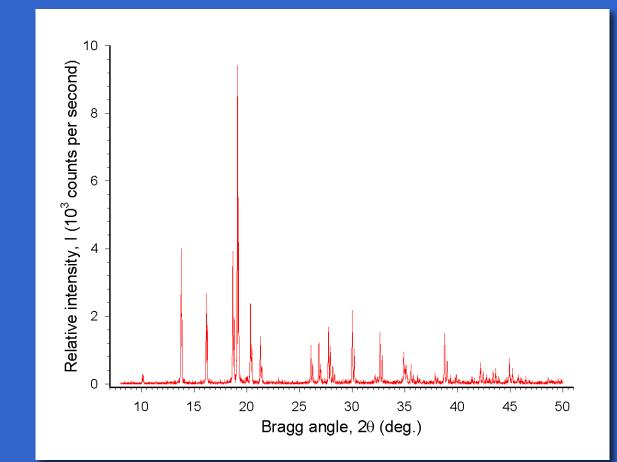
What do X-ray powder diffraction patterns look like?



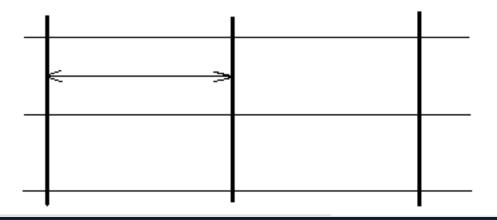
What do X-ray powder diffraction patterns look like?

 $\lambda = 2d_{hk1}\sin\theta_{hk1}$

So what does x-ray diffraction pattern look like?

ldeally, λ is fixed at a single value Measure positions of reflections as θ is changed

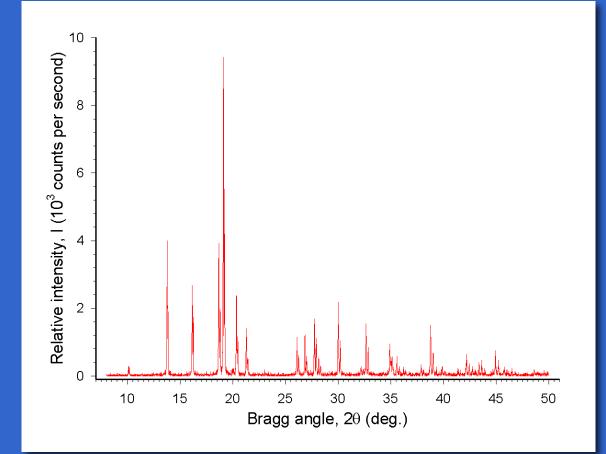
What values of d_{hk1} are possible?



What do X-ray powder diffraction patterns look like?

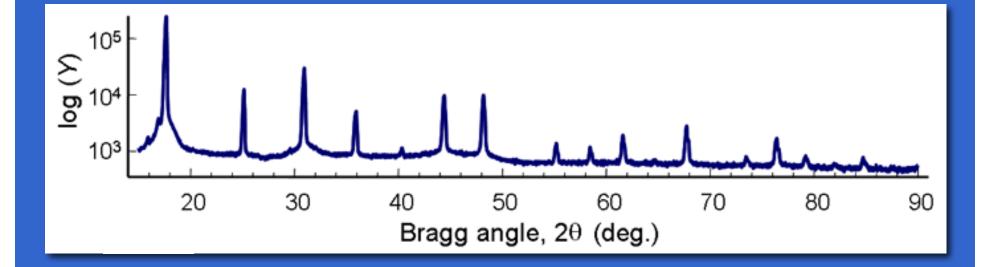
Each peak in pattern is a reflection from a different set of planes

By determining 20 for a peak, can use Braggs' law to get d for that set of planes



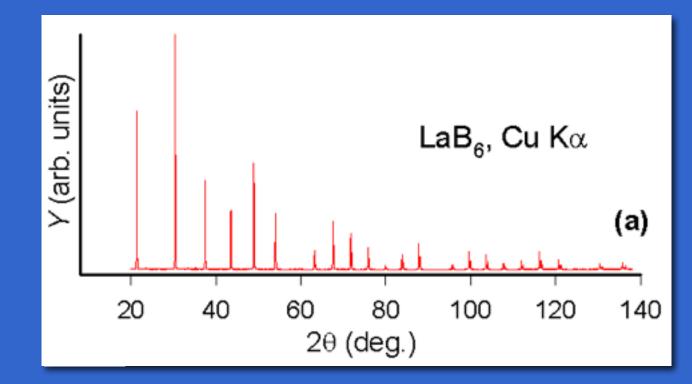
Powder patterns what information available in pattern?

- 1. peak positions
- peak intensities
 peak shape
- background structure **4**.



Powder patterns what information available in pattern?

1. peak positions - give unit cell shape, size, and symmetry Simple example - P cubic:

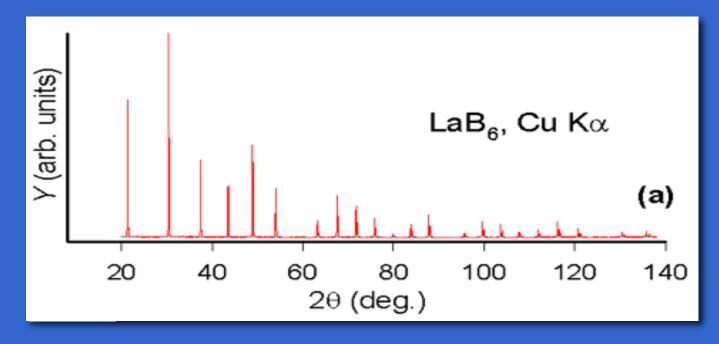


Naming each peak with Miller indices is called " indexing the pattern"

Message: indexing cubic patterns is usually pretty easy especially, if done visually

Why:

usually, relatively few reflections reflections evenly spaced only one lattice parameter to guess



Indexing In cubic: $d_{hkl} = a/(h^2 + k^2 + l^2)^{1/2} = a/s^{1/2}$

> a = s^{1/2} d_{hkl} s is an integer 1, 2, 3, 4....

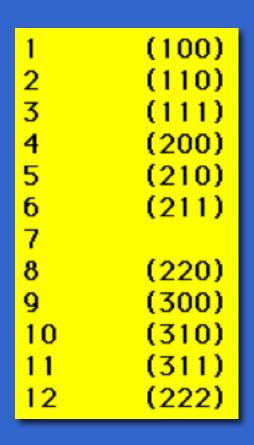
Since $\lambda = 2d_{hkl} \sin \theta_{hkl}$, smallest θ means largest d_{hkl} Since $a = s^{1/2} d_{hkl}$, largest d_{hkl} means smallest s value Thus, lowest 2 θ reflections in pattern are those with small s values

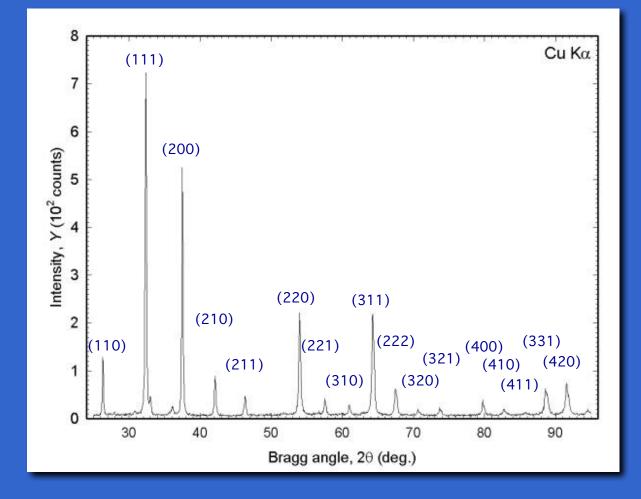
Fill in the (hkl)s for these s values

$h^{2} + k^{2} + 1^{2}$	Р
1	(100)
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
9 10 11	

Indexing Index LaB_6 , Mo K_{α}, CCD detector 3000 (100)1 2 3 (110)2500 Intensity, Y (arb. units) 1000 1000 (111)4 (200)5 (210)6 (211)7 8 (220)9 (300)10 (310)500 11 (311)12 (222)0 5 10 15 20 25 30 Bragg angle, 20 (deg.)

Index





Slight complication: 3 different Bravais lattices in cubic

I cubic (hkl) present only if h + k + l = even

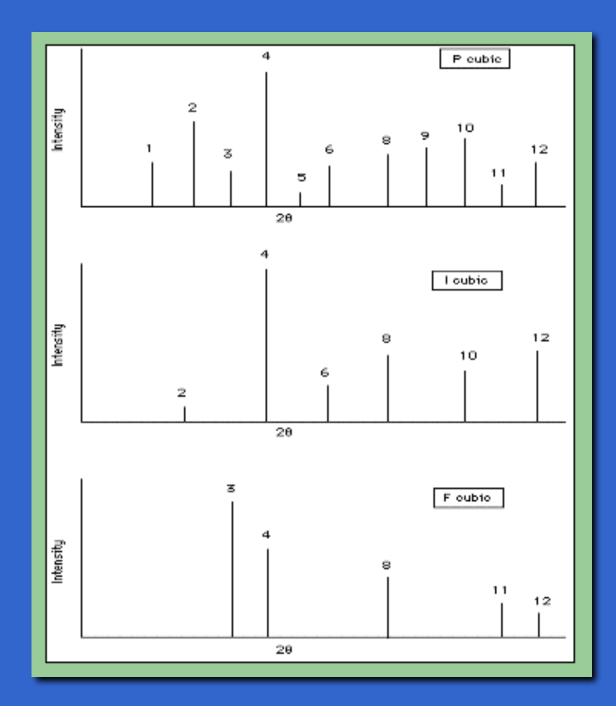
F cubic (hkl) present only if h,k,l all even or all odd

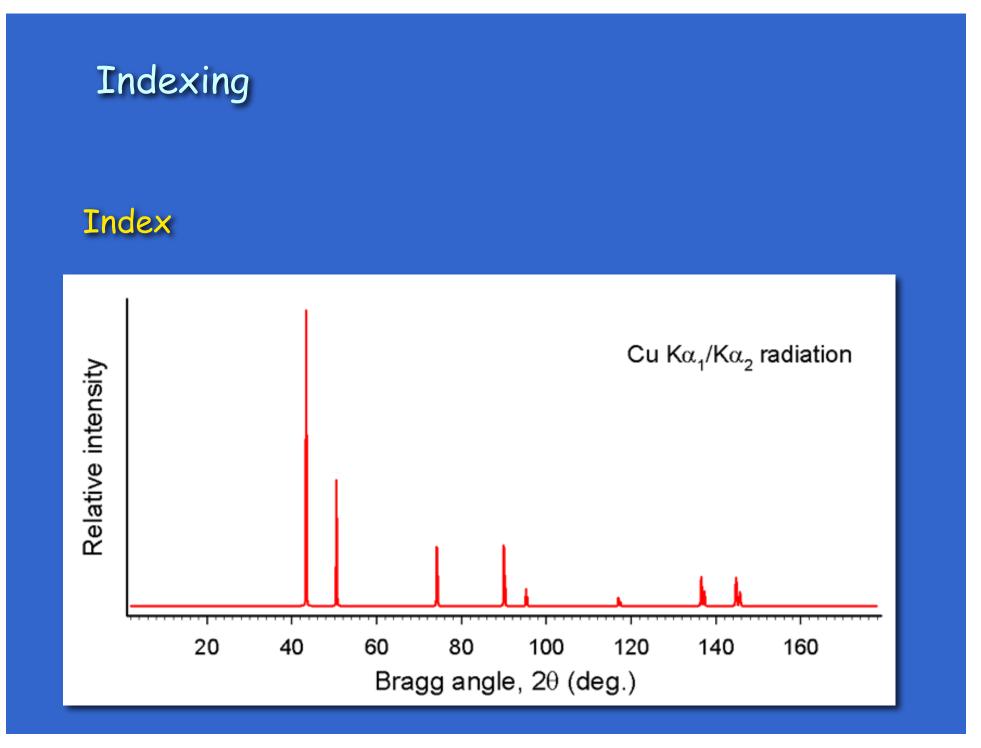
Translational symmetry gives missing planes thus missing reflections

These are "extinction rules"

Fill in the (hkl)s for these I cubic (h + k + l = even) & F cubic (h,k,l all even or all odd)

$h^{2} + k^{2} + l^{2}$	Р	L.	F
1	(100)		
2	(110)		
3	(111)		
4	(200)		
5	(210)		
6	(211)		
7			
8	(220)		
9	(300)		
10	(310)		
11	(311)		
12	(222)		





Indexing How to know indexing is correct? Correct indices give consistent set of lattice parameters Example for cubic: d(Å)nkl) a(Å)(hkl) 3.157 (111) 5.468 1.931 (220)5.462 1.647 (311) 5.462 1.366 (400)5.464

Other types of translational symmetry also give missing planes

glide planes and screw axes

Ex: $F(4_1/d) = 32/m$ (Okl) present if k + l = 4n (hhl) present if h + l = even (hkl) if h + k + l = odd or 4n

(for some structures w/ this space group)

What if it's not cubic?

Manual indexing methods usually very tedious - use computer indexing programs such as "Ito", "Treor", "Crysfire", "Dicvol", others

Computer indexing frequently not easy - sometimes have to use several, or all, indexing programs to figure out right answer Why index?

It can be fun! Like solving a puzzle

Indices needed to calculate lattice parameters need (hkl) and dhkl for all reflections use all reflections to get high precision cubic: $d_{hkl}^2 = a^2/(h^2 + k^2 + l^2)$ tetragonal: $1/d_{hkl}^2 = (h^2 + k^2)/a^2 + l^2/c^2$ hexagonal: $1/d_{hkl}^2 = (4/3)(h^2 + k^2 + hk)/a^2 + l^2/c^2$ orthorhombic: $1/d_{hkl}^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$

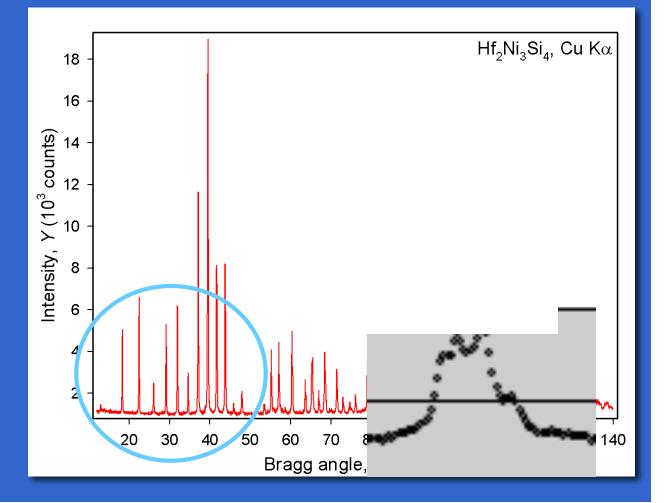
etcetera

Indexing ATCF!!!

But.....小心

Looks cubic

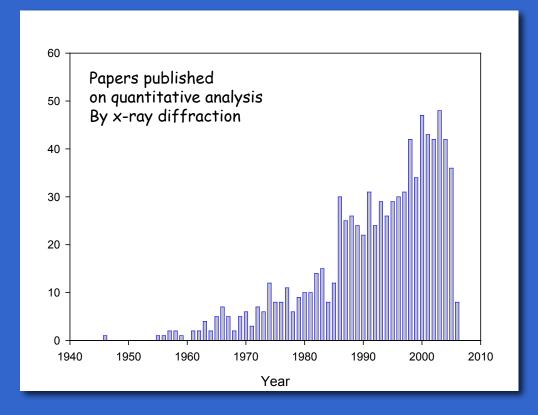
But it is not! (C orthorhombic)



Powder patterns – what information available in pattern?

- 1. peak positions
- 2. peak intensities how much?
- 3. peak shape
- 4. background structure

Relatively recent increase in use of Xray diffraction for quantitative analysis

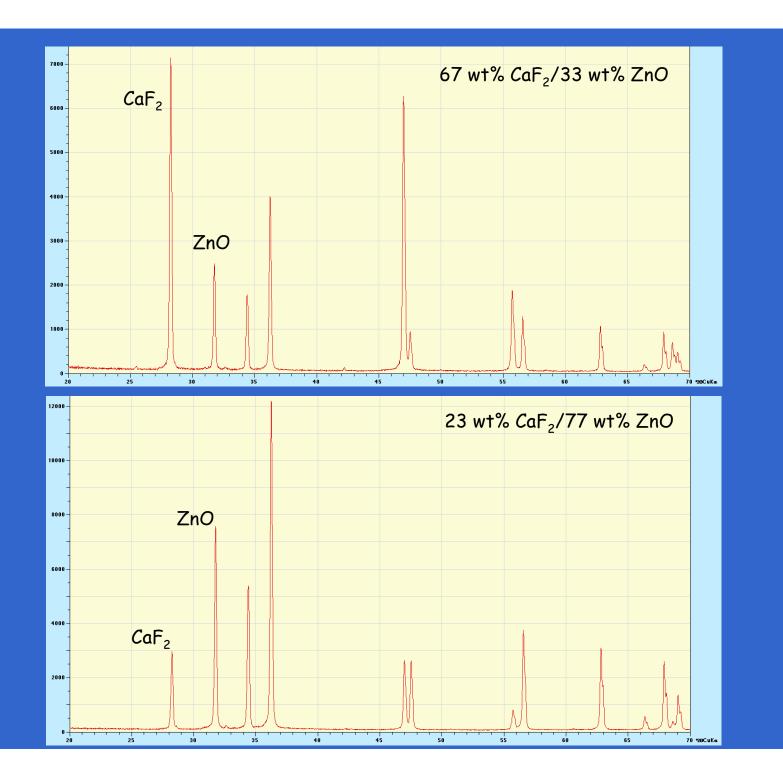


Powder patterns what information available in pattern?

- 1. peak positions
- 2. peak intensities how much?
- 3. peak shape
- 4. background structure

Quantitative analysis

Example: 2-phase mixtures of CaF₂ & ZnO



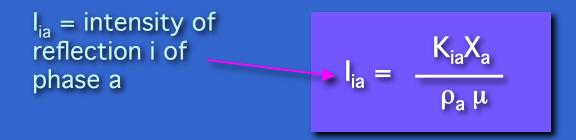
Use measured intensities but not simple

Main equation for quantitative analysis

$$I_{ia} = \frac{K_{ia}X_{a}}{\rho_{a} \mu}$$

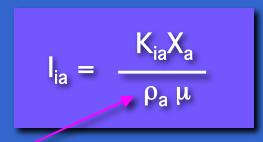
Use measured intensities but not simple

Main equation for quantitative analysis



Use measured intensities but not simple

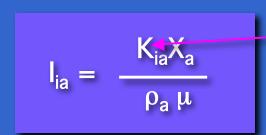
Main equation for quantitative analysis



 ρ_a is density of phase a

Use measured intensities but not simple

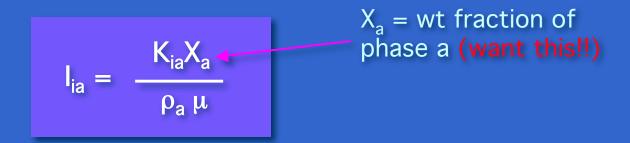
Main equation for quantitative analysis

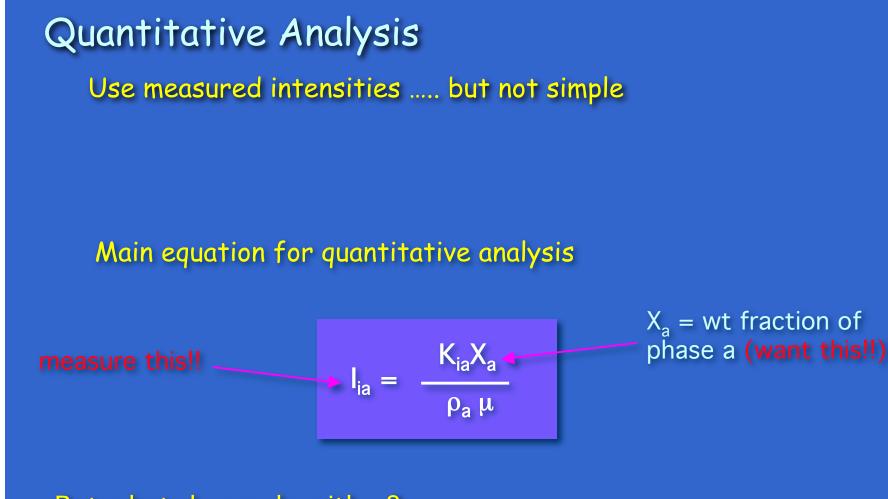


 K_{ia} contains structure factor, multiplicity, Lorentzpolarization factor, temperature factor + scale factor for reflection i of phase a

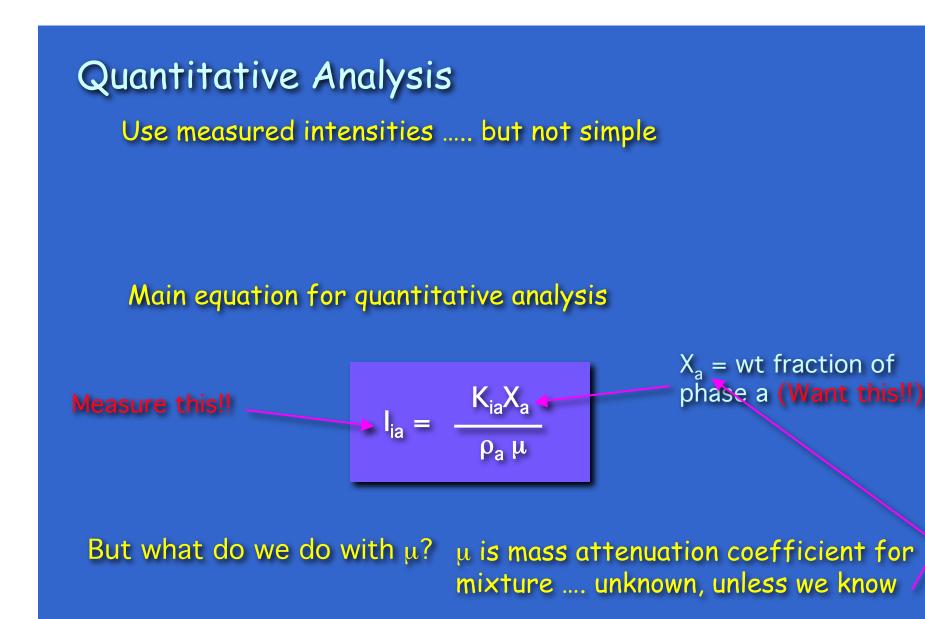
Use measured intensities but not simple

Main equation for quantitative analysis





But what do we do with μ ?



Use measured intensities but not simple

$$I_{ia} = \frac{K_{ia}X_{a}}{\rho_{a} \mu}$$

If sample contains > one phase, then μ unknown if wt fractions unknown

 $\mu_{\text{mix}} = X_1 \mu_{\text{phase 1}} + X_2 \mu_{\text{phase 2}} + X_3 \mu_{\text{phase 3}} + \dots$

 μ for each phase may be calculated from the chemical composition of each phase

 $\mu_{\text{compd}} = X_1 \mu_1 + X_2 \mu_2 + X_3 \mu_3 + \dots$

Use measured intensities but not simple

Main equation for quantitative analysis

$$I_{ia} = \frac{K_{ia}X_{a}}{\rho_{a} \mu}$$

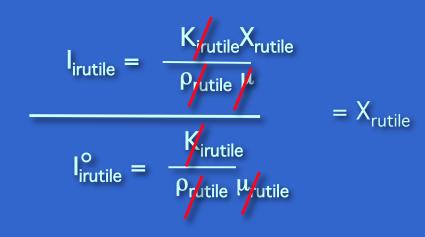
would also be nice not to calc \textbf{K}_{ia} or get ρ_{a}

Use measured intensities but not simple

Simple example: rutile/anatase polymorphs since polymorphs have same composition:

 $\mu_{mix} = \mu_{rutile} = \mu_{anatase}$

Suppose we measure $\mathbf{I}_{irutile}^{\circ}$ of pure rutile can eliminate μ_{mix} (& other stuff)



Use measured intensities but not simple

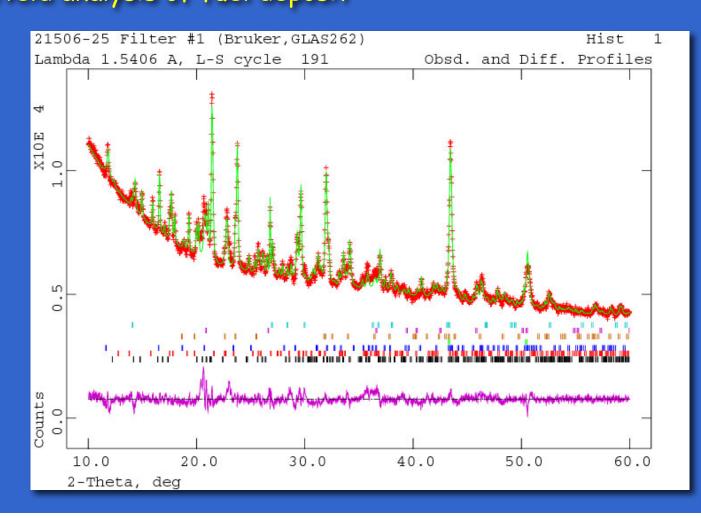
$$I_{ia} = \frac{K_{ia}X_{a}}{\rho_{a} \mu}$$

For mixtures that are not polymorphs, many single & multiple peak procedures have been developed that use known amounts of

internal standards - mixed with unknown external standards - run separate x-ray pattern of standard material

Most analysis techniques tell only what elements are present & how much. X-ray diffraction tells how much of what PHASES are present

Recently, whole pattern analysis methods for quantitative analysis have become popular. Example: Rietveld analysis Rietveld analysis of fuel deposit



Rietveld analysis of fuel deposit

mohrite, $(NH_4)_2Cu(SO_4)_2(H_2O)_6$, wt%	29.2(1)
Na ₂ SO ₄ -III, wt%	21.1(2)
lecontite, (NH ₄)NaSO ₄ (H ₂ O) ₂ , wt%	18.9(2)
mascagnite, (NH ₄) ₂ SO ₄ , wt%	8.1(2)
gypsum, $CaSO_4(H_2O)_2$, wt%	6.0(1)
copper, Cu, wt%	11.9(1)
lepidocrocite, γ-FeOOH, wt%	2.3(1)
quartz, SiO ₂ , wt%	2.5(1)