Meteo 473 Boot Camp Manual – Version 13
George S. Young

August 22, 2007
1 Programming
· Purpose of Boot Camp – to ensure that every student is ready to tackle real world programming projects.

· Boot Camp covers programming from the bottom up, covering each topic using the following steps:
· Concepts (e.g. variables, assignment, operators, arrays, loops, functions, objects)
· Tokenization: dissecting a statement into its component parts that together implement the concept – the search for meaning
· Syntax: grammar and punctuation of a statement – the nit picking details
· Patterns – i.e. the situations in which you would use the concept

· What is programming?
· Designing algorithms – demonstrate with a simple transcendental equation solver
· Writing code – demonstrate by breaking up the code by concept and then jump to the pre-written code showing that each concept is implemented as a separate code statement
· Debugging code – teach through the demonstrations rather than lecturing about this in depth.
· The Four Pillars of Understanding

· Concepts – what a particular programming structure does (e.g. an assignment statement or a loop)
· Tokens – what are the component parts required to specify the mission and behavior of a particular programming structure.
· Real world example: A cheeseburger would break into 6 tokens
· The beef patty
· The bun, the cheese
· The ketchup
· The mustard
· The onion
· The pickle.
· Programming example: Similarly, a loop would break into 5 tokens
· The loop keywords, for and end. Like the bun in a cheeseburger, this token has 2 parts. Also like the bun, it bounds the loop.
· An index variable, k
· An initial value, 0
· A step size, 2
· A final value, 10
· Putting this all together gives
for k=0:2:10

end
· Note that this loop includes punctuation to help the language’s compiler distinguish the tokens. This combination of tokens and punctuation makes up the syntax of the statement.
· Syntax – how this particular language implements the concept, and how it expresses and punctuates this set of tokens
· Patterns – what situations or tasks would you use this structure for.
· NOTE 1: Only the syntax typically varies much from language to language. So if you’ve learned one language this way transitioning to another language is mostly just a matter of looking up syntax.
· NOTE 2: We’ll also include a list of gotchas for each programming structure, things you have to watch out for when using it. You can think of this as the fifth pillar of programming if you wish.
· Sources of help – demonstrate each – make students do the same
· Tutorials

· Help – effective search and see-also
· Google
· Log on and practice with help, looking up constants, assignment, and variables if time permits
· Practice tearing what help says into the concept, token, syntax, and pattern parts

· Help can be vast in some areas, so it’s easy to get lost. To avoid this, try to narrow down your search by searching for terms that would appear only in the article you’re looking for. The false starts you get in your first tries should be exploited in your quest for the perfect search term. When you get something irrelevant, don’t just guess again. Instead try to use the results to figure out what misled the search engine and thus avoid the trap on your next try.
2 The edit-compile-run cycle
· Programs are created by encoding algorithms in a particular computer language. The program’s code is usually written and revised using a text editor, much as one would use a word processor to write and edit a term paper. The more sophisticated editors use colored fonts to highlight the tokens for you, making it much easier to understand and debug the code. Matlab provides such an editor, and we will use it to edit our Boot Camp programs.
· Once we’ve written enough code that the program should do something, we ask the compiler to translate the program into a set of low-level machine instructions that the computer’s processor can understand. If our code is free of syntax errors, then the compile stage will succeed. If not, we’ll get compile-time error messages. In Matlab these messages include hyperlinks that will take you back to the line at which the error occurred. Read all of the error message before following the link back to the code! Use your tokenization skills to extract as much insight as possible from the error message.

· Once your code compiles without error, you may run it. In an interpreted language, such as Matlab, your program will be run automatically after it is compiled. In fact, these two stages are blended in interpreted languages, so that the first part of the program may run before the compiler encounters a show-stopping syntax error.

· Most often you’ll find that your running program doesn’t behave as desired, so you go back, re-think the algorithm and coding, and then repeat the edit-compile-run cycle.
3 Data structures
· Constants

· Concept: one or more data values that won’t change over the life of the program.
· Tokens: constants have a single token, the value of the constant
· 3.14159 – the value of the constant
· Patterns: constants are used wherever you’re sure the value won’t change during the course of a program run.
· Syntax:
· Examples:
· 12

· 3.14159

· -47.2

· ‘fred’

· Good program editors highlight the most important tokens by showing each type of token in a different color. As you learn new statement types, check to see what color your editor uses for their tokens. For example, what colors are each of these different constants in Matlab’s editor?
· Gotchas

· Constants are pretty hassle free unless you need to use one constant in several different places within your program. Then, because of “Thomas’ Curse” you’ll probably find that you have to change the value and then forget to do so in one of these places. Thus, if you find yourself using a constant in more than one place, it is better to use a variable as defined below. Such constant-holding-variables are easiest to find and alter if you put them all together near the top of your program.
· Types
· Concept: Constants can have any number of types as seen from the example above.

· Floating point numbers: 1.3 or -3.7 or even 3.7e4 if we feel like using scientific notation. We use floating point numbers for most of our mathematical calculations because they allow decimal fractions.

· Integer numbers: 1 or -3 are used when we want to count things. Beware of doing math with integers as some languages give unexpected results (due to rounding) when dividing integers. Matlab just converts them to floating point numbers in that case, which is probably what you desired.

· Character and string: ‘a’ or ‘Paul’. Matlab uses quotes to distinguish strings of characters from other elements of the language. This is typical of most computer languages, but some languages use double quotes instead.

· Boolean: true or false, which Matlab interprets as 1 or 0. Booleans are often used to help your program make a decision. For example: do this if a condition is true, but otherwise do something else. Thus, you have to beware of creating a Boolean when you thought you were doing math, and vice versa.

· Gotchas:

· Type conflicts such as this arise when you’re using one type where the language expects another. Some languages (like C++) are very rigid and require you to manually convert types for almost any mixed-type operation. Others (like Perl) are smart enough to figure out what you want and do the type conversion for you. Matlab is about half way in between, doing some type conversions on the fly but missing some others that seem perfectly obvious/
· Type conversion can be done manually in Matlab if need be. For example num2str(12) converts the integer 12 into the string ‘12’.
· Tokens: num2str(12) has 5 tokens
· num – the initial type
· 2 – states that we want to switch the type to something else
· str – the final type
· () – holders for the input value, think of the parentheses as an open mouth ready to take anything you shove in.
· 12 – the input value
· Variables

· Concept: Variables are used when we want to store a value that our program computes. Their name derives from the fact that we can reset their value.
· Tokens: variables have a single token, the name of the variable
· Example:
temperature
· Tokens:
 1
· Patterns: variables are used wherever whenever you want to create or change a value during the course of a program run.
· Syntax: variable names consist of one or more characters. Most languages allow letters, numbers, and underscores but require that the name begin with a letter.
· Examples:
· temperature

· Beta12

· GAMMA_14

· ‘fred’

· Gotchas:
· Typing: Many languages (such as C++) require you to specify what type of value a variable holds before you use it. Matlab does not, but that means that you can change the type of the value stored in a particular variable during the course of a program run. If you forget that you’ve done this, no end of confusion can result.
· Type conflicts: In most languages variable names provide no hint of what type of value is stored in the variable, so it is easy to get type conflicts when using two variables (or a variable and a constant) in a single operation.
· Name conflicts: Many of the good names are already taken by built in features of the language you’re using, so the sooner or later you’ll name a variable the same thing as one of these features. If the language is nice, it will warn you (although the error message may appear tangential to the real problem). If not, you’ll either invoke that language feature when you thought you were using the variable or you’ll clobber that language feature for the rest of the program. For example, name a variable i in Matlab and you’ll find that you’ve redefined the square-root of -1.
· Naming conventions: Most languages have some maximum length for variable names and some have other quirky requirement such as capitalization or, in the case of FORTRAN, which types of values can be stored in variables whose names begin with certain letters.
· Booleans: Just what constitutes true and false varies greatly from language to language. Some predefine the variable true to be true and false to be false, others do not. Some use 0 for false and 1 for true and others use anything that isn’t 0 for true. A little experimentation can save you a lot of grief.
· Assignment

· Concept: We need some way to get a value into a variable and assignment is it.
· Tokens: Assignment has three tokens: the variable to which we’re assigning the value, the assignment operator, and the value we’re assigning. The assignment operator consists of a single token, although that token can consist of more than one symbol. Most languages use an equal sign as an assignment operator, just as we do in algebra, but some use a colon or two or some combination of colons and something else. The trick is to remember that values pass through this symbol, like through a pipe in the case of the equal sign or through an intestinal track in the case of a colon.
· Patterns: assignment is used whenever we need to store the result of a calculation or other operation for later use.
· Syntax: In most languages information flows from right to left through the assignment operator so the syntax is variable_name = value
· Example: temperature = 86.4
· Tokens: 1 2 3
· temperature is the variable

· = is the assignment operator

· 86.4 is the value being assigned
· Gotchas:

· Direction: Assignment is fairly simple, but you’ve got to remember that it is a pipeline for values from the right hand side of the assignment operator to variables on the left. It is not the same as an algebraic equal sign even though we often use it to write equations.
· Multiple assignment: Some languages let you create expressions that return more than one value and then use an assignment operator to store those values in multiple variables. Most languages do not.
· Allowed symbols can vary between languages.
· Practice

· Try assigning real, integer, string, and Boolean values to variables.
· If you’ve programmed in a different language before, how does the syntax compare? The syntax may vary between languages, but the tokens should be the same.
· Arrays
· Concept: Sometimes you need to store a group of related variables, for example a list of groceries to by or an array of afternoon temperatures on a gridded map. The multiple-value variables used to hold these lists and grids are called arrays. An index is used to specify which of the multiple values you want to use. Think of the array as a hotel and index as the room number. An egg carton is a good example of a two-dimensional array. It would have two indices, one to tell you which of the two rows to look in and the other to tell you which of the six eggs in that row is of interest. The playing board for the children’s game Battleship is another example of an array. The player specifies her targets by stating the row and column in that array: B4 – A hit!
· Tokens: An array has 3 or more tokens
· Example: TempList(4) would get item 4 from a list called TempMap. Check out the syntax section for examples of how to create an array.
· Tokens:
· TempMap is the array name
· () note that the two parentheses together form a single token, a holder for the index
· 4 is index
· Patterns: use an array whenever you need to store a group of values. Common applications include lists of names or numbers and two- or three-dimensional grids of numbers. For example, you’d store all the coefficients in a polynomial in a one-dimensional array (i.e. a list) or a map of gridded temperature values in a two-dimensional array.
· Syntax: The index syntax varies with the number of dimensions in the array, but nothing else changes
· One-dimensional array (e.g. a list)

· GradeList(myIndex) = 37
· myGrade = TempList(myIndex)
· You need to know which of the various values in the list is of interest. Then you use the index to ask for that value. For example, in Matlab you’d ask for GradeList(3) to access the third value in a list of grades.
· Two-dimensional array (e.g. a gridded map) – note the 4th token here, the comma separates the two indices needed to define a location in a grid. The first index tells the array which row to access and the second index tells it which column.
· TempMap(2,4) = TopekaTemperature
· myTemp = TempList(rowIndex,columnIndex)

· etc most modern languages let you use as many dimensions as you need.
· Gotchas:
· Index holders can vary from language to language. () are common, but [], and sometimes even { } are used.
· Index separators can vary from language to language. Most use commas, but some primitive language which only allow one-dimensional arrays use multiple sets of index holders instead. For example: x(1,2) or x(1)(2).

· Block access lets you work with more than one of the values in an array. This lets you deal with multiple values at once, simplifying your program and saving you time. Block access is possible in many languages, typically through a startIndex:endIndex syntax. These languages often let you specify that you want to use all possibilities for an index, typically with a syntax of : or *.
· Mixing types in an array is forbidden in most languages. For example, you couldn’t put a string and an integer in the same list. These languages typically provide an alternative (e.g. structure, records, or objects) that let you get away with this. They take more memory space and may slow your program a bit, but they solve the problem.
4 Operators

· Concept: Now that we’ve stored values in variables we want to operate on them to create new values. Operators are the symbols we use to tell a language to do such an operation. Each operator operates on one ore more values to produce a single result value.
· Types of operators

· Arithmetic operators such as plus or times perform the standard mathematical operations, for example + is the addition operator and * is the multiplication operator. Most languages have add, subtract, multiply, divide, and exponentiation (i.e. taking a number to a power). Some languages support matrix operations as well.
· Logical operators are used to determine the truth of some condition.
· Boolean
· String operations are used for manipulating text. Concatenation, the merging of two strings end-to-end, is available in most languages, but some languages offer many others.
· Tokens: operators consist of one token to tell the language which operation to perform and one or two tokens to tell it which values to operate on (i.e. the operands)
· Examples:
· 2 * x
yields twice the value stored in x
· * is the operator token for multiplication

· 2 and x are the two value tokens

· -y
yields the negative of the value stored in y
· - is the negation operator, changing the sign of its operand

· Patterns: Operators are used wherever we wish to perform some common action on one or two values. Rarer actions or those performed on many values are typically implemented as functions, as described in a later chapter. Languages vary on which actions they implement as operations and which as functions. For example, while most languages would implement tangent(x) as the function tan(x) and the addition of x and y as x+y, taking the inverse of the matrix A is implemented in some languages using a function inv(A) and in others using the exponentiation operator A^-1.
· Syntax: In most languages operators can be separated from their operands by white space if you desire. Often this makes your code easier to read, particularly if used consistently or to line up related operations from one line to the next.
· Infix notation is used when there are two operands, the operator is just fixed in between the two operands.
· Operand1 Operator Operand1
· x * y

· Prefix notation is typically used when there is only one operand, the operator just sits in front of the operand
· - 32.74
· Postfix notation is sometimes used for operators that traditionally follow their single operand in mathematics. Postfix operators are fairly rare in mathematics and in programming languages so these two are the only ones you are apt to encounter.
· A’ where ‘ transposes the matrix A, swapping its columns and rows
· 3! where ! is the factorial operator, so 3! yields 3*2*1 = 6.
· Gochas:
· Overloaded operators: Some languages use a particular symbol to denote more than one type of action. It performs one action when it operates on one type of values and a different action when it operates on another type. For example, 2 + 3 might be 5 while ‘2’ + ‘3’ might be ‘23’. Then again, the language you’re using may automatically convert the strings in the second example to their ASCII code numbers 50 and 51 and add those to yield 101. A little experimentation can save you a lot of grief.
· Unary operators: An operator that acts on only one value must sit either before or after its operand. The trick is to make sure that an overloaded operator such as – acts like a unary (negation sign) operator when you want it to – 5 and like a binary (minus sign) when you want it to 3 – 1. Most languages are bright enough to figure this out from the context, but some aren’t. When in doubt, use parenthesis as described next.
· Operator precedence: In computer languages, as in algebra, some operators are traditionally invoked before others. For example 5*4-2*3 is 20-6, 14, rather than 5*2*3, 30. Precedence (i.e. priority for execution) of times is thus greater than that of minus. There are two gotchas, however. First, most languages have enough operators that it’s hard to remember their precedence, and second, the precedence order varies somewhat from language to language. Therefore it is common to use parentheses to define your own precedence. Their use is simple. The expression inside the innermost pair of parentheses in an expression is executed first. Then this value is substituted into the expression and the process is repeated. For example 5*(4-2)*3 is 30, because we’ve used the parenthesis to make sure the subtraction to be done first despite its low precedence.
· Standardization is close to nonexistent between languages. Most can agree that + means add and * means multiply, but beyond that a wide range of symbols can be used for a single operation. This problem is even worse for logical and Boolean operators than it is for arithmetic operators. The only solution is to find the operator list for your language, bookmark it, and keep it handy.
5 Program flow control
· If-then-else:
· Concept: Frequently we wish the program to do one thing in one set of circumstances and something else entirely under a second set of circumstances. For example, we’d like the program to process data if more cases are available, but to compute the final answer and shut down if all the cases have been processed. If-then-else statements provide the solution, letting you set the conditions required for one or more blocks of code to execute.
· Tokens
· One-block if-then structures have four tokens.
· if is the first token, it tells the compiler that it’s dealing with a conditional statement of some kind.
· A Boolean if-condition is the second token. If it is true, then the block is executed, but if it is false the block is ignored.
· Block delimiters mark the beginning and end of the block to be executed. For example some languages use { and } as block delimiters
{
code block goes here
}

and others use then and end
then

code block goes here

end
while still other languages realize that the then can be deduced from the existence of an if statement, and so leave it out entirely!

· Code block is just the lines of code you want to be executed.
· Two-block if-then-else structures have seven tokens
· if is the first token, it tells the compiler that it’s dealing with a conditional statement of some kind.
· A Boolean if-condition is the second token. If it is true, then the block is executed, but if it is false the block is ignored.
· Block delimiters to mark the beginning and end of the block to be executed if the condition is true.
· Code block containing the lines of code to be executed if the condition is true.
· else to separate the first (condition is true) code block from the second (condition is false) code block
· Block delimiters to mark the beginning and end of the block to be executed if the condition is false.
· Code block containing the lines of code to be executed if the condition is false.
· Patterns: Use an if-then structure if you want to execute one or more lines of code under some circumstances and not under others. If you want to execute one block under one set of circumstances and another block the rest of the time use an if-then-else structure.
· Syntax:

· One-block if-then – The then is absent in many languages. Note also the indentation. It is often used to highlight the code block even in languages where it is not used as the block delimiter.
if x > 3 then

y = x * 2

z = y + 3

end

· Two-block if-then-else

if x > 3 then

y = x * 2

z = y + 3

else

y = 2 / 3

q = 47

end
· Gotchas:

· Nesting if-then-else structures is allowed just by putting one if structure inside a code block of another. Most languages have shortcut syntax for common forms such as if-then-elseif-then-else-end. Beware the many spellings of elseif, elsif, else if as they vary from language to language.
if x > 3 then

y = x * 2

z = y + 3

else if y < 2 then

y = 2 / 3

q = 47

end
· Case statements are allowed in some languages as a syntax shortcut for if statements with more than 1 elseif block. This is often simpler than coding an if-statement with many elseif clauses. Syntax varies between languages and case is sometimes called switch or some other token. Instead of
if z = 3 then

y = sin(x)
else if z = 2 then

y = cos(x)

else if y = 17 then

y = tan(x)

else

y = x

end

you could use

switch z

case 2

 y = sin(x)

case 4

 y = cos(x)

case 17

y = tan(x)

otherwise

 x = x
end
The case statement actually takes one more line and is a bit less flexible, so it isn’t wildly popular. It is, however, less cluttered, so it can be easier to read. It’s your call whether to use them or not.

· Boolean comparison versus assignment: All = aren’t equal. Languages that use = for both Boolean comparison and assignment are usually bright enough to figure out that the = in an if statement must be a Boolean comparison. Those that use different symbols, however, will often let you goof up without warning when you use an assignment operator when you meant to make a Boolean comparison.
· Block delimiters vary greatly between languages. They all have some way of specifying which lines of code get executed when the if-condition is met, but the syntax varies wildly. Some languages require a then, others realize it’s redundant. Some require an end statement at the end of a block, others set of the entire block in curly brackets { } instead, and still others use indentation to define the extent of a block. When in doubt, look it up in your language’s help.
· For loops:
· Concept: Loops are used whenever you want to execute a group of code lines more than one time.
· Tokens:

· For is the first token, it tells the compiler that it’s dealing with a loop of some kind.
· Index, the second token, names a variable whose value will be changed for each pass through the loop.
· Start_value, the third token, specifies the value the index variable should take for the first pass through the code block.
· Step_value, usually the 4th or 5th token, specifies the amount by which the index changes between passes through the code block. Many languages will assume you want a step size of 1 if you leave this token out.
· End_value, usually the 5th or 4th token, specifies the limiting value for the loop index. Once the index steps beyond this value the loop ends.
· Example 1: in Matlab for k = 1:2:8 would result in the index, k, taking the values 1, 3, 5, 7 on successive passes through the code block.
· Example 2: If we used a negative step value instead the index would decrease each time. Thus, for m = 20:-2:16 would result in the index, m, taking the values 20, 18, 16 on successive passes through the code block.
· Block delimiters to mark the beginning and end of the block to be executed repeatedly. Most languages use the same style of delimiters for loops as they did for if statements. For example C++ uses { and } in both loops and ifs while Matlab uses end in both. Some languages use endif and endfor to help you keep the two straight.
· Code block containing the lines of code to be executed repeatedly.
· Patterns: Use loop if you want to execute one or more lines of code again and again with different input values each time. If you know ahead of time how many times you want to execute the code block (the usual situation) you can use a for loop as described above. If instead you want to keep re-executing the code block until it gets the answer right (for example to find the solution to a nonlinear equation), then you’ll need a while statement (This would be a good time to practice using your language’s help facility, so try looking up loops to see if it offers a while statement). While statements are actually a cross between loops and if statements since they keep executing the code block until the specified condition fails. Think of them as infinitely repeating loops with enough sense to know when to quit (usually).
· Syntax:
· Loop a fixed number of times

For k = 0:2:10

x = 2^k

end

· Loops until a condition is met

While abs(x-y) > 0.001

X = (x+y)/2

end

· Gotchas:

· Syntax varies greatly from language to language. Most use for as the first token, but some use do.
· Infinite loop are those that just keep going around and around because their end value is never reached.
· While has friends so your language may offer do until for those situations where you want the code block to always execute at least once.
· Loops are of ten used to access, one at a time, all of the elements of an array. In that situation, the loop index is also used as the array index. For example

for k = 1:10

xsquared(k) = x(k)*x(k)

end

6 Basic IO
· Concepts – I/O stands for Input and Output.
· Input: Getting data into your program
· Output: Getting data out of your program
· Where Data is Stored
· Files

· Concept: Files are blocks of data that will last after you log off from your computer. Thus, you’ll use files for all long-term data storage.
· Location

· Hard disk – used to hold files on a particular computer
· CD – used to hold small amounts of data that may be used by many computers
· DVD – Same as a CD, but holds a moderate amount of data
· Jump Drive – A chip serving the same role as a CD or DVD. More expensive than a CD or DVD but easier to rewrite when you want to save different files.
· iPOD – a Jump Drive that also happens to play music files
· Diskette – an obsolete form of portable hard drive that stores a minute amount of data. There were several mutually incompatible forms of diskette including floppies, stiffies, and zip disks.
· You – Yes, much of the data your program needs must come from you, and ultimately the answers it provides go back to you. Thus, you’ve got a lot of files in your head as well.
· Memory

· Memory is the much-faster chip-based storage where the program lives while it’s running.
· Thus, it is where all you’re program’s variables are stored.
· When your program ends, all of its memory is reallocated
· So you need to save any important variables to files of some sort.
· I/O exists to move data between files and memory
· Thus, we have I/O statements to move data to and from files on your computer (usually hard disk or jump drive these days) and I/O statements to move data to and from the user.

· File formats

· ASCII
· Plain old text – the type you’d read in a novel or phone book – the usual file extension istxt
· Often with commas separating the numerical values in each row – the usual file extension is csv
· Easy for humans to read

· Easy for all computers to read

· Bulky – files are big for the amount of data they contain

· Slow – files take a long time to read and write compared with binary files
· Raw Binary (i.e. bag-o-bytes)
· A straight dump of the data from the computer’s memory to a file
· The data stays in the original binary format used by your computer’s processor chip
· Efficient - compact to store and fast to read and write

· Gotchas: different processor chips use different binary formats, so you can end up with a nasty translation problem if you move a raw binary file from one machine to another, particularly if you change operating systems (like from Windows to Mac or Linux).
· Special Purpose (such as png, mp3 and netCDF)
· These are binary formats too, but they’re standardized so that everyone can read them.

· Gotchas: the standards change and not all languages can read and write all of these formats.

· Examples
· Graphics: png, jpg, tif, pdf

· Music: mp3, wav

· Datasets: netCDF, Grib
· Types of IO

· Unformatted ASCII – used when you want to get information in and out of your program and are willing to sacrifice appearance to gain programming speed. Often lets you mix text labels and variables with ease, so it’s quite handy for creating self-describing output.
· Output
· Most languages have a print statement of some sort
· It has two tokens, the word print and the list of variables to be printed.
· It usually goes on a line of its own.
· Example – in Matlab
disp([x,y])

· Input

· Most languages have a read statement of some sort
· It has two tokens, the word read and the list of variables to be read

· In some languages there are one or more additional tokens
· A equal sign so the read statement looks like an assignment statement
· A parameter to specify what type of value is to be read (i.e. number or string)
· A prompt to remind the user what to enter.
· Example – in Matlab

x = input('Enter a data value: ');
· Formatted ASCII – used when the column alignment of the data in the file is crucial.
· Output

· Describing the output format requires two more tokens per variable, one to specify what type of output to create (i.e. integer, decimal number, or string) and the other to specify how many columns to use (i.e. how many digits in the integer, how many digits before and after the dot in a decimal number, and how many characters in a string). Some languages, especially those derived from C, include a third token to distinguish this format information from the data to be printed.

· This information can be included in the print statement (as in C or Matlab) or in a separate format statement (as in Fortran).

· Example – in Matlab

fprintf('%7.2f', 73.1)
where % is the token distinguishing the format information, 7.2 is the token describing how many columns to use (7 total, 2 after the decimal place, so the result will come out 73.10), and f is the token stating that the value should be printed as a floating point decimal. 73.1 is the value being printed. More often, we’ll use a variable for this token as in
fprintf('%7.2f', x)
· Input

· Formatted input works much like formatted output, with the same tokens but a different keyword (e.g. fscanf instead of fprintf in C and Matlab).
· Requesting formatted input from humans is rare, since they are prone to typos. Therefore, many languages only allow formatted input from files.
· File I/O is used when we need access data on a hardware device rather than in the user’s mind. The only difference, in most languages, is that you have to specify which file to read from or write to and where that file resides on the computer (i.e. the file path). Thus, there is one more token, often called a file ID.
· The file cycle consists of three parts: open, process, and close.
· Open tells the operating system which file you wish to deal, where it resides, with and what you plan to do (read, write, append, and sometimes others).
· Until you open the file, your program doesn’t know where to look for it.
· On open statement contains 4 tokens
· The keyword, generally open
· The file name, generally as a string, and often beginning with a directory path,
· The desired file ID, generally as a variable, but sometimes as an integer or string.
· A string or other flag specifying the action to be taken (read, write, append, and sometimes others).
· Example – in Matlab
fid = fopen('myfile.dat','w');
says open the file myfile.dat for writing and store the file ID in the variable fid.
· Process the actual I/O requests
· Once you’ve opened the file you read or write to it as described above, but with one more token, the file ID.
· This ID tells your program which of your open files to read from or write to.
· Example – in Matlab
fprintf(fid, '%7.2f', x)
or

x = fscanf(fid, '%8.3f')
· Close the file a file usually only requires two tokens: the keyword, generally close, and the file ID.
· Example – in Matlab
fclose (fid)

· Gotchas

· Forgetting to open a file before you read or write to it. – With luck the language complains bitterly at compile time. If not, your program should crash when it gets to the file I/O statement.

· Forgetting to close a file when you are done with it. – If you’re lucky the language closes it for you when your program finishes. If not, you end up with orphaned files that you can’t access until the operating reboots, if ever.
· Opening a new file with the same ID as an already open file. – Ever try dating two people with the same name at the same time?

· Reading or writing to a file you’ve already closed. – Ever lock yourself out of your car?

· Various languages use different keywords for open and close, although they all tend to be fairly obvious once you’ve seen them.

· Forgetting one of the tokens. For some reason this is more common with open statements than with any other statement type.
7 Functions and their kin
· Concept: Functions provide a way of encapsulating blocks of code so you control exactly what variables they have access to. This makes them easier to debug because there can be no clashes with variables of the same name elsewhere in your program. It also makes them easier to trade with friends because the user need only know their inputs and outputs, not their inner workings. The third great benefit of functions is that they let you reuse the same block of code in several places in your program without having to fix multiple copies every time you make a change. For example, sin(x) is a function that takes the sine of whatever value is stored in the variable x. Most languages have quite a collection of built in (i.e. intrinsic) functions, but you’ll still need to build your own for tasks that are peculiar to your project.
· Tokens:

· Function keyword is used to let the language know that the next section of code is the body of a function. Most languages use the word function for this purpose, but some languages avoid having to use a function keyword at all by requiring each function to be stored in its own file. This gets messy if you have a big library of functions.
· Function name is the word we’ll use to tell our program which function to used. For example sin is the function name in sin(x).
· Input parameters are used for getting data into your function. For example, x is the input parameter in sin(x).
· Output parameters are used for getting answers out of your function. Some languages call the output parameters return values. Such languages often allow you to have only one return value (although you could cheat by making it an array). To finish example, y in y = sin(x) would contain the output of sin(x).
· Block delimiters are needed in those languages that don’t exile each function to its own file. The most common delimiter for the end of a function is, logically enough, end, but some languages use something more obscure.
· Patterns: If you find yourself using the same code in more than one place in your program put it into a function. Professional programmers do this so often they have a special word for it, refactoring. Similarly, if you find yourself using the same code in several programs, refactor it into a function. If you’re code is going to be part of a larger system, put it into a function. And finally, if you’re going to give your code to someone else to use in their program, put it into a function.
· Syntax:

· Defining and calling a function is as easy as wrapping a block of code in a function statement and block delimiter. Matlab doesn’t require a delimiter if you put the function in its own file. Can you pick out the other tokens in the function statement that starts out this function definition? What is the input parameter? What are the output parameters? What is the function keyword?
function [mean,stdev] = stat(x)

n = length(x);

mean = sum(x)/n;

stdev = sqrt(sum((x-mean).^2)/n);
end

which we would call with the following lines of code

y = [1, 2, 3]

 [ymean, ystd] = stat(y)
where

function is the function keyword

stat is the function name

x is the input parameter

mean and stdev are the output parameters

n = length(x);
mean = sum(x)/n;
tdev = sqrt(sum((x-mean).^2/n)); is the function body

and end is the block delimiter
· Gochas:

· The kin – Some languages have different names for functions depending on how many return parameters they have: 0, 1, or lots. Others call them something else entirely, usually procedure or subroutine. Then there are programming structures that are almost, but not quite, functions: macros and methods for example. We’ll talk about methods in the chapter on objects. If you want to see what macros are, try looking them up in a book on the language C.
· Variable names can be changed on input and output. The input and output parameters pass only their values, not their names, into and out of the function!
· Parameter type restrictions occur in those languages that require you to pre-specify the type of each input and output parameters. For example, in C, you can’t send an integer into a function that you told to expect a floating point number. Other languages, such as Matlab, will cheerfully pass in whatever you say, and let your function choke on the input if you happen to goof up the type.
· Return values are specified in different ways in different languages. Matlab lists them immediately after the function keyword, but others require a return statement to specify which value to send back. Some languages even allow you to pass the result values back out through input parameters (kind of like barfing your lunch back out).
· Variable scope issues are central to functions. In most languages the values of variables you define in a function can be accessed only within that function. Thus, they can’t mess up your main program if you happen to reuse a name. Likewise, most languages only let your function see those values from the main program that you passed in as input parameters, giving your function the same clobber protection as the main program. Some languages don’t offer this protection. Avoid them. In any case, conduct a few tests with toy programs to make sure you know the scoping rules of whatever language you’re using.
· Global variables are a cheat, allowing your function to see program variables that you didn’t pass into it. Using them makes your program marginally harder to maintain and debug, but this is more a matter of syntax than substance. Some people use global variables when they feel their input parameter list is getting too long, but since they’re only replacing one long list with another there is no real aesthetic advantage.
· Function names have to match the function’s file name in those languages that restrict some or all functions to living in their own files. This isn’t bad if a function draws its name from the file, but in a language such as Matlab where you must also name it in code this quirk makes it messy to include version numbers in the file names as your function evolves. The best bet in this case is to save copies of the old versions as myfunction_old_1.m, myfunction_old_2.m, etc as they are superceded.
8 Objects

· Concept: Combine data structures and the functions that operate on them into one convenient package.
· Many programming tasks demand that we apply the same algorithm to multiple datasets. As we noted in the previous chapter we can make a program simpler and more concise if we encapsulate the algorithm in a function and call it once for each dataset.
· We can take this process one step further by closely associating the functions with the data structures upon which they will be operating. The resulting mix of data structures and associated functions is called an object. Writing programs using this approach is called object-oriented programming.
· The key to successful object-oriented programming is to decide early which algorithms will be applied to which data structures. Each data-function group becomes an object.
· Similar objects are grouped together into classes.
· Thus, the object-oriented program design process focuses on designing the classes required for the project at hand.
· One often does better with a few general purpose classes than with many highly specialized classes.
· Once you’ve designed the classes, you create an object of the appropriate class for each of your datasets.
· Then you use your object’s functions to operate on their data to achieve the program’s goals.
· It’s all very compact and “in the family” compared with other styles of programming.
· Classes

· Concept
· A class defines the abstract characteristics of one type of object.
· The class specifies the object type’s characteristics, i.e. The data structures that objects of this type hold. These data structures are often called attributes, properties, or fields.
· The class also specifies the things that objects of this type can do. These behaviors are just functions, but they are often called methods or features.
· Example: a List class would include a one-dimensional array to hold the list and a variable to hold the length of the list. It’s methods might include a sort function, a maximum function, and a minimum function
· Components – Thus the components of an object all fall into one of two categories, data members or method members.
· Data members – i.e. data structures
· The data structures in an object can include variables, arrays, or any other data structure allowed in a particular language.
· Most objects contain more than one data structure.
· Often just one data structure contains the dataset an object’s methods will operate on while all the rest of the object’s data structures contain information about the dataset, for example its size, units, or status.
· Method members – i.e. functions
· Methods are nothing more than functions designed to operate on the data contained in an object.
· Usually methods require no data input from the user, since they already know which data structures in the object to act on.
· Some methods do, however, required guidance from the user in how to tackle the problem.
· Example: whether to use linear or spline interpolation when looking up values between the grid points of an array.
· Example: what value to use as a first guess in an iterative solution to some problem.
· Defining

· Tokens
· A keyword, most often class, to let the compiler know that you are about to define a class.
· ClassName, whatever you’re calling the class.
· Within the class definition will be function and data structure definitions
· Function definition tokens
· A keyword, most often method or def, to let the compiler know that you’re about to define a method. Sometimes paired with an end to define the end of the function. Some languages, such as C++ are bright enough to figure out where a method starts and ends without using this keyword.
· MethodName, whatever you’re calling the method
· InputParameters, a list of the input parameters, if any. It’s quite possible there will be none, as the method may draw all of its input from the data structures of the object.
· OutputParameters, a list of the output parameters, if any. It’s quite possible there will be none, as the method may store all of its output in the data structures of the object.
· Data structure definition tokens

· A keyword, to let the compiler know that you’re about to define a data structure. Many languages, such as C++ and Ruby are bright enough to figure out that something is a data structure without using this keyword.
· DataName, whatever you’re going to call the data structure.
· Etc, the same tokens you’d use to define a similar data structure if it weren’t in an object. For example, the type and dimensions of an array.
· Syntax

· C++ example – defines two data structures, an initialization function, and a wind speed computation function.
class wind {

private:

double u;

double v;

double void wind(uin,vin)

{

u = uin;

v = vin;

}

double speed()

{

return windSpeed = ((u*u)+(v*v))^0.5;

}

};
· Wind is the initialization function (i.e. method) used to assign values to the object’s two data members, u and v.

· Speed is a public method for computing wind speed from wind components.

· Ruby example – note that the data structures are defined by the initialization function rather than beforehand.
class wind

def initialize(uin,vin)

u = uin

v = vin

end

def speed

windSpeed = ((u*u)+(v*v))^0.5

end

end
· Gotchas

· Class members (data or method) are those that apply to the class as a whole rather than to individual objects of this type. Initialization functions are class methods, as are object counters that keep track of how many objects you’ve created.
· Private members are those that should be used only by the object itself. This is in contrast to public members that the program should be able to make direct use of. Most object oriented languages make this distinction and add a token to each data structure or function definition to say whether it is public or private.
· Void, is the standard way of saying a method returns no output. It’s kind of pointless since it should be obvious if you don’t list any output variables, but it does make writing the compiler a bit easier.
· Inheritance let’s one class build on another. The daughter class takes on some or all of the data structures and functions of the parent class while adding more of its own. You can use inheritance to make your program design very simple, or misuse it to make the capabilities of your classes totally obscure.
· Object-oriented design can go bad if fail to see the unifying patterns behind your various datasets.
· If you find yourself creating a class for each dataset, you’ve missed the unifying pattern and are not getting any good out of the object-oriented programming approach.
· Your design can fail in the other direction as well, with everything forced to fit into one all-encompassing class. A good object-oriented design will use subclasses to handle this problem.
· Nomenclature: There are almost as many names for data structures and functions as there are object-oriented programming languages. Don’t be thrown off by this. Any given element of an object is either a data structure or a function, no matter what a particular language might call it, so all you have to do is figure out which it is and you’re good to go.
· Objects

· Concept
· Objects are just the individual examples of a class.
· You usually create a new object to hold each new dataset.
· Thus, you can think of objects as groups of data structures with a fixed set of functions that can act on them.
· Each object will have its own data structures, even if it is of the same class (i.e. type) as another object. For example, you and your classmates are all objects of the class student, but each of you has your own chair, lunch, clothes, etc.
· Creating an object is easy in most object oriented languages, although the technique varies from language to language. Some use the class method new to create every object, while others let you name the initialization function for each class whatever you want or name it after the class. In either case it is usually very easy to make objects once you’ve defined a class.
· Tokens

· objectName, the name of the object to be created
· className, the type of object to create
· parameterList, any values required to fill the data structures of the object
· Intializer, the name of the method that creates an object and fills its data structures.
· C++ example – an initializing function with the keyword new implicit.

wind myWind{1.3,-7.4}
· myWind is the name of the object created.

· wind is the name of the object

· 1.3 is the u component of the wind and -7.4 is the v component of the wind. These values will be stored in the variables of the object.

· Note the use of the class.function syntax. This is syntax is used for calling class methods in most object-oriented languages.
· Ruby example - an initializing function with the keyword new explicit.

myWind = wind.new(1.3,-7.4)
· myWind is the name of the object created.

· wind is the name of the object

· new is the initializing function

· 1.3 is the u component of the wind and -7.4 is the v component of the wind. These values will be stored in the variables of the object.

· Note the use of the class.function syntax. This is syntax is used for calling class methods in most object-oriented languages.
· Accessing data members is done with the same dot synax
· Tokens
· objectName lets the program know which object to access
· dataStructure
 is the name of the data structure to be accessed. It lets the program know which part of the object is being accessed.
· Syntax

myWind.u = 3.7

unow = myWind.u
· Where we’re first assigning a value to the u data member of the myWind object and then copying that value to the variable unow.

· Calling method members works much the same way, using the same dot syntax.
· Tokens
· ObjectName lets the program know which object you’re going to be acting on.
· functionName says which function to apply to that object.
· Input parameter list if the function requires one
· Syntax

Speednow = myWind.speed
· Where we’re the speed method member of the myWind object and assigning the result to the variable Speednow.

9 Software Design

· Software design versus programming

· Software design is the process of deciding how to organize and implement the computer code to solve a particular problem.
· Programming is writing code itself, turning the design into a working program one piece at a time.
· Software design is a hierarchical and iterative process.
· It is hierarchical because you start at the broadest possible definition of the problem and add detail one level at a time until you’ve got all the information you need to write the program.
· It is iterative because you build up your design one piece at a time until you’ve solved the entire problem.
· Stages in software design

· Define mission of the program

· Determine components required to accomplish the mission

· Figure out what statement type fits for each component

· Look up the tokens for each statement
· Decide how the data values pass from the tokens of one statement to the next.

· Mission
· Decide exactly what the program has to accomplish. Precision really helps here. If you don’t know what you’re trying to do, you won’t get it done!
· Questions to ask yourself
· What input data are available?
· What output results are required?
· What algorithms are you going to use to generate the results from the input?
· What formats are the input data stored in?
· What formats are the output results required in?
· Can the computer hold all of the data in memory at once, or must my program use a read-process-write-discard cycle?
· Example: Convert a series of daily maximum temperatures from Celsius to Fahrenheit, then calculate how many of these days exceeded 45 degrees Fahrenheit.
· Components
· Determine which components are required to accomplish the mission.
· Determine how these components should be ordered and nested within each other.
· Your goal here is to break the mission into a set of components, each of which is so simple that it will be obvious how to implement it.
· You’re done with this stage when each component is small enough to be implemented with a single type of statement, for example a loop or a group of mathematical formulae.
· Example: This problem has five components
1. Data Storage: Holding the list of temperatures
2. Unit Conversion: Convert each value from Celsius to Fahrenheit.
3. Data Cycling: Run all of the temperatures through the unit conversion
4. Data Check: Determine if each day is above 45 Fahrenheit.

5. Counter: Count the number of days warmer than 45 Fahrenheit.
· Statements
· Decide which statement type matches each component. Your statement flash cards will come in handy for this.
· Assignment

· Store the result of a mathematical formula
· Store the result of an input statement
· Loop

· Process an array of data
· Iteratively improve a solution
· If
· Process data differently under some circumstances
· Take action whenever a particular condition occurs
· I/O

· Read data into your program from the keyboard or some form of permanent storage (hard disk, CD, DVD, tape, jump drive, etc).
· Write data from your program to the screen or some form of permanent storage.
· Example: We implement the five components as follows
6. Data Storage: The temperature series will be stored in a one-dimensional matrix
7. Unit Conversion: An assignment statement will be used to convert each value from Celsius to Fahrenheit.
8. Data Cycling: A loop will run the cases from the matrix through this assignment statement.

9. Data Check: An if statement will be used to determine if each day is above 45 Fahrenheit.

10. Counter: A counter will be initialized to zero with an assignment statement and incremented by one with another assignment statement.
· Tokens
· For each statement, look up and list the tokens. Again, your flash cards will come in handy.
· Some of the tokens are just keywords to tell the compiler what type of statement you’re using. For example the words if and for are keywords that identify if and for statements.
· Other tokens are just punctuation, annoying to remember but no great challenge during the design process.
· The rest of the tokens hold data values. These are the tokens that you’ll have to think about during the design process.
· Data flow

· Once you’ve reached this point you can work out how the data flows through your program.
· For each statement determine where the required input tokens come from.
· Assign a variable name to each of these input tokens and make sure a preceding statement produces a variable with that name and the correct value.
· If you’ve goofed up the previous stages, this is probably where it will become obvious.
· Example:
· Fill the array with temperature values
· Loop over the array
· Extract one temperature value
· Convert it to Fahrenheit
· Check it against 45
· Increment counter
· End of loop
· Oops, we forgot to initialize the counter, so we fix that.
· Fill the array with temperature values
· Set counter to zero
· Loop over the array
· Extract one temperature value
· Convert it to Fahrenheit
· Check it against 45
· Increment counter
· End of loop
· Final code – in Matlab
tc = [8, 9, 11, 12, 10, 9, 7];
num45 = 0;

for k = 1:length(tc)

 tf = 32 + (tc(k)*5/9);

 if tf > 45
 num45 = num45 + 1;

 end

end

· Hierarchy of design can be either from the outside in or the inside out.
· Programs involving arrays of values are usually easier to design from the outside in. You start by designing the data structures and the loops that control program flow across them. Only then do you go on to design the algorithm that processes the data. Example: weather forecast models and data analysis.
· In contrast, programs involve complex analysis algorithms applied to a single set of data values are easiest to design from the inside out, starting with the core of the analysis algorithm. Examples: solving nonlinear equations and sorting lists.
· If a program meets both of these criteria, large data and complex algorithm, then you should design the two aspects separately, encapsulating the analysis algorithm in a function so that the interaction between the two designs is as simple as possible.
· Gotchas

· Vague idea of mission: If you don’t know exactly what you’re trying to accomplish with each piece of software, you won’t be able to complete the design. Sometimes, however, it is helpful to start designing as a means of helping yourself clarify the mission. This is a last resort though, as it leads to confusion more often than clarification.
· Poor data structure design can make the rest of the program hard to design and slow to run. Think about the data structures and algorithms together. How you organize the data into arrays should match how your algorithm will need to access the data.
· Inefficient I/O can slow a program more than almost any other problem. Make sure that you’re reading only the data you need to read, that you read each piece of data only once, and that you don’t open and close each dat file more than once.
· Don’t over make work for yourself
· Don’t create variables you won’t use.

· Don’t make calculations you don’t need.

· Don’t read data you don’t need.

· Don’t create if-statement branches that aren’t needed.
10 Documentation
· Concept: Documentation is your way of remembering what you were thinking when you designed and wrote your program. It is also the means by which others read your mind when they use or upgrade your program. Documentation can be included in your program, exiled to a separate file, or banished to a paper manual. If you want to make sure it doesn’t get lost, include it in your program. Some languages (for example, Perl and Java) include tools for making nifty beach-readable paper manuals from this “in-program” documentation.
· Tokens: Comments contain two tokens, one to tell the computer that the comment isn’t code to be compiled, and the other the text of the comment. Unfortunately the symbol for the first token (i.e. the “this is a comment” marker) varies widely from language to language. Common symbols include: %, #, / and combinations thereof.
· Syntax
· Multi-line comments are available in some language, such as C. They usually have a “this is a comment” token at the beginning and end. For example:
/ This is the first line of a multi-line
comment in the C++ language /

· Single-line comments are available in most languages. Each single-line comment begins with the “this is a comment token”. For example, in Matlab:
% This is a single-line comment.

% And this is another single-line comment.
· End-of-line comments are almost as common. Typically anything after the first “this is a comment” token in a line is considered to be a comment. For example, in Matlab
z = (x^2 + y^2)^0.5 % Hypotenuse of a right triangle
· Patterns

· Variable definitions should be provided in comments, so you can remember what information is stored in each variable. These comments supplement the use of meaningful variable names, allowing you to keep the variable names shorter than they would otherwise be. For simple programs, just define each variable as it is created, either with a single-line comment on the line above, or and end-of-line comment on the line itself. For longer programs, break the program up into functions and define all of the variables used in each function at the top of that function. A multi-line comment works well for this.
· Algorithm source reference: Make sure to note where you got each algorithm from: book and page, URL, whatever. Just make sure it is a source that you and others can still access years from now. Somewhere, sometime, someone will need to read about your method, and this is where they will turn.
· Algorithm explanation should be provided so that one can determine what the code was intended to do. This is very helpful when trying to debug or modify code written by someone else. An algorithm explanation usually requires a multi-line comment.
· Usage instructions should be one of the first things a user sees at the top of each program or function. Try to make them idiot proof. Nothing really is, but trying helps.
· Copyright and authorship notices a good way to make sure you get credit for your work, and that users know who to turn to when things go wrong.
· Gotchas

· Not commenting your code as you go along. It’s tempting not to take the time to comment your code because you think the program is small, simple, or won’t be used long. Programs, however, tend to have a life of their own, growing, gaining complexity, and getting used by others long after you’re gone. Therefore, it is best to document according to the following rule: Assume that three weeks from now you’ll forget everything you now know.
· Assuming it’s obvious. It isn’t. See the previous rule.
