might even think of this as a zone).

The reciprocal lattice for one crystal is (NaCl is F cubic, and certain crystal planes for F don't exist):

The representation of the reciprocal lattice for the many crystals is then obtained by rotating the above lattice about [001]:

 Calculate the critical voltage necessary to produce characteristic FeK radiation in a conventional laboratory x-ray tube.

voltage (kV) = 12.4/ λ_{Kedge} (Å) = 12.4/1.74334 = 7.11 kV

4. Calculate the energy for $CrK\alpha$ and $CuK\alpha$ X-radiation. What elements should be used as b-filters for Cr and Cu X-ray tubes?

Cr: energy (keV) = $12.4//\lambda$ (Å) = 12.4/2.29092 = 5.41 keV Cu: energy (keV) = $12.4//\lambda$ (Å) = 12.4/1.541838 = 8.04 keV

5. Calculate the mass attenuation coefficient for the compound SiO₂ for CuK α radiation.

(wt. fraction)_{Si} = 28/60 = 0.467, (wt. fraction)₀ = 0.523 $\mu_{Si} = 60.6$ $\mu_{O} = 11.5$ $\mu_{SiO2} = (wt. fraction)_{Si} \times \mu_{Si} + (wt. fraction)_{O} \times \mu_{O}$ $\mu_{SiO2} = 0.467 \times 60.6 + 11.5 \times 0.523 = 34.3 \text{ cm}^2/\text{gm}$

6. Calculate $\mu \left(=\frac{\mu^*}{\rho} = \text{mass attenuation coefficient}; \mu^* = \text{linear attenuation coefficient}\right)$ for air for CrK α radiation. Plot the transmission factor $\frac{\mathbf{I}}{\mathbf{I}_o} = e^{-\mu\rho\times}$ for path lengths of 0-20 cm. Assume that air is 80 % nitrogen and 20 % oxygen by weight, with a density of 1.29 × 10⁻³ $\frac{gm}{cm^3}$.

$$\mu_{air} = 0.8 \times 23.9 + 0.2 \times 36.6 \qquad \frac{x \text{ (cm)}}{1/10}$$

$$\mu_{air} = 26.44 \text{ cm}^2/\text{gm} \qquad 0 \qquad 1.0$$

$$\mu_{air} = 26.44 \times 1.29 \times 10^{-3} \qquad 4 \qquad 0.872$$

$$\mu_{air} = 0.0341 \text{ cm}^{-1} \qquad 8 \qquad 0.761$$

$$12 \qquad 0.664$$

$$\mu_{air} = e^{-\mu_{air}} = e^{-0.0341x} \qquad 16 \qquad 0.579$$

$$20 \qquad 0.505$$

Element	Z	Kα (weighted average)†	Kα ₂ Strong	Ka ₁	<i>Kβ</i> ₁ Weak	- K edge	Lo
				Very strong			Ver
Na Mg Al Si P	11 12 13 14 15	Freshel d iq (4.6) i	11.909 9.8889 8.33916 7.12773 6.1549	11.909 9.8889 8.33669 7.12528 6.1549	11.617 9.558 7.981 6.7681 5.8038	9.5117 7.9511 6.7446 5.7866	ugh that phot
S Cl A K Ca	16 17 18 19 20		5.37471 4.73050 4.19456 3.74462 3.36159	5.37196 4.72760 4.19162 3.74122 3.35825	5.03169 4.4031 3.4538 3.0896	5.0182 4.3969 3.8707 3.43645 3.07016	COS S
Sc Ti V Cr Mn	21 22 23 24 25	2.29092	3.03452 2.75207 2.50729 2.29351 2.10568	3.03114 2.74841 2.50348 2.28962 2.10175	2.7795 2.51381 2.28434 2.08480 1.91015	2.7573 2.49730 2.26902 2.07012 1.89636	
Fe Co Ni Cu Zn	26 27 28 29 30	1.93728 1.79021 1.54178	1.93991 1.79278 1.66169 1.54433 1.43894	1.93597 1.78892 1.65784 1.54051 1.43511	1.75653 1.62075 1.50010 1.39217 1.29522	1.74334 1.60811 1.48802 1.38043 1.28329	13.357 12.282
Ga Ge As Se Br	31 32 33 34 35		1.34394 1.25797 1.17981 1.10875 1.04376	1.34003 1.25401 1.17581 1.10471 1.03969	1.20784 1.12889 1.05726 0.99212 0.93273	1.19567 1.11652 1.04497 0.97977 0.91994	11.313 10.456 9.671 8.990 8.375
Kr Rb Sr Y Zr	36 37 38 39 40		0.9841 0.92963 0.87938 0.83300 0.79010	0.9801 0.92551 0.875214 0.82879 0.78588	0.87845 0.82863 0.78288 0.74068 0.701695	0.86546 0.81549 0.76969 0.72762 0.68877	7.318 6.862 6.448 6.070
Nb Mo Tc Ru Rh	41 42 43 44 45	0.71069	0.75040 0.713543 0.6793 0.64736 0.617610	0.74615 0.70926 0.6749 0.64304 0.613245	0.66572 0.632253 0.6014 0.57246 0.54559	0.65291 0.61977 0.5891 0.56047 0.53378	5.724 5.406 4.845 4.597
Pd Ag	46 47	-(10)	0.589801 0.563775	0.585415 0.559363	0.52052 0.49701	0.50915	4.367