Array
Concept
Store a group of related variables in a way that lets you specify members of the group using one or more indices.
A(1,2) = 3 * B(3,4)

Tokens

a.
Array Names: A and B

b.
Index holders: ()

c.
Array indices: 1,2 and 3,4

Pattern

Use an array whenever you need to store a group of values. Common applications include lists of names and two- and three-dimensional grids of numbers. For example, you’d store all of the coefficients in a polynomial in a one-dimensional array or a map of gridded temperature values in a two-dimensional array.
Conditional

Concept
Have the program take one set of actions under one set of circumstances, but take another set of actions under all other circumstances.
if x < 0 then

 y = 3-x

else

 y = x*7

end

Tokens

a.
if: keyword to identify a conditional statement

b.
Boolean condition: If this condition is met the first code block is executed, otherwise the else block (if present) is executed.

c.
Code block delimiters: then, else, end

d.
Conditional code block: the group of statements that are executed if the Boolean condition is true, y = 3-x

e.
Else code block: the group of statements that are executed if the Boolean condition is false, y = x*7. This block and the else that goes with it are optional.

Pattern

Use an array whenever you need to store a group of values. Common applications include lists of names and two- and three-dimensional grids of numbers. For example, you’d store all of the coefficients in a polynomial in a one-dimensional array or a map of gridded temperature values in a two-dimensional array.
Loop

Concept
Loops are used whenever you want to execute a group of code lines more than one time, but with one or more of the variables changing value each time.
for k = 0:2:10

 y(k) = x^k

end

Tokens

a.
for: keyword to identify a loop

b.
Index variable: the name of the variable whose value will change for each pass through the loop, k

c.
Start value: specifies the index variable should take for the first pass through the code block, 0

d.
Step Value: specifies the amount by which the index changes between passes through the code block, 2. Many languages assume a value of 1 if you leave this token out.

e.
End value: specifies the limiting value for the loop index, 10. Once the index value steps beyond this value the loop exits.

f.
Code block delimiters: for, end

g.
Code block: the group of statements that are executed on each pass through the loop, y(k) = x^k

Pattern
If you know ahead of time how many times you want to execute the code block (the usual situation) you can use a for loop as described above. If instead you want to keep re-executing the code block until it gets the answer right (for example to find the solution to a nonlinear equation), then you’ll need a while statement (This would be a good time to practice using your language’s help facility, so try looking up loops to see if it offers a while statement). While statements are actually a cross between loops and if statements since they keep executing the code block until the specified condition fails. Think of them as infinitely repeating loops with enough sense to know when to quit (usually).
Function

Concept
Functions provide a way of encapsulating blocks of code so you control exactly what variables they have access to. This makes them easier to debug because there can be no clashes with variables of the same name elsewhere in your program. It also makes them easier to trade with friends because the user need only know their inputs and outputs, not their inner workings. The third great benefit of functions is that they let you reuse the same block of code in several places in your program without having to fix multiple copies every time you make a change.
function [b] = square(a)

 b = a*a

end

Tokens

a.
function: keyword to identify a function definition

b.
Function name: name to be used by the program to invoke the function, square

c.
Input parameters: the variables passed into the function from your program, a

d.
Output parameters: the variables passes back to the program from your program, b

d.
Code block: the group of statements that are executed on each time the function is called, b = a*a

e.
end: delimiter marking the end of the function definition
y = square(x)
Tokens

a.
Function name: square

b.
Input parameters: the variables passed into the function from your program, x

c.
Receiving variables: the variables in your program which receive the values passed back from your program, y

Pattern

If you find yourself using the same code in more than one place in your program put it into a function. Similarly, if you find yourself using the same code in several programs, refactor it into a function. If you’re code is going to be part of a larger system, put it into a function. And finally, if you’re going to give your code to someone else to use in their program, put it into a function.
