

- μ^* = linear attenuation coefficient
- μ = mass attenuation coefficient
- ρ = density of absorber

μ - values for elements listed in various texts & International Tables for Crystallography

Note that μ changes with X-ray wavelength

Higher atomic no. --> larger μ , in general

Z		Cu Ka	Cr Ka	Fe Ka	ΜοΚα	Z		CuKα	Cr Ka	Fe Ka	ΜοΚα
1	Н	0.435	0.545	0.483	0.380	51	Sb	270	288	472	33.1
2	He	0.383	0.813	0.569	0.207	52	Te	282	707	490	35.0
3	Li	0.716	1.96	1.25	0.217	53	I	294	722	506	37.1
4	Be	1.50	4.50	2.80	0.298	54	Xe	306	753	521	39.2
5	В	2.39	7.38	4.55	0.392	55	Cs	318	793	534	41.3
6	C	4.60	14.5	8.90	0.625	56	Ba	330	461	546	43.5
7	N	7.52	23.9	14.6	0.916	57	La	341	202	557	45.8
8	0	11.5	36.6	22.4	1.31	58	Ce	352	219	601	48.2
9	F	16.4	52.4	32.1	1.80	59	Pr	363	236	359	50.7
10	Ne	22.9	72.8	44.6	2.47	60	Nd	374	252	379	53.2
11	Na	30.1	95.3	58.6	3.21	61	Pm	386	268	172	55.9
12	Mg	38.6	121	74.8	4.11	62	Sm	397	284	182	58.6
13	Al	48.6	152	93.9	5.16	63	Eu	425	299	193	61.5
14	Si	60.6	189	117	6.44	64	Gd	439	314	203	64.4
15	Р	74.1	229	142	7.89	65	Tb	273	329	214	67.5
16	S	89.1	272	170	9.55	66	Dy	286	344	224	70.6
17	Cl	106	318	200	11.4	67	Ho	128	359	234	73.9
18	Ar	123	366	232	13.5	68	Er	134	373	245	77.3
19	K	143	417	266	15.8	69	Tm	140	387	255	80.8
20	Ca	162	468	299	18.3	70	Ym	146	401	265	84.5
21	Sc	184	513	336	21.1	71	Lu	153	416	276	88.2
22	Ti	208	571	377	24.2	72	Hf	159	430	286	91.7
23	V	233	68.4	419	27.5	73	Ta	166	444	297	95.4
24	Cr	260	79.8	463	31.1	74	W	172	458	308	99.1
25	Mn	285	93.0	57.2	34.7	75	Re	179	473	319	103
26	Fe	308	108	66.4	38.5	76	Os	186	487	330	106
27	Co	313	125	76.8	42.5	77	Ir	193	502	341	110
28	Ni	45.7	144	88.6	46.6	78	Pt	200	517	353	113
29	Cu	53.0	166	103	50.9	79	Au	208	532	365	115
30	Zn	60.3	189	117	55.4	80	Hg	216	547	377	117
31	Ga	55.9	212	131	60.1	81	TI	224	563	389	119
32	Ge	75.6	235	146	64.8	82	Pb	232	579	402	120
33	As	83.4	258	160	69.7	83	Bi	240	596	415	120
34	Se	91.4	281	175	74.7						
35	Br	99.6	305	190	79.8						
36	Kr	108	327	206	84.9						
37	Rb	117	351	221	90.0						
38	Sr	125	373	236	95.0						
39	Y	134	396	252	100.	1999					
40	Zr	145	419	265	13.9						
41	Nb	153	441	284	17.1						
42	Mo	162	163	300	18.4						
43	Tc	172	485	316	19.7						
44	Ru	183	509	334	21.1						
45	Rh	194	534	352	22.6						
46	Pd	206	559	371	24.1						
47	Ag	210	586	391	25.8						
48	Cd	281	613	412	37.5						
49	In	243	638	432	29.3						
	0-	256	662	451	31.1	63.33					

What element used for X-ray tube windows?

What element used for protection from X-rays?

Z		Cu Ka	Cr Ka	Fe Ka	ΜοΚα	Z		CuKα	Cr Ka	Fe Ka	MoKo
1	Н	0.435	0.545	0.483	0.380	51	Sb	270	288	472	33.1
2	He	0.383	0.813	0.569	0.207	52	Te	282	707	490	35.0
3	Li	0.716	1.96	1.25	0.217	53	I	294	722	506	37.1
4	Be	1.50	4.50	2.80	0.298	54	Xe	306	753	521	39.2
5	В	2.39	7.38	4.55	0.392	55	Cs	318	793	534	41.3
6	C	4.60	14.5	8.90	0.625	56	Ba	330	461	546	43.5
7	N	7.52	23.9	14.6	0.916	57	La	341	202	557	45.8
8	0	11.5	36.6	22.4	1.31	58	Ce	352	219	601	48.2
9	F	16.4	52.4	32.1	1.80	59	Pr	363	236	359	50.7
10	Ne	22.9	72.8	44.6	2.47	60	Nd	374	252	379	53.2
11	Na	30.1	95.3	58.6	3.21	61	Pm	386	268	172	55.9
12	Mg	38.6	121	74.8	4.11	62	Sm	397	284	182	58.6
13	Al	48.6	152	93.9	5.16	63	Eu	425	299	193	61.5
14	Si	60.6	189	117	6.44	64	Gd	439	314	203	64.4
15	P	74.1	229	142	7.89	65	Tb	273	329	214	67.5
16	S	89.1	272	170	9.55	66	Dy	286	344	224	70.6
17	Cl	106	318	200	11.4	67	Ho	128	359	234	73.9
18	Ar	123	366	232	13.5	68	Er	134	373	245	77 3
19	K	143	417	266	15.8	69	Tm	140	387	255	80.8
20	Ca	162	468	200	18.3	70	Vm	146	401	265	84.5
21	Sc	184	513	336	21.1	71	Lu	153	416	276	88.2
22	Ti	208	571	377	24.2	72	Hf	150	430	286	91.7
22	V	233	68.4	410	27.5	73	Ta	166	430	200	05.4
24	C.	255	70.8	419	31.1	74	W	172	458	308	00.1
25	Mn	285	93.0	57.2	34.7	75	Re	172	473	310	103
26	Fe	308	108	66.4	38.5	76	Os	186	475	330	105
27	Co	313	125	76.8	42.5	77	Ir	103	502	341	110
28	Ni	457	144	88.6	46.6	78	Dr	200	517	353	113
20	Cu	53.0	166	103	50.9	70	An	200	532	365	115
20	Zn	60.3	180	105	55.4	80	Ha	200	547	305	117
21	Co	55.0	212	121	60.1	81	TI	224	563	380	110
22	Ga	35.9	212	131	64.9	01	Dh	224	570	402	120
22	Ge	15.0	255	140	60.7	02	PO D:	232	506	402	120
33	As	83.4	208	100	09.7	0.5	DI	240	390	415	120
34	Se	91.4	201	1/5	74.7						
35	Br	99.0	305	190	19.8						
36	Kr	108	321	200	84.9						
31	RD	11/	351	221	90.0						
38	Sr	125	3/3	230	95.0						
39	Y	134	396	252	100,						
40	Zr	145	419	265	13.9						
41	Nb	153	441	284	17.1						
42	Mo	162	163	300	18.4						
43	Tc	172	485	316	19.7	Note					
44	Ru	183	509	334	21.1						
45	Rh	194	534	352	22.6						
46	Pd	206	559	371	24.1						
47	Ag	210	586	391	25.8						
48	Cd	281	613	412	37.5						
49	In	243	638	432	29.3						
50	Sn	256	662	451	31.1	0.000					

For compounds & mixtures, calculate μ from

 $\mu_{\text{compd or mixture}} = \Sigma$ (wt. fraction)_{element} × μ_{element}

Example for NaCl ($Cu_{K\alpha}$):

(wt. fraction)_{Na} = 23/58.5 = 0.393, (wt. fraction)_{Cl} = 0.607 μ_{Na} = 30.1 μ_{Cl} = 106

 $\mu_{\text{NaCl}} = (\text{wt. fraction})_{\text{Na}} \times \mu_{\text{Na}} + (\text{wt. fraction})_{Cl} \times \mu_{Cl}$ $\mu_{\text{NaCl}} = 0.393 \times 30.1 + 106 \times .607 = 76.2$

Mass attenuation coefficient for an element changes with X-ray wavelength (energy) like this:

Good news/bad news

Bad news

Absorbed energy re-emitted as fluorescent X-rays

Suppose:

Lots of fluorescence

Good news - β -filters

 β -filter materials have atomic nos. 1 or 2 less than anode 50-60% beam attenuation

Good news - β -filters

placing after specimen/before detector filters most of specimen fluorescence

