This is a general education “technical” course designed primarily for “nontechnical” students, freshmen and seniors alike. It is also quite useful as an introductory course for students of science and engineering.
This is also a course that introduces the students
to the METHODOLOGY OF LEARNING. The Internet has revolutionized the storage and
transfer of information. But it is also revolutionizing the learning process.
And it came at just the right time. We increasingly need to acquire
“interdisciplinary” knowledge, and yet what we must know within our
own disciplines keeps growing and growing and growing... So how do you provide
a renaissance-type education in the 21st century? Courtesy of the
Internet!! Learning boils down to grasping ONLY THE BOTTOM LINE. This means
identifying and understanding the KEY ISSUES, and being able to quickly find
and analyze the relevant (and reliable!) information.
In mid-August 2003 a major regional blackout occurred.
Electricity, the lifeblood of modern society that too often we take for
granted, as well as energy policy, has now taken center stage (again). See, for
example, “Backward on Energy,” the NYT editorial of
Our Fall 2003 class will begin with this issue. We’ll analyze some of the
media accounts. For example, Daniel Yergin and
Here is a partial list of recent media reports about energy and the environment. We’ll discuss as many of them in class as possible...
Great care is taken not to teach either chemistry or physics “through the back door.” We only discuss those physical and chemical concepts that are ABSOLUTELY NECESSARY. The central concept is that of energy conversion efficiency. Rudimentary elements of chemical reactions are introduced to understand the use of fossil fuels and its environmental impact. The planetary model of the atom and the venerable E=mc2 equation are introduced to understand nuclear fission and fusion. An analogy is drawn between the heating value of fossil fuels and the binding energy of nuclear fuels. And that's it!
The entire course is structured around the supply/demand energy balances, or lack thereof, in both the United States and the world. It is on these balances that the entire structure of modern civilization depends. In the first part, we make the point that there is an imbalance between the energy forms that are available on our planet essentially for free (e.g., solar energy, gravitational energy) and the energy forms that our industrialized society needs (e.g., electricity, mechanical work). This imbalance requires that we spend some time discussing the laws that govern the conversion of one energy form into another. In the remainder of the course, we make the point that certain energy forms (e.g., chemical energy stored in petroleum) are much less plentiful today than others (e.g., chemical energy stored in coal), especially when considering their geographical distribution.
On
“The
Lexus and the Olive Tree,” by Thomas L. Friedman (2000)
“The Prize: The epic quest for oil, money and power,” by Daniel
Yergin (1991)
“Natural Capitalism: Creating the next industrial revolution,” by
Paul Hawken, Amory Lovins and Hunter Lovins (1999)
“Longitudes and Attitudes:
Exploring the world after September 11,” by Thomas L. Friedman (2002)
See also the insightful NYT editorial of
See also Selected bibliography. Some of the more recent stimulating books are the following:
“Megawatts and Megatons: A turning
point in the nuclear age?” by R. L. Garwin and G. Charpak (2001).
“In this complex world, full of perils and promise, we have pointed to a
path that for many centuries can allow the world to profit from the benefits of
nuclear energy while minimizing the threat posed by nuclear weaponry. It is
well within the ability of governments and industry to achieve these goals. But
it will happen only if an
informed and concerned public pushes them to recognize and to solve
these problems. It is the public that is, after all, likely to pay the price of
poorly chosen public policy. It is the public for whom we have written this
book and to whom it is dedicated.” [p. 383]
“The Hydrogen Economy: The creation of the worldwide energy web and
the redistribution of power on Earth,” by Jeremy Rifkin (2002).
Quote from the cover: “Hydrogen has the potential to end the
world’s reliance on imported oil and help defuse the dangerous
geopolitical game being played out between Muslim militants and Western
nations. It will dramatically cut down on carbon-dioxide emissions and mitigate
the effects of global warming. And because hydrogen is so plentiful [Is it, really?] and
exists everywhere on earth [Does
it, really?], every human being could be ‘empowered’,
creating the first truly democratic energy regime in history.”
When will this be available at
your local Wal-Mart or Lowes? In my lifetime? In your lifetime? (Is this
visionary leadership or simply misleading optimism?)
“Energy, the Environment, and Public
Opinion,” by Eric R. A. N. Smith (2002).
“[The]
“Power to the People: How the Coming
Energy Revolution Will Transform an Industry, Change Our Lives, and Maybe Even
Save the Planet,” by Vijay V. Vaitheeswaran (2003).
A very readable, if somewhat overly optimistic prediction about the
future of energy and the environment. The author is The Economist’s Environment and Energy correspondent, holds a
degree in mechanical engineering, and thus writes with both authority and great
skill. In particular, he discusses California’s energy deregulation
fiasco, not only in terms of the NIMBY, but also the BANANA syndrome (build
absolutely nothing anywhere near anybody), and makes a renewed case, like Amory
Lovins almost thirty years ago, for the virtues of ‘micropower’.
In a very recent book, entitled “Galileo’s Finger: The Ten Great Ideas of Science” (Oxford University Press, 2003), Peter Atkins devotes two lucid and very readable chapters to the ideas of energy and entropy. He cites C. P. Snow’s “The Two Cultures” -- very appropriately for our general education class -- to conclude that “[n]ot knowing the Second Law of thermodynamics is like never having read a work of Shakespeare.”
The general outline of the course is the following:
Energy Fundamentals
Energy Supply
Energy Demand
How to Balance Energy Supply and Demand?
For a quick closer look, see the overview or the Fall 2003 syllabus.
Here is Homework 1.
Homework 2:
Review questions: 6-5, 7-2, 7-6, 8-1, 8-6, 9-4, 11-2, 11-4
Investigations: 7-8 (see also The
Economist of
Another way to search for relevant articles is the
following: Say, you want to find a more recent article on global warming (for
Investigation 11-20). Go to PSU -> Libraries -> Research Tools ->
E-Resources -> Web of Science (Note that Proquest Direct is there as well)
-> Web of Science, 1986-date -> ISI Web of Science -> Full Search
-> Deselect SI-Expanded (you don’t want articles that are too
‘technical’) -> General Search -> Topic: global warming ->
Search -> Results p. 2 (scroll down): Verweij M, “Curbing global
warming the easy way: An alternative to the Kyoto Protocol” (Sounds
promising!)…
Note that this article appeared in “Government nd Opposition”, Vol.
38, pp. 139-161, published by Blackwell. You can access it on-line as follows:
Go back to
E-Resources List -> Blackwell Science/Blackwell Publishing Journals ->
Government and Opposition, etc… Fascinating! Right? (It sure beats the
microfilms experience, doesn’t it!?)
Practice Exam #4
(same format as previous tests):
1. Indicate whether the statements in Review Questions 15-6, 16-6 and 17-5
are true or false. (Sorry for the typo in 17-5a…)
2. Use the relevant graphs in Chapters
16 and 17 (including any updates, both on the class web site and eia.doe.gov)
to write a succinct essay about the past, present and future of
renewable energies in the
3. Solve Review Questions 19-6 and 19-16.
If you have
not done well on the exams so far and need some extra
credit, here is the opportunity:
(a) Do Investigation 11-10 and provide an update on the PM10 vs. PM2.5 issue
by summarizing
and analyzing one or two more recent media reports.
(b) Do Investigation 13-5 and provide an update on the decommissioning of
nuclear reactors by finding at least one more recent media report.
(c) Do Investigation 17-6 and provide an update on the prospects for a
“hydrogen economy” within the next decade or two.
Homework 4 (due December 2)
Homework 5 (due December 11)
Here is a comparison of U.S. electricity generation efficiencies in 1994 vs. 2000 (we discussed this in class)…
Participate in the discussion about the class (get help on homework, make
suggestions, etc.): CourseTalk
(your chat room)
The final grade (FG) formula is as follows:
FG = 0.6*(average of best four tests) + 0.07*HW1 + 0.07*HW2 + 0.08*HW3 +
0.08*HW4 + 0.10*HW5 + EC
(Note: Borderline cases, such as 93.5 or 84.5, will be decided based on
attendance and/or additional extra credit.)
Grade scale:
A 94-100
A- 90-93
B+ 85-89
B 80-84
B- 75-79
C+ 70-74
C 60-69
D 50-59
F: <50
Here is the preface of the textbook that is available for this course (in pdf format).
EXTRA CREDIT ASSIGNMENT: In his above cited book, Jeremy Rifkin states the following (p. 189): “In an area where average wind speed is 7.5 meters per second, the propellers [of a wind turbine, approximately fifty meters in diameter] will generate about 250 kilowatts of electricity.” Using the knowledge gained in HW #1, verify this conclusion. (Hint: See also Illustration 16-2 in the textbook.)
Here is a clarification about “mtoe” (million tons of oil EQUIVALENT) as units of energy.
Here is a relevant recent cartoon. For extra credit, write a one-page essay about its relationship to energy and/or environmental issues. Be sure to use as many FACTS as necessary to justify your opinions.
Here is a typical (and misleading?) newspaper quote… (This one is from USA Today of 9/25/2002.) We must be a bit MORE PRECISE than this!
Here is another relevant cartoon… Do the same as above!
The entire textbook is now available on-line. Like a good web site, it is updated as frequently as necessary (or possible).
Chapter 1: Overview (pdf format).
Figure 1-0
Insert p. 2
Chapter 2: Concept of Energy (pdf format).
Figure 2-0
Figure 2-2
Figure 2-3
Chapter 3: Laws of Energy Conversion (pdf
format).
Figure 3-2
Figure 3-7
Figure 3-9
Chapter 4: Efficiency of Energy Conversion (pdf
format).
Figure 4-7
Figure 4-8
Figure 4-10
Figure 4-12
Chapter 5: Energy Supply and Demand (pdf format).
Figure 5-0
Figure 5-6
Figure
5-6(updated)
Figure 5-6 (new)
Figure 5-8
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
What do these oil-reserves
“rankings” really mean? (See The Economist of
6/29/2002.)
Dejà vu all
over again? (See The Economist of 4/13/2002.)
Chapter 6: Fossil Fuels: Overview (pdf format).
Figure 6-0
Figure 6-1
Figure 6-2
Figure 6-5
Figure 6-6
Chapter 7: Coal (pdf format).
Figure 7-2 (updated)
Is coal REALLY the “environmental
enemy No. 1”? (See also Chapter 11 below...)
The Economist of 8/17/2002 says this about China: “It is also
concerned about air pollution, particularly in the run up to the 2008 Beijing
Olympics, and is enforcing a switch from coal to natural gas in its big cities.
Closing small mines is part of an effort to show that the country is cutting
down on greenhouse-gas emissions and supports the aims of the Kyoto treaty.
Such gestures notwithstanding, coal remains king. China is its largest producer
and consumer. Its mines employ millions of its people, and coal provides around
75% of its energy. With the demand for energy growing by about 3.5% a year and
expected to double over the next 20 years [Understand this?], and despite strenuous efforts
to provide other sources of energy, the International Energy Agency believes
that coal will remain the country’s dominant energy source for the
foreseeable future.”
Chapter 8: Petroleum (pdf format).
Figure 8-3 (updated)
Where to
drill now? (From ENI commercial.)
No matter how you look at it, the Persian
Gulf oil will be the bloodstream of the industrialized world for many years
to come (from The Economist of 3/23/2002).
And what about Saddam
Hussein? (See, for example, The
Economist of 10/12/02.)
Now that Sadam is gone, do we need to drill in the Arctic National Wildlife Refuge? (See also National
Geographic of August 2001.)
Chapter 9: Natural Gas (pdf format).
Figure 9-3 (updated)
Figure 9-4
(updated)
Chapter 10: 'Synthetic' Fuels, Oil Shale and Tar Sands (pdf format).
Chapter 11: Fossil Fuels: Environmental effects
(pdf format).
Figure 11-1
Figure 11-2
Figure 11-4
Figure 11-5
Figure 11-7
Figure 11-8
Figure 11-10
Updated Review
Questions/Investigations
Updated CO
emissions trends (Excel for Windows)
Updated CO emissions
trends (web page)
Comparison of
CO and CO2 emissions
Is the cup half-full
or half-empty? (See The Economist of 2/2/2002 and 2/16/2002.)
Can you confirm that Lomborg’s data on sulfur oxides
emissions (he is a statistician, after all!) are reliable? And on nitrogen oxides and
ozone?
(See http://www.epa.gov/airtrends.)
For info on long-term trends in air quality (1900-1998), see http://www.epa.gov/ttn/chief/trends/trends98/trendcharts.pdf.
Smog is a local problem, acid rain is a regional problem, global warming (if indeed a long-term problem) is indeed a global issue, and an equivalent of the Montreal Protocol is needed for CO2 emissions… It hasn’t been as easy to come up with it… For a bottom-line understanding of the reasons, remember the back-of-the-envelope calculation done in class!!
For up-to-date info on the
Chapter 12: Nuclear Energy: Introduction (pdf
format).
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Chapter 13: Nuclear Fission (pdf format).
Figure 13-6
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-13
Figure 13-14
Figure 13-15
Figure 13-16
Are pebble-bed
modular reactors the impending saviors of the nuclear energy industry?
(See, for example, The Economist of 6/29/2002.)
Chapter 14: Nuclear Fusion (pdf format).
Figure 14-1
Is it
impossible (or just improbable)? (See The Economist of 7/20/2002.)
Chapter 15: Nuclear Energy: Environmental issues
(pdf format).
Figure 15-1
Figure 15-2
Figure 15-4
Here is a
recently published table that summarizes the status of nuclear power in
industrialized nations.
Chapter 16: Water, Wind, Biomass and Geothermal
Energy (pdf format).
Figure 16-2
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-13
Updated Figure
16-3
Updated Figure 16-5
There ARE controversies about the now famous Three Gorges Dam project...
See, for example, The Economist of 7/6/2002. But the alternatives are
often not discussed... Why? Even a dam in a
“small place [can cause] big waves” (see The Economist of
9/21/2002).
There is much (unfounded?) optimism (among “enviromentalists”
and energy independence hopefuls) that wind energy is ready
and able to take a big chunk of the energy supply (see Flavin and Lenssen,
“Power Surge,” W. W. Norton, 1994). See updated Figure 16-5 above.
Here is a graph
that illustrates the bottom-line virtues and liabilities of a wind turbine (see
Manwell et al., “Wind Energy
Explained,” Wiley, 2002). To understand (or verify the validity of) this
graph, use Illustration
16-2. For an upbeat outlook, see the web site of the American Wind Energy Association.
Renewable
energy consumption in the U.S. 1949-2000
The bottom line for future prospects of renewable energy: comparison of costs, in cents/kWh(e)!
Chapter 17: Solar Energy (pdf format).
Figure 17-2
Figure 17-3
Figure 17-4
Figure 17-5
Figure 17-12
Figure 17-13
Updated Figure
17-1
Updated Figure 17-10
Whether or not the Archimedes story (see p. 315) – that he was able to
use the sun’s rays in Syracuse to burn the invading Roman fleet ships --
is reality or legend has been discussed recently by Frank Kryza in his book
“The Power of Light: The Epic Story of Man’s Quest to Harness the
Sun” (McGraw-Hill, 2003, pp. 37-48). There is no doubt, however, that
Chapter 18: Electricity (pdf format).
Figure 18-4
Updated Figure
18-3
Updated Figure
18-5 (Note the increasing use of natural gas, as well as coal and nuclear
energy, for electricity generation!?)
Cumulative
Figure 18-5 (updated)
Are more blackouts inevitable in a deregulated electricity market?
A solid future for lighting? (see The Economist of October 5, 2002.) Did the journalist forget something on this (semilogarithmic) graph? Here is a relevant quote that we should be able to understand, because it boils down to “our friends,” the concepts of efficiency (see, for example, RQ#4-2) and exponential growth: “A light is judged by the number of lumens it throws… The number of lumens per watt (lm/w) measures a light’s efficiency… The best white LEDs on the market emit 25 lm/w, which is almost twice as efficient as an equivalent tungsten-filament light bulb, but barely a third as good as a fluorescent tube. To become competitive, the devices need to reach 80 lm/w. To rule the world, 150 lm/w is probably required. If progress continues at the rate of the past 30 years, this will be reached by 2010.” Analyze this (and comment!) for extra credit…
The emergence of electric energy at the turn of the 20th century has
transformed the world, of course. For a social history of
Does it make sense to do the laundry, start the dishwasher, etc. at 3 am? Find out more about demand-side management in the consumption of electricity.
Chapter 19: Residential Comfort (pdf format).
Figure 19-1
Figure 19-11
Figure 19-12
Illustration 19-6
Figure 19-13
Figure 19-14
Figure 19-15
Figure 19-16
Figure 19-18a
Figure 19-18b
Figure 19-19
Figure 19-22
R-value photo
Residential energy consumption statistics… For an example how to use this information, click here.
Chapter 20: Transportation (pdf format).
Figure 20-1
Figure 20-3
Figure 20-5
Figure 20-6
Figure 20-14
Figure 20-16
Figure 20-17
Figure 20-19
How many more
cars can there be? (See The Economist of 4/13/2002.)
And the consequences for California
(from The Economist of 7/27/2002)...
Are hybrids really
“the next real thing”? (See The
Economist of 9/28/2002.)
Updates for Tables 20-1 and 20-2: Top-selling cars
in the
1991 1992 1993 1994 1995 1996 1997 1998 2003 [Source: Automotive News and
Ward’s Automotive Yearbooks]
Chapter 21: Energy Economics, Politics and
Policies (pdf format).
G. W. Bush
and global
warming (from The Economist of 2/16/2002 and 6/8/2002).
Lovins’s Soft
Path update (from “Natural Capitalism,” op. cit., p. 252):
“[T]he half-century transition along a ‘soft energy path’
outlined in 1976 is already well under way… [E]fficiently used fossil
fuels would bridge to appropriate renewable sources – ‘soft
technologies’ – that would gradually take over. That’s
roughly what happened.”
Is it really? Do you agree that (1) Amory Lovins was remarkably right regarding
the TOTAL energy consumption trends, but (2) he grossly overestimated the
contribution of renewables and underestimated the staying power of the
“hard path” options (fossil fuels and nuclear energy)?