

Frau Röntgen's hand

X-ray tube

White radiation

Produced upon "collisions" with electrons in target

X-rays

Mechanism

Typical tube spectrum

X-rays - vary tube voltage

X-rays

More electron transitions

Cu spectrum

Au L spectrum

X-rays

Moseley's law - energy vs. atomic number

Sealed tubes - Coolidge type common - Cu, Mo, Fe, Cr, W, Ag

Element	<i>Kα</i> (weighted average)*	Kα ₂ strong	<i>K</i> α ₁ very strong	<i>Kβ</i> 1 weak
Cr	2.29100	2.293606	2.28970	2.08487
Fe	1.937355	1.939980	1.936042	1.75661
Со	1.790260	1.792850	1.788965	1.62079
Ni	1.659122	1.661747	1.657910	1.500135
Cu	1.541838	1.544390	1.540562	1.392218
Мо	0.710730	0.713590	0.709300	0.632288

* $K\alpha_1$ is given twice the weight of $K\alpha_2$.

Characteristic L Lines of Tungsten

	Line	Relative intensity	Wavelength
ſ	La1	Very strong	1.47639
	Laz	Weak	1.48743
	LB	Strong	1.281809
	LB2	Medium	1.24460
	LB3	Weak	1.26269
	$L\gamma_1$	Weak	1.09855
L			

 $\lambda_{Ka} = (2 \lambda_{Ka1} + \lambda_{Ka2})/3$

Sealed tubes - Coolidge type common - Cu, Mo, Fe, Cr, W, Ag intensity limited by cooling requirements (2-2.5kW) (~99% of energy input converted to heat)

Intensity changes with take-off angle

But resolution decreases with take-off angle

focal spot - normal focus 1x10 mm --> 0.1x1mm (line) $\alpha = 6^{\circ}$ 1x1mm (spot) fine focus 0.4 x 0.8 mm --> 0.04 x 0.8 mm (line) 0.4 x 0.8 mm (spot)

Other X-ray sources

Rotating anode

Other X-ray sources

Synchrotron

need electron or positron beam orbiting in a ring beam is bent by magnetic field

Comparisons of spectra from various synchrotron facilities as well as laboratory $K\alpha$ Cu and Mo radiation, and the white or brehmsstrahlung radiation from X-ray tubes: ALS is the Advanced Light Source at Lawrence Berkeley Laboratory, Berkeley, CA; NSLS is the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY; SSRL is the Stanford Synchrotron Research Laboratory, Stanford, CA; and, APS is the Advanced Photon Source at Argonne National Laboratory, Argonne, IL.

Other X-ray sources

Synchrotron

need electron or positron beam orbiting in a ring beam is bent by magnetic field

x-ray emission at bend

Advantages

10⁻⁴ - 10⁻⁵ rad divergence (3-5 mm @ 4 m)

high brilliance wavelength tunable

high signal/noise ratio

Collimation

parallel beam	
divergent beam	

Monochromatization

β-filters – materials have atomic nos. 1 or 2 less than anode 50-60% beam attenuation placing after specimen/before detector filters most of specimen fluorescence allows passage of high intensity & long wavelength white radiation

Monochromatization

β-filters - materials have atomic nos. 1 or 2 less than anode 50-60% beam attenuation placing after specimen/before detector filters most of specimen fluorescence allows passage of high intensity & long wavelength white radiation

Monochromatization

Crystal monochromators – LiF, SiO₂, pyrolytic graphite critical – reflectivity ex: for MoKa, LiF 9.4% graphite 54 %

Monochromatization

Crystal monochromators - LiF, SiO₂, pyrolytic graphite critical - reflectivity ex: for MoKα, LiF 9.4% graphite 54 % resolution - determines peak/bkgrd ratio & spectral purity best - Si - 10" graphite - 0.52°

Monochromatization

Monochromator shape

usually flat - problems with divergent beams

concentrating type - increases I by factor of 1.5-2

