5. A rock specimen was analyzed for α-quartz. To correct for the unknown absorption of the specimen, an internal standard was used. The internal standard was chosen as KCl because of its excellent crystallinity, relatively simple diffraction pattern, and a strong reflection which is relatively close to the strong $\alpha-q u a r t z$ reflection.

Three samples were measured: pure KCl , pure quartz and a mixture of the rock specimen with KCl . The mixture was prepared by intimately mixing 200 mg of finely ground KCl with 1000 mg of the rock, also finely ground.

The intensities of the $3.15 \AA \mathrm{KCl}$ reflection and the $3.34 \AA$ quartz reflection were measured using CuKa radiation. The data are given below.

Phase	$d(\AA)$	μ°	Pure compound	Mixture
quartz	3.34	35.0	48360 cps	2648 cps
KCl	3.15	124.0	19072	6160

For all intensities, the background was 240 cps . The dead time for the counting system was $1.0 \mu \mathrm{sec}$.

The correction for the dead time, τ, makes use of the following equation:

$$
\text { true counts } / \mathrm{sec}=\frac{\text { observed counts } / \mathrm{sec}}{1-\tau \text { observed counts/sec }}
$$

Calculate the concentration of quartz in the rock specimen.
Note that:

$$
\frac{\mathrm{I}_{\alpha}}{\mathrm{I}_{\alpha}^{\mathrm{o}}}=\frac{\mu_{\alpha}^{o}}{\mu} \mathrm{X}_{\alpha}
$$

where:
I_{α}° and $I_{\text {a }}$ are the intensities for the pure compound and the mixture for phase α, respectively.
μ_{α}° and μ are the mass attenuation coefficients for the pure compound and the mixture, respectively.
X_{α} is the weight fraction of phase α in the mixture.
An equation of this type can be written for both quartz and KCl . Combining these two equations to eliminate μ, the unknown mass attenuation coefficient for the mixture:

$$
X_{q}=X_{K C l} \frac{I_{\mathrm{KCl}}^{\mathrm{o}}}{I_{\mathrm{q}}^{\mathrm{o}}} \frac{\mu_{\mathrm{KCl}}^{\mathrm{o}}}{\mu_{\mathrm{q}}^{\mathrm{o}}} \frac{\mathrm{I}_{\mathrm{q}}}{\mathrm{I}_{\mathrm{KCl}}}
$$

First calculate the weight fraction X_{q} of quartz in the diluted specimen. Then, from the value of X_{q} and the dilution factor, calculate the weight fraction of quartz in the original mixture.

$I_{s}=\frac{K_{s} X_{s}}{\rho_{s} \mu} \quad I_{s}^{\circ}=\frac{K_{s}}{\rho_{s} \mu_{s}} \quad I_{a}=\frac{K_{a} X_{a}}{\rho_{a} \mu}$
$I_{a}=\frac{K_{a} X_{a}}{\rho_{a} \mu} \quad I_{a}^{\circ}=\frac{K_{a}}{\rho_{a} \mu_{a}} \quad \frac{I_{a} \mu}{I_{a}^{\circ}=\frac{K_{a}}{\rho_{a} \mu_{a}}} \rightarrow \frac{I_{a}}{I_{a}^{\circ}}=\frac{X_{a} \mu_{a}}{\mu}$

$$
\frac{I_{s}}{I_{s}^{\circ}}=\frac{X_{s} \mu_{s}}{\mu}
$$

$$
\frac{I_{a}}{I_{a}^{\circ}}=\frac{X_{a} \mu_{a}}{\ell^{\ell}}
$$

$$
\frac{I_{s} I_{a}^{\circ}}{I_{s}^{\circ} I_{a}}=\frac{X_{s} \mu_{s}}{X_{a} \mu_{a}}
$$

Sample dead time correction:

$$
R_{\text {true }}=\frac{48360}{1-48360 \cdot 10^{-6}}=50818
$$

Phase	μ	$\mathrm{I}_{\text {pure }}$	$\mathrm{I}_{\text {pure }}^{\text {corr }}$	$\mathrm{I}_{\text {mix }}$	$\mathrm{I}_{\text {mix }}^{\text {corr }}$
Quartz	35.0	48360	50578	2648	2415
KCl	124.0	19072	19203	6160	5958

6. $M 0 B$ is $I 4_{1} /$ amd with $a=3.110, c=16.95 \AA$, and $M 0$ and B atoms in $8 e$, $z=0.196$ and 0.352 , respectively.

Calculate Fo01 and Fo04.
$F_{001}=$ \qquad
\qquad I centered - (001) is extinct
$F_{h k \mid}=\sum_{j=1}^{N} f_{j} \exp \left(2 \pi i\left(h x_{j}+k y_{j}+\mid z_{j}\right)\right)$.

N/2
Fo04 $=2 \Sigma f_{j} \exp \left(2 \pi i\left(4 z_{j}\right)\right)$ since I centered

What must be calculated?
$f_{M_{0}}$ and f_{B}
d004 $=$ \qquad $c / 4=16.95 / 4=4.2375$ \qquad
$(\sin \theta) / \lambda=$ \qquad $1 /(2 d)=0.1180$ \qquad

0.1	0.2	
M_{0}	38.2	32.6
B	3.5	2.4
$f_{M 0}=$	37.2	
$f_{B}=$	3.4	

8e: (00z) ($0, \frac{1}{2}, \frac{1}{4}+z$) $\left(\frac{1}{2}, 0, \frac{3}{4}-z\right)\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}-z\right)$

$$
\begin{aligned}
\text { F004 }= & 2(37.2(\exp (2 \pi \mathrm{i} \times 4 \times 0.196)+\exp (2 \pi \mathrm{i} \times 4 \times 0.196)+ \\
& \exp (-2 \pi \mathrm{i} \times 4 \times 0.196)+\exp (-2 \pi \mathrm{i} \times 4 \times 0.196)))+ \\
& 3.4(\exp (2 \pi \mathrm{i} \times 4 \times 0.352)+\exp (2 \pi \mathrm{i} \times 4 \times 0.352)+ \\
& \exp (-2 \pi \mathrm{i} \times 4 \times 0.352)+\exp (-2 \pi \mathrm{i} \times 4 \times 0.352))) \\
= & 8(37.2 \cos (8 \pi \times 0.196)+3.4 \cos (8 \pi \times 0.352)) \\
= & 8((37.2 \times 0.333)-(3.4 \times 0.598))=82.78
\end{aligned}
$$

7. $\beta-N p$ is $P 42_{1} 2$ with $a=4.897, c=3.388 \AA$, and Np in $2 a\left((000)\right.$ and $\frac{11}{22}$ $0)$) and $2 c\left(\left(0 \frac{1}{2} z\right)\right.$ and $\left.\left(\frac{1}{2} 0 \bar{z}\right)\right), z=0.375$. Find I_{101} for CuK α radiation. Ignore scale factor, absorption and temperature factor.
fcalculation:
$(\sin \theta) / \lambda=1 /(2 \times 2.786)=0.1795$
$f=87-9 \times 0.795=79.84$

$(\sin \theta) / \lambda$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
f	93	87	78	69	60	53	48	44

F calculation:

```
\(F_{101}=79.84\left(1+e^{\pi i}+e^{0.75 \pi i}+e^{\pi i(1-0.75)}\right)\)
\(F_{101}=79.84\left(e^{0.75 \pi i}+e^{\pi i}(0.25)\right.\)
\(F_{101}=79.84(\cos 0.75 \pi+i \sin 0.75 \pi+\cos 0.25 \pi+i \sin 0.25 \pi)\)
\(F_{101}=79.84 \times 1.414 i=112.89 i\)
```

What is p ?
8
(101) (011) (-101) (10-1) (-10-1) (0-11) (01-1) (0-1-1)
LP calculation:
$\theta=16.07^{\circ}$
$L P=\left(1+\cos ^{2} 2 \theta\right) /\left(\sin ^{2} \theta \cos \theta\right)=1.717 /(0.0766 \times 0.961)=23.32$
I calculation:
$I=8 \times 23.32 \times 112.89^{2}=2.38 \times 10^{6}$

